請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96655完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林楨家 | zh_TW |
| dc.contributor.advisor | Jen-Jia Lin | en |
| dc.contributor.author | 吳姃家 | zh_TW |
| dc.contributor.author | Cheng-Chia Wu | en |
| dc.date.accessioned | 2025-02-20T16:23:47Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-09 | - |
| dc.identifier.citation | Alonso, L. and F. Renard. 2020. A comparative study of the physiological and socio-economic vulnerabilities to heat waves of the population of the metropolis of Lyon (France) in a climate change context. International Journal of Environmental Research and Public Health 17 (3): 1004. https://doi.org/10.3390/ijerph17031004
Anguelovski, I., Shi, L., Chi, E., Gallagher, D., Goh, K., Lamb, Z., Reeves, K., and Teicher, H. 2016. Equity impacts of urban land use planning for climate adaptation: Critical perspectives from the Global North and South. Journal of Planning Education and Research 36 (3): 333–348. Arthur, N., and J. Hack. 2022. A multiple scale, function, and type approach to determine and improve Green Infrastructure of urban watersheds. Urban Forestry and Urban Greening 68: 127459. https://doi.org/10.1016/j.ufug.2022.127459 Banzharf, H., L. Ma, and C. Timmins. 2019. Environmental justice: Establishing causal relationships. Annual Reviews of Resources Economics 11: 377-98. https://doi.org/10.1146/annurev-resource-100518-094131 Birkmann, J., M. Garschagen, F. Kraas, and N. Quang. 2010. Adaptive urban governance: new challenges for the second generation of urban adaptation strategies to climate change. Sustainability Science 5: 185–206. https://doi.org/10.1007/s11625-010-0111-3 Borden, K., M. Schmidtlein, C. Emrich, W. Piegorsch, and S. Cutter. 2007. Vulnerability of U.S. cities to environmental hazards. Journal of Homeland Security and Emergency Management 4 (2), 5. https://doi.org/10.2202/1547-7355.1279 Bosch, M., M. Locatelli, P. Hamel, R. P. Remme, R. Jaligot, J. Chenal, and S. Joost. 2021. Evaluating urban greening scenarios for urban heat mitigation: a spatially explicit approach. The Royal Society Publishing 8: 202174. https://doi.org/10.1098/rsos.202174 Bosma, H., H. Mheen, G. Borsoom, and J. Mackenbach. 2001. Neighborhood socioeconomic status and all-cause mortality. American Journal of Epidemiology 153 (4): 363–371. https://doi.org/10.1093/aje/153.4.363 Brito, M., M. Evers, and A. Almordie. 2017. Participatory flood vulnerability assessment: a multi-criteria approach. Hydrology and Earth System Sciences Discussions. https://doi.org/10.5194/hess-2017-368 Carter, G., G. Cavan, A.Connelly, S. Guy, J.Handley, and A. Kazmierczak. 2015. Climate change and the city: Building capacity for urban adaptation. Progress in Planning 95: 1-66. https://doi.org/10.1016/j.progress.2013.08.001 Chakraborty, T., A. Hsu, D. Manya, and G. Sheriff. 2019. Disproportionately higher exposure to urban heat in lower-income neighborhoods: a multi-city perspective. Environmental Research Letters 14: 105003. https://doi.org/10.1088/1748-9326/ab3b99 Chen, H. C., G. Han, and B. D.Vries. 2020. Modeling the spatial relation between urban morphology, land surface temperature and urban energy demand. Sustainable Cities and Society 60: 102246. https://doi.org/10.1016/j.scs.2020.102246 Chen, T. L., and Z. H. Lin. 2021. Impact of land use types on the spatial heterogeneity of extreme heat environments in a metropolitan area. Sustainable Cities and Society 72: 103005. https://doi.org/10.1016/j.scs.2021.103005 Chen, Y. C., T. P. Lin, and W. Y. Shih. 2017. Modeling the urban thermal environment distributions in Taipei Basin using local climate zone (LCZ). Joint Urban Remote Sensing Event (JURSE): 1-4. https://doi.org/10.1109/JURSE.2017.7924531 Chen, Y. T. 2017. The factors affecting electricity consumption and the consumption characteristics in the residential sector—A case example of Taiwan. Sustainability 2017 (9): 1484. https://doi.org/10.3390/su9081484 Chun, B., and J. Guldmann. 