請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96664完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周涵怡 | zh_TW |
| dc.contributor.advisor | Han-Yi E. Chou | en |
| dc.contributor.author | 洪乙綾 | zh_TW |
| dc.contributor.author | Yi-Ling Hong | en |
| dc.date.accessioned | 2025-02-20T16:26:10Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-10 | - |
| dc.identifier.citation | Röder, P.V., et al., Pancreatic regulation of glucose homeostasis. Experimental & Molecular Medicine, 2016. 48(3): p. e219-e219.
Committee, A.D.A.P.P., 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care, 2024. 48(Supplement_1): p. S27-S49. Magliano, D.J., E.J. Boyko, and I.D.F.D.A.t.e.s. committee, IDF Diabetes Atlas, in Idf diabetes atlas. 2021, International Diabetes Federation © International Diabetes Federation, 2021.: Brussels. Sun, H., et al., IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 2022. 183: p. 109119. Forbes, J.M. and M.E. Cooper, Mechanisms of Diabetic Complications. Physiological Reviews, 2013. 93(1): p. 137-188. Sena, C.M., et al., Diabetes mellitus: new challenges and innovative therapies. Epma j, 2010. 1(1): p. 138-63. Committee, A.D.A.P.P., 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2025. Diabetes Care, 2024. 48(Supplement_1): p. S181-S206. Trief, P.M., et al., Incorrect Insulin Administration: A Problem That Warrants Attention. Clinical Diabetes, 2016. 34(1): p. 25-33. Shapiro, A.M., et al., Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med, 2000. 343(4): p. 230-8. Marfil-Garza, B.A., et al., Pancreatic islet transplantation in type 1 diabetes: 20-year experience from a single-centre cohort in Canada. The Lancet Diabetes & Endocrinology, 2022. 10(7): p. 519-532. Plesner, A. and C.B. Verchere, Advances and Challenges in Islet Transplantation: Islet Procurement Rates and Lessons Learned from Suboptimal Islet Transplantation. Journal of Transplantation, 2011. 2011(1): p. 979527. Wang, Q., et al., Pancreatic islet transplantation: current advances and challenges. Frontiers in Immunology, 2024. 15. Yamada, Y., et al., Clinical Potential and Current Progress of Dental Pulp Stem Cells for Various Systemic Diseases in Regenerative Medicine: A Concise Review. International Journal of Molecular Sciences, 2019. 20(5): p. 1132. Anitua, E., M. Troya, and M. Zalduendo, Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy, 2018. 20(4): p. 479-498. Kanafi, M.M., et al., Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy, 2013. 15(10): p. 1228-1236. Govindasamy, V., et al., Differentiation of Dental Pulp Stem Cells into Islet-like Aggregates. Journal of Dental Research, 2011. 90(5): p. 646-652. Yagi Mendoza, H., et al., Regeneration of Insulin-Producing Islets From Dental Pulp Stem Cells Using a 3D Culture System. Regenerative Medicine, 2018. 13(6): p. 673-687. Pierdomenico, L., et al., Multipotent Mesenchymal Stem Cells with Immunosuppressive Activity Can Be Easily Isolated from Dental Pulp. Transplantation, 2005. 80(6): p. 836-842. Brissova, M. and A.C. Powers, Revascularization of transplanted islets: can it be improved? Diabetes, 2008. 57(9): p. 2269-71. Jansson, L., et al., Pancreatic islet blood flow and its measurement. Upsala Journal of Medical Sciences, 2016. 121(2): p. 81-95. Iwashita, N., et al., Impaired insulin secretion in vivo but enhanced insulin secretion from isolated islets in pancreatic beta cell-specific vascular endothelial growth factor-A knock-out mice. Diabetologia, 2007. 50(2): p. 380-389. Burganova, G., et al., The Role of Vascular Cells in Pancreatic Beta-Cell Function. Front Endocrinol (Lausanne), 2021. 