2014. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landscape and Urban Planning 125: 76-88. https://doi.org/10.1016/j.landurbplan.2014.01.016 Chung, T., S. Su, C. Liao, and C. Wang. 2010. Investigation of heat island effect on afternoon thunderstorm activity in Taipei Metropolitan - Taking 0812 event in 2009 as example. Journal of Taiwan Agricultural Engineering 56 (3): 85-101. https://doi.org/10.29974/JTAE.201009.0008 Cutter, S. L., J. T. Mitchell, and M. S. Scott. 2000. Revealing the vulnerability of people and places: a case study of Georgetown County, South of Carolina. Annual of the Association of American Geographers 90 (4): 713-737. Cutter, S. L., B. J. Boruff, and W. L. Shirley. 2003. Social vulnerability to environmental hazards. Social Science Quarterly 84: 242-261. https://doi.org/10.1111/1540-6237.8402002 Cutter, S. L. and C. Finch. 2008. Temporal and spatial changes in social vulnerability to natural hazards. PNAS 105 (7): 2301–2306. https://doi.org/10.1073/pnas.0710375105 Dai, Z., J. Guldmann, and Y. Hu. 2018. Spatial regression models of park and land-use impacts on the urban heat island in central Beijing. Science of The Total Environment 626: 1136-1147. https://doi.org/10.1016/j.scitotenv.2018.01.165 Eisenman, D., H. Wilhalme, C.-H. Tseng, M. Chester, P. English, S. Pincetl, A. Fraser, S.Vangala, and S. Dhaliwal. 2016. Heat death associations with the built environment, social vulnerability and their interactions with rising temperature. Health and Place 41: 89-99. https://doi.org/10.1016/j.healthplace.2016.08.007 Erdem, U., K. M. Cubukcuand, and A. Sharifi. 2021. An analysis of urban form factors driving urban heat island: the case of Izmir. Environment, Development and Sustainability 23: 7835–7859. https://doi.org/10.1007/s10668-020-00950-4 Ewing, R., and F. Rong. 2008. The impact of urban form on U.S. residential energy use. Housing Policy Debate 19 (1): 1-30. https://doi.org/10.1080/10511482.2008.9521624 Fang, H., M. Sha, W. Lin, D. Qiu, and Z. Sha. 2021. Assessing urban greenness fragmentation and analysis of its associated factors: a case study in Wuhan Metropolitan Area, China. ISPRS International Journal of Geo-Information 10 (11): 760. https://doi.org/10.3390/ijgi10110760 Fan, J. Y. and R. Sengupta. 2022. Montreal's environmental justice problem with respect to the urban heat island phenomenon. Canadian Geographer 66 (2): 307-321. https://doi.org/10.1111/cag.12690 Flanagan, B. E., E. W. Gregory, E. J. Hallisey, J. L. Heitgerd, and B. Lewis. 2011. A social vulnerability index for disaster management. Journal of Homeland Security and Emergency Management 8 (1): 0000102202154773551792. https://doi.org/10.2202/1547-7355.1792 Gandhi, G. M., S. Parthiban, N. Thummalu, and A. Christy. 2015. Ndvi: vegetation change detection using remote sensing and GIS – a case study of Vellore District. Procedia Computer Science 57: 1199-1210. https://doi.org/10.1016/j.procs.2015.07.415 Gladhill, K. and C. Monsere. 2012. Exploring traffic safety and urban form in Portland, Oregon. Transportation Research Record 2318 (1): 63-74. Gronlund, C. 2014. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: a review. Current Epidemiology Reports 1: 165–173. https://doi.org/10.1007/s40471-014-0014-4 Grafius, D. R., R. Corstanje, and J. A. Harris. 2018. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landscape Ecology 33: 557–573. https://doi.org/10.1007/s10980-018-0618-z Gu, Y., and X. You. 2022. A spatial quantile regression model for driving mechanism of urban heat island by considering the spatial dependence and heterogeneity: An example of Beijing, China. Sustainable Cities and Society 79: 103692. https://doi.org/10.1016/j.scs.2022.103692 Guo, A., J. Yang, X. Xiao, J. Xia, C. Jin, and X. Li. 2020. Influences of urban spatial form on urban heat island effects at the community level in China. Sustainable Cities and Society 53: 101972. https://doi.org/10.1016/j.scs.2019.101972 Guo, Y., and T. Hsiao. 2009. Introduction to vulnerability to natural hazards and scio-economic factors of vulnerability. NARL Quarterly 22: 99-101. https://doi.org/10.29659/NARLQ.200904.0016 Guo, X. and N. Kapucu. 2020. Assessing social vulnerability to earthquake disaster using rough analytic hierarchy process method: A case study of Hanzhong City, China. Safety Science 125: 104625. https://doi.org/10.1016/j.ssci.2020.104625 Hadipour, V., F. Vafaie, and N. Kerle. 2020. An indicator-based approach to assess social vulnerability of coastal areas to sea-level rise and flooding: A case study of Bandar Abbas city, Iran. Ocean and Coastal Management 188: 105077. https://doi.org/10.1016/j.ocecoaman.2019.105077 Hair, J. F., R. E. Anderson, R. E. Tatham, and W. C. Black. 1995. Multivariate data analysis. Englewood Cliffs, NJ: Prentice-Hall. Hosea, H., E. A. Pravitasari, Y. Setiawan, and E. Rustiadi. 2019. Landscape metric in the analysis of urban form in Cekungan Bandung urban region. Paper presented at the Sixth International Symposium on LAPAN-IPB Satellite, Bogor, Indonesia. https://doi.org/10.1117/12.2541668 Hsiao, H. 2021. Spatial distribution of urban gardens on vacant land and rooftops: A case study of 'The Garden City Initiative' in Taipei City, Taiwan. Urban Geography 43 (8): 1150-75. https://doi.org/10.1080/02723638.2021.1901036 Hsu, A., G. Sheriff, T. Chakraborty, and D. Manya. 2021. Disproportionate exposure to urban heat island intensity across major US cities. Nature Communications 12: 2721. https://doi.org/10.1038/s41467-021-22799-5 Hsu, K. M., C. Chi, and M. Hsiao. Climate change, intergenerational justice, and sustainability: concept, indicators, and policy. 2016. Taiwan Economic Forecast and Policy 46 (2): 259-85. Huang, M., C. Chen, H. Chung, Y. Yeh, and C. Huang. 2011. Using space syntax method analyzes location effect on office prices in Taipei. National Science Council Taiwan Research Report. Huang, Y., M. Yuan, and Y. Lu. 2019. Spatially varying relationships between surface urban heat islands and driving factors across cities in China. Environment and Planning B: Urban Analytics and City Science 46 (2): 377–394. https://doi.org/10.1177/2399808317716935 Hwang, R. L., M. J. Cheng, T. P. Lin, and M. C. Ho. 2009. Thermal perceptions, general adaptation methods and occupant’s idea about the trade-off between thermal comfort and energy saving in hot–humid regions. Building and Environment 44: 1128–1134. https://doi.org/10.1016/j.buildenv.2008.08.001 Indraganti, M., R. Ooka, and H. B. Rijal. 2015. Thermal comfort in offices in India: Behavioral adaptation and the effect of age and gender. Energy and Buildings 103: 284- 295. https://doi.org/10.1016/j.enbuild.2015.05.042 Indraganti, M., and M. A. Humphreys. 2021. A comparative study of gender differences in thermal comfort and environmental satisfaction in air-conditioned offices in Qatar, India, and Japan. Building and Environment 206: 108297. https://doi.org/10.1016/j.buildenv.2021.108297 Islam, S. and J. Winkel. 2017. Climate Change and Social Inequality. United Nations, Department of Economics and Social Affairs. Jiang, B., C. Claramunt, and B. Klarqvist. 