12: p. 667170. Pan, X., et al., Islet Graft Survival and Function: Concomitant Culture and Transplantation With Vascular Endothelial Cells in Diabetic Rats. Transplantation, 2011. 92(11): p. 1208-1214. Brissova, M., et al., Intraislet Endothelial Cells Contribute to Revascularization of Transplanted Pancreatic Islets. Diabetes, 2004. 53(5): p. 1318-1325. Quaranta, P., et al., Co-transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats. PLoS One, 2014. 9(4): p. e94783. Grapensparr, L., G. Christoffersson, and P.O. Carlsson, Bioengineering with Endothelial Progenitor Cells Improves the Vascular Engraftment of Transplanted Human Islets. Cell Transplant, 2018. 27(6): p. 948-956. Kang, S., et al., Endothelial Progenitor Cell Cotransplantation Enhances Islet Engraftment by Rapid Revascularization. Diabetes, 2012. 61(4): p. 866-876. Staels, W., et al., VEGF-A and blood vessels: a beta cell perspective. Diabetologia, 2019. 62(11): p. 1961-1968. Lammert, E., et al., Role of VEGF-A in Vascularization of Pancreatic Islets. Current Biology, 2003. 13(12): p. 1070-1074. Meşe, G., G. Richard, and T.W. White, Gap junctions: basic structure and function. J Invest Dermatol, 2007. 127(11): p. 2516-24. Kumar, N.M. and N.B. Gilula, The Gap Junction Communication Channel. Cell, 1996. 84(3): p. 381-388. Serre-Beinier, V., et al., Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet, 2009. 18(3): p. 428-39. Head, W.S., et al., Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes, 2012. 61(7): p. 1700-7. Theis, M., et al., Replacement by a lacZ reporter gene assigns mouse connexin36, 45 and 43 to distinct cell types in pancreatic islets. Experimental Cell Research, 2004. 294(1): p. 18-29. Serre-Beinier, V., et al., Cx36 preferentially connects beta-cells within pancreatic islets. Diabetes, 2000. 49(5): p. 727-734. Alonso P. Moreno, V.M.B., Gregorio Pérez-Palacios, and E. Martha Pérez-Armendariz, Biophysical evidence that connexin-36 forms functional gap junction channels between pancreatic mouse β-cells. American Journal of Physiology-Endocrinology and Metabolism, 2005. 288(5): p. E948-E956. Charpantier, E., J. Cancela, and P. Meda, Beta cells preferentially exchange cationic molecules via connexin 36 gap junction channels. Diabetologia, 2007. 50(11): p. 2332-2341. Benninger, R.K.P., et al., Gap Junction Coupling and Calcium Waves in the Pancreatic Islet. Biophysical Journal, 2008. 95(11): p. 5048-5061. Farnsworth, N.L. and R.K.P. Benninger, New insights into the role of connexins in pancreatic islet function and diabetes. FEBS Letters, 2014. 588(8): p. 1278-1287. Ravier, M.A., et al., Loss of Connexin36 Channels Alters β-Cell Coupling, Islet Synchronization of Glucose-Induced Ca2+ and Insulin Oscillations, and Basal Insulin Release. Diabetes, 2005. 54(6): p. 1798-1807. Koepple, C., et al., Expression of Connexin43 Stimulates Endothelial Angiogenesis Independently of Gap Junctional Communication In Vitro. Int J Mol Sci, 2021. 22(14). Mannell, H., et al., Cx43 Promotes Endothelial Cell Migration and Angiogenesis via the Tyrosine Phosphatase SHP-2. International Journal of Molecular Sciences, 2022. 23(1): p. 294. Chen, J., et al., Decreased blood vessel density and endothelial cell subset dynamics during ageing of the endocrine system. Embo j, 2021. 40(1): p. e105242. Peiris, H., et al., The β-Cell/EC Axis: How Do Islet Cells Talk to Each Other? Diabetes, 2013. 63(1): p. 3-11. Umrani, M.R., et al., Connexins and microRNAs: Interlinked players in regulating islet function? Islets, 2017. 