2000. Integration of space syntax into GIS for modelling urban spaces. International Journal of Applied Earth Observation and Geoinformation 2 (3-4): 161-171. https://doi.org/10.1016/S0303-2434(00)85010-2 Kaiser, H. F. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement 20: 141–151. https://doi.org/10.1177/001316446002000116 Kawachi, I., and B. P. Kennedy. 1997. Socioeconomic determinants of health: Health and social cohesion: why care about income inequality? BMJ 314 :1037. https://doi.org/10.1136/bmj.314.7086.1037 Khan, S., Z. Javed, A. Lone, S. Dani, Z. Amin, S. Al-Kindi, S. Virani, G. Sharma, R. Blankstein, M. Blaha, M. Cainzos-Achirica, and K. Nasir. 2021. Social Vulnerability and Premature Cardiovascular Mortality Among US Counties, 2014 to 2018. Circulation 144, 16. https://doi.org/10.1161/CIRCULATIONAHA.121.054516 Kowe, P., O. Mutanga, J. Odindi, and T. Dube. 2021. Effect of landscape pattern and spatial configuration of vegetation patches on urban warming and cooling in Harare metropolitan city, Zimbabwe. GIScience & Remote Sensing 58 (2): 261-280. https://doi.org/10.1080/15481603.2021.1877008 Li, H. and H. Yang. 2012. Assessing and applying social vulnerability index of slope-land disasters (SVIoL). Journal of City and Planning 39 (4): 375-406. Li, L., Y. Zha, and R. Wang. 2020. Relationship of surface urban heat island with air temperature and precipitation in global large cities. Ecological Indicators 117: 106683. https://doi.org/10.1016/j.ecolind.2020.106683. Li, C. and Y. Hsieh. 2015. Using space symtax and pedestrian-oriented design concepts to examine the rationality of the land use configuration of TOD districts. Transportation Planning Journal 4 (1): 1-24. Li, J., C. Song, L. Cao, F. Zhu, X. Meng, and J. Wu. 2011. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment 115 (12): 3249-3263. https://doi.org/10.1016/j.rse.2011.07.008 Li, Y., S. Schubert, J.P. Kropp, and D. Rybski. 2020. On the influence of density and morphology on the Urban Heat Island intensity. Nature Communication 11:2647. https://doi.org/10.1038/s41467-020-16461-9 Li, Y., Y. Sun, J. Li, and C. Gao. 2020. Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustainable Cities and Society 63: 102425. https://doi.org/10.1016/j.scs.2020.102425 Li, Y., B. Zhou, M. Glockmann, J. Kropp, and D. Rybski. 2021. Context sensitivity of surface urban heat island at the local and regional scales. Sustainable Cities and Society 74: 103146. https://doi.org/10.1016/j.scs.2021.103146 Lin, J. J., T. Y. Lin, B. R. Kadali, and S. S. V. Subbarao. 2023. Zone-based TOD evaluation considering interdependences among criteria and zones. Transport Policy 133: 108-119. https://doi.org/10.1016/j.tranpol.2023.01.011 Lin, W. 2011. Constructing social and economical vulnerability assessment indicators for an disadvantaged elderly population and application of spatial clustering analysis. City and Planning 38 (3), 219-43. http://dx.doi.org/10.6128/CP.38.3.219 Liu, S., X. Li, L. Chen, Q. Zhao, C. Zhao, X. Hu, and J. Li. 2022. A new approach to investigate the spatially heterogeneous in the cooling effects of landscape pattern. Land 11 (2): 239. https://doi.org/10.3390/land11020239 Liu, Y., and Z. Chen. 2008. Viewing the cooperative evacuation will of residents in Hualien potential debris flow area from hazard perception. Journal of Chinese Soil and Water Conservation 39 (2): 125-39. https://doi.org/10.29417/JCSWC.200806_39(2).0001 Liu, Y. X., J. Peng, and Y. L. Wang. 2017. Relationship between urban heat island and landscape patterns: From city size and landscape composition to spatial configuration. Acta Ecologica Sinica 37 (23): 7769⁃7780. https://doi.org/10.5846/stxb201610202142 Lu, B., P. Harris, M. Charlton, and C. Brunsdon. 2014. The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Information Science 17 (2): 85101. https://doi.org/10.1080/10095020.2014.917453 Lu, J. C., S. Jou, and Y. Liao. 2015. Global trend and Taiwan's research landscape for urban climate governance. City and Planning 42 (1): 7-38. https://doi.org/10.6128/CP.42.1.7 Lu, K., H. Lin, T. Chang, and C. Sun. 2013. Relationship between land cover and surface radiant heat balance in the Taipei urban area during summer. City and Planning 40 (4): 385-412. https://doi.org/10.6128/CP.40.4.385 Mitchell, B. C., and J. Chakraborty. 2015. Landscapes of thermal inequity: disproportionate exposure to urban heat in the three largest US cities. Environmental Research Letters (10): 115005. https://doi.org/10.1088/1748-9326/10/11/115005 Mathew, A., S. Khandelwal, and N. Kaul. 2016. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India. Sustainable Cities and Society 26, 264-77. https://doi.org/10.1016/j.scs.2016.06.018 Mohamed, M., A. Othman, A. Z. Abotalib, and A. Majrashi. 2021. Urban heat island effects on megacities in desert environments using spatial network analysis and remote sensing data: a case study from western Saudi Arabia. Remote Sensing 13 (10): 1941. https://doi.org/10.3390/rs13101941 Nasehi, S., A. Yavari, E. Salehi, and R. Emmanuel. 2022. Role of local climate zone and space syntax on land surface temperature (case study: Tehran). Urban Climate 45: 101245. https://doi.org/10.1016/j.uclim.2022.101245 Nazmfar, H. 2019. An integrated approach of the analytic network process and fuzzy model mapping of evaluation of urban vulnerability against earthquake. Geomatics, Natural Hazards and Risk 10 (1): 1512-1528. https://doi.org/10.1080/19475705.2019.1588791 Njungwi, N. W., D. Lee, M. Kim, C. Jin, and C. Choi. 2021. Analyzing the evolution of summer thermal anomalies in Busan using remote sensing and spatial statistical tool. Korean Journal of Remote Sensing 37 (4): 665–685. https://doi.org/10.7780/KJRS.2021.37.4.1 Nyiwul, L. 2021. Climate change adaptation and inequality in Africa: Case of water, energy and food insecurity. Journal of Cleaner Production 278: 123393. https://doi.org/10.1016/j.jclepro.2020.123393 Park, Y., J. Guldmann, and D. Liu. 2021. Impacts of tree and building shades on the urban heat island: Combining remote sensing, 3D digital city and spatial regression approaches. Computers, Environment and Urban Systems 88: 101655. https://doi.org/10.1016/j.compenvurbsys.2021.101655 Rygel, L., D. O’sullivan, and B. Yarnal. 2006. A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country. Mitigation and Adaptation Strategies for Global Change 11: 741–764. https://doi.org/10.1007/s11027-006-0265-6 Saaty, T. L. 1996. Decision making with dependence and feedback: the analytic network process. RWS Publications, Pittsburgh. Saaty, T. L. 2001. Decision-making with dependence and feedback: the analytic network process, 2nd edn. RWS Publications, Pittsburgh. Sax, D., L. Nesbitt, and J. Quinton. 2022. Improvement, not displacement: A framework for urban green gentrification research and practice. Environmental Science & Technology 137: 373-83. https://doi.org/10.1016/j.envsci.2022.09.013 Schmidtlein, M., R. Deutsch, W. Piegorsch, and S. Cutter. 2008. A sensitivity analysis of the social vulnerability index. Risk Analysis 28: 1099-1114. https://doi.org/10.1111/j.1539-6924.2008.01072.x Sevtsuk, A., and M. Mekonnen. 2012. Urban network analysis toolbox. International Journal of Geomatics and Spatial Analysis 22 (2): 287–305. https://doi.org/10.3166/rig.22.287-305 Sevtsuk, A., M. Mekonnen, and R. Kalvo. 