9(5): p. 99-108. Cottle, L., et al., Structural and functional polarisation of human pancreatic beta cells in islets from organ donors with and without type 2 diabetes. Diabetologia, 2021. 64(3): p. 618-629. Valiunas, V., R. Weingart, and P.R. Brink, Formation of Heterotypic Gap Junction Channels by Connexins 40 and 43. Circulation Research, 2000. 86(2): p. e42-e49. A R Leite, C.P.F.C., A G Furtado, H C.L Barbosa, A C Boschero, and C B Collares-Buzato, Co-expression and regulation of connexins 36 and 43 in cultured neonatal rat pancreatic islets. Canadian Journal of Physiology and Pharmacology, 2005. 83(2): p. 142-151. Hrovatin, K., et al., Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas. Nature Metabolism, 2023. 5(9): p. 1615-1637. Narayanan, S., et al., Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation. World J Transplant, 2017. 7(2): p. 117-128. Oh, B.J., et al., Co-Transplantation of Bone Marrow-Derived Endothelial Progenitor Cells Improves Revascularization and Organization in Islet Grafts. American Journal of Transplantation, 2013. 13(6): p. 1429-1440. Song, H.J., et al., Prolongation of Islet Graft Survival Using Concomitant Transplantation of Islets and Vascular Endothelial Cells in Diabetic Rats. Transplantation Proceedings, 2010. 42(7): p. 2662-2665. Evans, W.H. and P.E. Martin, Gap junctions: structure and function (Review). Mol Membr Biol, 2002. 19(2): p. 121-36. Carvalho, C.P.F., et al., Beta cell coupling and connexin expression change during the functional maturation of rat pancreatic islets. Diabetologia, 2010. 53(7): p. 1428-1437. Baum, O., et al., Structural Microangiopathies in Skeletal Muscle Related to Systemic Vascular Pathologies in Humans. Frontiers in Physiology, 2020. 11. 衛生福利部統計處:112年死因統計年報。取自:https://dep.mohw.gov.tw/DOS/lp-5069-113.html。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96664 | - |
| dc.description.abstract | 糖尿病是一種常見的代謝性疾病,主要由胰島β細胞分泌胰島素分泌不足或組織對胰島素的抵抗所導致。胰島移植是一種有潛力的治療方式能即時調控血糖,但由於供體胰島缺乏、免疫排斥及移植物存活率低等問題,限制了胰島移植作為改善糖尿病的應用。人工胰島技術與多能幹細胞的應用潛力嘗試解決這些問題,但胰島移植後血管化重建方面仍面臨挑戰。因此,了解原生胰島微環境中各個成分的重要性以及它們之間的相互作用對於進一步改善人工胰島的功能具有重要意義。
為了了解胰島與內皮細胞之間的相互作用,並分析胰島微環境中β細胞與內皮細胞之間的細胞間相互作用。我們首先觀察了胰島對內皮細胞增加、遷移行為及其空間分佈的變化,發現內皮細胞在共培養條件下表現出向胰島的趨向性,且內皮細胞的數量增加和與胰島的距離呈負相關,顯示胰島對血管內皮細胞具有明顯的調節作用,並可能促進血管化重建的初期過程。此外,免疫螢光染色分析Connexin36(Cx36)與Connexin43(Cx43)在胰島中的分布,顯示Cx36主要分佈於β細胞的細胞膜及細胞質,而Cx43則主要分布於內皮細胞的邊緣。但我們在免疫金標記的實驗中未觀察到由Cx36與Cx43配對組成的間隙連接,這表示這兩種Connexin可能在β細胞與內皮細胞上各自發揮作用,而非在這兩種細胞間的介面參與間隙連接的細胞間通訊。 本研究探討了胰島和內皮細胞的相互影響,包括內皮細胞對胰島的趨向性。關於Cx36和Cx43在胰島微環境中的分佈情況,雖然我們未能觀察到它們在β細胞與內皮細胞間形成間隙連接,但這些結果為理解胰島內部的細胞間通訊提供了不同的見解。這些發現有助於理解如何促進內皮細胞在人工胰島中的整合,並有助於改善血管化過程,從而提升人工胰島的功能和存活率。 | zh_TW |
| dc.description.abstract | Diabetes mellitus is a common metabolic disorder. It primarily caused by insufficient insulin release from pancreatic islet β-cells or peripheral insulin resistance. Islet transplantation has emerged as a promising treatment offering real-time glucose monitoring and insulin release, potentially restoring glucose regulation. However, its application is limited by several challenges such as donor shortages, immune rejection and low graft survival rates after transplantation. The application potential of artificial islet technology and pluripotent stem cells attempted to alleviate these problems, but revascularization after islet transplantation remains a major challenge. Therefore, understanding the importance of various components within the native islet microenvironment and their interactions is crucial for further improving the functionality of artificial islets.
To investigate the interactions between islets and endothelial cells and analyze the intercellular interactions between β-cells and endothelial cells in the islet microenvironment, we first observed changes in endothelial cell count, behavior and spatial distribution. We found that endothelial cells exhibited a tropism toward islets in co-culture experiment. The density of endothelial cells increased is negative correlation with the distance from the islets. It suggested that islets have regulatory effects on endothelial cells and may promote the initial processes for supporting islet revascularization. Additionally, immunofluorescence staining was used to analyze the distribution of Connexin36 (Cx36) and Connexin43 (Cx43) within islets. Cx36 was primarily expressed on the cell membrane and cytoplasm of β-cells, while Cx43 was expressed on the cell membrane, especially at the contact interface between adjacent cells. However, we did not observe gap junctions formed by the pairing of Cx36 and Cx43 in immunogold labeling experiments. This suggested that these two Connexins may function individually on β cells and endothelial cells, rather than participating in gap junction-mediated intercellular communication at the interface between the two cell types. Our study investigates the interaction between islets and endothelial cells, including endothelial cell tropism toward islets. Regarding the distribution of Cx36 and Cx43 in the islet microenvironment, although we did not observe gap junction formed by Cx36 and Cx43 paired between β-cells and endothelial cells, these findings provide alternative insights into intercellular communication within the islet. These results valuable for understanding how to enhance endothelial cell integration within artificial islets and improve the revascularization process, which may increase the functionality and survival rate of artificial islets. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:26:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:26:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii CONTENTS iv LIST OF FIGURES vi Chapter 1 Introduction 1 1.1 Diabetes Mellitus and the Challenges of Islet Transplantation 1 1.2 Opportunities and Challenges of Artificial Islet 2 1.3 The Role of Vascularization in Islets 3 1.4 Interactions Between β-Cells and Endothelial Cells in Islets 4 1.5 The Importance of Gap Junctions 5 1.6 Research Aims 7 Chapter 2 Material and Methods 8 2.1 Cell culture 8 2.1.1 Mouse lymph node endothelial cells (SVEC4-10) 8 2.1.2 Mouse pancreatic islet endothelial cell (MS1) 8 2.1.3 Cell subculture procedure 8 2.2 Islet isolation 8 2.2.1 Islets for Co-culture and Transmission Electronic Microscopy 8 2.2.2 Islets for Immunofluorescence staining 9 2.3 Co-culture cells and tissue 9 2.4 Time lapse imaging 9 2.5 Glucose stimulated insulin secretion (GSIS) 10 2.6 Insulin concentration assay 10 2.7 In silico single cell transcriptomic analysis 10 2.8 Immunofluorescence staining 11 2.8.1 Immunohistochemistry staining 11 2.8.2 Immunofluorescence staining for cell lines and opened islets 12 2.8.3 Immunofluorescence staining for pancreas islet tissue 12 2.9 Transmission electronic microscopy experiment 13 2.9.1 Chemical fixation and chemical substitution 13 2.9.2 Immunogold labeling and electron microscopic image acquisition 13 2.10 Statistic analysis 14 Chapter 3 Results 15 3.1 Co-culture Experimental Design and Baseline Characterization of Islet and Endothelial Cells 15 3.2 Increase Rate of Endothelial Cells in Different Regions of Co-culture 16 3.3 Spatial Distribution of Endothelial Cells Around Islets 17 3.4 Endothelial Cells Movement in Co-culture 18 3.5 Heterogeneity in Islet’s Ability to Attract Endothelial Cells 19 3.6 Islet Morphology and Function After Co-Culture with Endothelial Cells 20 3.7 In Silico Analysis Reveals Distinct Expression Patterns of Connexin Gene Family in Beta cells and Endothelial Cells of Normal Islet Tissue 21 3.8 Localization of Connexin36 and Connexin43 on Beta Cells and Endothelial Cells 22 3.9 Connexin36 and Connexin43 Expression and Colocalization in Native Islets 23 3.10 Transmission Electron Microscopy (TEM) Reveals Alternative Localization of Connexin36 and Connexin43 in Islets 24 Chapter 4 Conclusion and Discussion 27 Chapter 5 Reference 29 | - |
| dc.language.iso | en | - |
| dc.subject | Connexin36 | zh_TW |
| dc.subject | Connexin43 | zh_TW |
| dc.subject | 細胞間相互作用 | zh_TW |
| dc.subject | 人工胰島 | zh_TW |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | Connexin43 | en |
| dc.subject | Diabetes mellitus | en |
| dc.subject | Artificial Islets | en |
| dc.subject | Cell-Cell Interactions | en |
| dc.subject | Connexin36 | en |
| dc.title | 探討胰島與內皮細胞相互作用以促進人工胰島設計 | zh_TW |
| dc.title | Study on Islet-Endothelial Interactions for Improved Artificial Islet Design | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 姜昱至;陳容慈;張恬君 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Chih Chiang;Jung-Tsu Chen;Tieng-Chun Chang | en |
| dc.subject.keyword | 糖尿病,人工胰島,細胞間相互作用,Connexin36,Connexin43, | zh_TW |
| dc.subject.keyword | Diabetes mellitus,Artificial Islets,Cell-Cell Interactions,Connexin36,Connexin43, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202500531 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-11 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 口腔生物科學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