2016. Urban network analysis help: Toolbox for ArcGIS 10/ 10.2/ 10.2. MIT Press, City Form Lab, Version 1.01. https://media.voog.com/0000/0036/2451/files/20160120_UNA_help_v1_1.pdf Shakib, H., J. S. Dardaei, and M. Pirizadeh. 2011. Proposed seismic risk reduction program for the megacity of Tehran, Iran. Natural Hazards Review 12 (3):140–145. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000042 Sharma, S. 1996. Applied multivariate techniques. Wiley, New York. Sheng, L., X. Tang, H. You, Q. Gu, and H. Hu. 2017. Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecological Indicators 72: 738-746. https://doi.org/10.1016/j.ecolind.2016.09.009 Shih, W. Y. 2022. Socio-ecological inequality in heat: The role of green infrastructure in a subtropical city context. Landscape and Urban Planning 226: 104506. https://doi.org/10.1016/j.landurbplan.2022.104506 Shih, W. Y. and L. Mabon. 2018. Thermal environments of Taipei Basin and influence from urban green infrastructure. Journal of City and Planning 45 (4): 283-300. Shih, W. Y., S. Ahmad, Y. C. Chen, T. P. Lin, and L. Mabon. 2020. Spatial relationship between land development pattern and intra-urban thermal variations in Taipei. Sustainable Cities and Society 2: 102415. https://doi.org/10.1016/j.scs.2020.102415 Shih, W. Y., S. C. Lung, C., and S. C. Hu. 2022. Perceived heat impacts and adaptive behaviours in different socio-demographic groups in the subtropics. International Journal of Disaster Risk Reduction 71: 102799. https://doi.org/10.1016/j.ijdrr.2022.102799 Shonkoff, S. B., Morello-Frosch, R., Pastor, M., and J. Sadd. 2011. The climate gap: environmental health and equity implications of climate change and mitigation policies in California—a review of the literature. Climatic Change 109: 485–503. https://doi.org/10.1007/s10584-011-0310-7 Sidiqui, P., M. Tariq, and A. Ng. 2022. An investigation to identify the effectiveness of socioeconomic, demographic, and buildings’ characteristics on surface urban heat island patterns. Sustainability 14(5): 2777. https://doi.org/10.3390/su14052777 Su, Y. F., G. M. Foody, and K. S. Cheng. 2012. Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landscape and Urban Planning 107 (2): 172-180. https://doi.org/10.1016/j.landurbplan.2012.05.016 Sun, C. and Z. Jian. Heat island effect of Taipei Metropolitan Area. City and Planning 43 (4): 437-462. https://doi.org/10.6128/CP.43.4.437 Swanson, K. 2021. Equity in urban climate change adaptation planning: A review of research. Urban Planning 6 (4): 287-97. https://doi.org/10.17645/up.v6i4.4399 Szymanowski, M., and M. Kryza. 2012. Local regression models for spatial interpolation of urban heat island—an example from Wrocław, SW Poland. Theoretical Applied Climatology 108: 53–71. https://doi.org/10.1007/s00704-011-0517-6 Taiwan Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP) 2017. Climate Change in Taiwan: Scientific Report 2017. https://tccip.ncdr.nat.gov.tw/upload/book/20180410112426.pdf (accessed date: 2023.03.17). Teklenburg, J. A. F., H. J. P. Timmermans, and A. F. Wagenberg. 1993. Space syntax: standardised integration measures and some simulations. Environment and Planning B 20 (3): 347-357. https://doi.org/10.1068/b200347 Troppy, S., G. Wilt, A. Whiteman, E. Hallisey, M. Crockett, J. Sharpe, G. Haney, K. Cranston, and R. Klevens. 2020. Geographic associations between social factors and SARS-CoV-2 testing early in the COVID-19 pandemic, February–June 2020, Massachusetts. Public Health Reports 136 (6): 765-773. https://doi.org/10.1177/00333549211036750 Venter, Z. S., T. Chakraborty, and X. Lee. 2021. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Science Advances 7 (22): eabb9569. https://doi.org/10.1126/sciadv.abb9569 Wang, L. and S. Liaw. 2018. The social vulnerability of urban flooding disaster in Hsinchu City. Journal of Engineering Environment 38: 94-113. Wang, S., M. Zhang, X. Huang, T. Hu, Q. C. Sun, J. Corcoran, and Y. Liu. 2022. Urban-rural disparity of social vulnerability to natural hazards in Australia. Scientific Reports 12 (1): 13665. https://doi.org/10.1038/s41598-022-17878-6 Wang, Z. H. 2022. Reconceptualizing urban heat island: Beyond the urban-rural dichotomy. Sustainable Cities and Society 77: 103581. https://doi.org/10.1016/j.scs.2021.103581 Xiong, L., S. Li, B. Zou, F. Peng, X. Fang, and Y. Xue. 2022. Long Time-Series Urban Heat Island Monitoring and Driving Factors Analysis Using Remote Sensing and Geodetector. Frontiers of Environmental Science & Engineering 9: 828230. https://doi.org/10.3389/fenvs.2021.828230 Xu, C., G. Chen, Q. Huang, M. Su, Q. Rong, W. Yue, and D. Haase. 2022. Can improving the spatial equity of urban green space mitigate the effect of urban heat islands? An empirical study. Science of The Total Environment 41: 156687. https://doi.org/10.1016/j.scitotenv.2022.156687 Yang, H., Y. Chen, and H. Li. 2014. Establishing and assessing social vulnerability index (SVI) of natural disasters: Town level application. Journal of Disaster Management 3 (2): 71-93. http://dx.doi.org/10.6149/JDM.2014.0302.04 Yang, P., G. Ren, and W. Hou. 2019. Impact of daytime precipitation duration on urban heat island intensity over Beijing city. Urban Climate 28, 10046. https://doi.org/10.1016/j.uclim.2019.100463 Zebardast, E. 2013. Constructing a social vulnerability index to earthquake hazards using a hybrid factor analysis and analytic network process (F’ANP) model. Natural Hazards 65: 1331–1359. https://doi.org/10.1007/s11069-012-0412-1 Zeleňáková, M., P. Purcz, H. Hlavatá, and P. Blišťan. 2015. Climate Change in Urban Versus Rural Areas. Procedia Engineering 119: 1171-1180. https://doi.org/10.1016/j.proeng.2015.08.968 Zhu, Q., T. Liu, H. Lin, J. Xiao, Y. Luo, W. Zeng, S. Zeng, Y. Wei, C. Chu, S. Baum, Y. Du, and W. Ma. 2014. The spatial distribution of health vulnerability to heat waves in Guangdong Province, China. Global Health Action 7 (1): 25051. https://doi.org/10.3402/gha.v7.25051 Zhou, W., G. Huang, and M. Cadenasso. 2011. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning 102 (1): 54-63. https://doi.org/10.1016/j.landurbplan.2011.03.009 Živković, J. 2019. Urban form and function. In Climate action, Encyclopedia of the UN sustainable development goals, ed. Filho, W., Azeiteiro, U., Azul, A., Brandli, L., Özuyar, P., and Wall, T. Serbia: Springer, Cham. https://doi.org/10.1007/978-3-319-71063-1_78-1 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96655 | - |
| dc.description.abstract | 全球暖化下,都會區的都市熱島效應逐漸增強。不同社會經濟條件的都市居民,也面臨熱曝險的不平等分配,形塑熱的社會不平等。本研究針對此議題,發展了三階段分析,目標是提出能調節臺北盆地都市熱島效應,並發展能減緩熱的社會不平等的都市規劃策略。
首先,本研究使用空間迴歸分析臺北盆地中地表溫度與都市型態的關係,發現建物形狀與密度顯著影響熱島強度。路網上高集中性的建物會強化地表熱島效應,而高可及性的路網設計可調節地表溫度。綠地則對地表溫度有最大的影響,可顯著降低地表溫度。其次,本研究用F’ANP架構評估臺北盆地各里的社會脆弱度,發現家戶所得是決定脆弱度最重要變數。最後,使用地表溫度與脆弱度數值,本研究辨識出臺北盆地中高熱曝險且高脆弱度的里,並以臺北市萬華區糖廍里為案例,模擬不同都市更新情境下的地表溫度。結果顯示,建造配有綠地的集合式公寓來取代低樓層且緊湊建物群,可降低更新街廓4.2%地表溫度。 本研究對亞洲都會區的都市規劃提出實務與熱島研究上重要意涵。分析結果顯示,除了改變建物與路網的型態規劃,增設綠基盤 (公園等開放式綠地) 也可調節都市熱島效應。此外,本研究提出了社會脆弱度評估方法,可協助以參與式決策討論都市的災害管理或氣候調適政策,協助政府或其他重要利害關係人辨識都市中的脆弱區域,達成具環境正義的都市氣候治理。 | zh_TW |
| dc.description.abstract | In a warming climate, urban heat island (UHI) effects have intensified and result in unequal distribution of heat exposure for urban population with different socio-economic statuses. In response, this research conducted a three-stage analysis to mitigate UHI and thermal inequality in Taipei Basin via spatially targeted urban planning.
First, this research analyzed the relationship between land surface temperature (LST) and urban morphology in Taipei Basin using spatial regression and found that shape irregularity and density of buildings affected UHI. Road networks with close buildings would intensify UHI, while higher network accessibility mitigated UHI intensity. Green cover was found to have the largest impact on UHI. Second, this research estimated social vulnerability using F’ANP method and found household income as the most important determinant of vulnerability. Third, this research identified neighborhoods exposed to high UHI intensity and vulnerability and simulated urban renewal scenarios in Tangbu Li, Taipei City. Based on the current building cover ratio, simulation results indicate that replacing low-rise building clusters with condominiums and green spaces could reduce 4.2% LST in renewed blocks. This research has implications for urban climate governance with adaptive urban renewals in Asian metropolises. The result suggests that UHI could be mitigated not only via optimizing the configuration of buildings and networks, but also by implementing green spaces. In addition, this research provides a social vulnerability assessment that effectively identifies vulnerable neighborhoods in a city. By incorporating vulnerability assessment in participatory planning procedure, stakeholders could examine the feasibility of adaptation plannings to achieve environmental justice and eliminate climate gaps. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:23:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:23:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II ABSTRACT III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VII 1. INTRODUCTION 1 1.1 MOTIVATION AND OBJECTIVE 1 1.2 RESEARCH SCOPE 2 1.3 RESEARCH FRAMEWORK 5 2. LITERATURE REVIEW 7 2.1 URBAN HEAT ISLAND (UHI) 7 2.2 UHI AND SOCIO-ECONOMIC FACTORS 8 2.3 ENVIRONMENTAL INJUSTICE AND CLIMATE GAP 9 2.4 SOCIAL VULNERABILITY INDEX (SOVI) 12 2.5 URBAN MORPHOLOGY ANALYSIS 17 2.5.1 Space syntax 17 2.5.2 Landscape ecological indices of land configuration 18 2.5.3 Urban network analysis 19 2.6 RESEARCH GAPS 20 3. METHOD 24 3.1 ANALYSIS FACTOR AND INDEX 24 3.1.1 Urban morphology analysis 24 3.1.2 Social vulnerability 26 3.1.3 Control variable 32 3.2 DATA 32 3.3 ANALYSIS PROCEDURE 35 3.3.1 Urban morphology and UHI analysis 35 3.3.2 Social vulnerability assessment 37 4. RESULT 46 4.1 URBAN DRIVERS OF UHI 46 4.2 SOCIAL VULNERABILITY 49 4.3 ADAPTATION STRATEGY FOR HIGH-RISK NEIGHBORHOOD 55 4.3.1 Impact and spatial spillover effect of UHI drivers 55 4.3.2 Identification of high heat-risk neighborhood 59 4.3.3 Urban renewal case study 63 5. DISCUSSION 68 5.1 UHI DRIVERS IN ASIAN METROPOLIS 68 5.2 SOCIAL VULNERABILITY TO HEAT EXPOSURE 70 5.3 UHI MITIGATION VIA URBAN SPATIAL PLANNING 72 6. CONCLUSION 74 REFERENCES 77 APPENDIX 1 92 APPENDIX 2 BASE MAPS OF VARIABLES IN SARAR MODELS 100 APPENDIX 3 EXPLANATION FOR SUB-METRICES IN F’ANP 103 APPENDIX 4 RESULT OF SARAR MODELS USING NEIGHBORHOOD AS SPATIAL UNIT 106 | - |
| dc.language.iso | en | - |
| dc.subject | 都市型態 | zh_TW |
| dc.subject | 熱的不平等 | zh_TW |
| dc.subject | 社會脆弱度 | zh_TW |
| dc.subject | 空間型構 | zh_TW |
| dc.subject | 都市熱島 | zh_TW |
| dc.subject | thermal inequality | en |
| dc.subject | space syntax | en |
| dc.subject | urban morphology | en |
| dc.subject | urban heat island | en |
| dc.subject | social vulnerability | en |
| dc.title | 都市空間中「熱」的不平等:臺北盆地熱島效應、都市型態與社會脆弱度之關聯分析 | zh_TW |
| dc.title | Thermal inequality in a metropolis: Spatial analysis of urban heat island, urban morphology, and social vulnerability in Taipei Basin | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉仲恩;石婉瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-En Liu;Wan-Yu Shih | en |
| dc.subject.keyword | 都市熱島,都市型態,空間型構,社會脆弱度,熱的不平等, | zh_TW |
| dc.subject.keyword | urban heat island,urban morphology,space syntax,social vulnerability,thermal inequality, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202500057 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-09 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地理環境資源學系 | - |
| dc.date.embargo-lift | 2030-01-08 | - |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2030-01-08 | 5.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
