請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96631
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁建均 | zh_TW |
dc.contributor.advisor | Jian-Jiun Ding | en |
dc.contributor.author | Daisuke Osako | zh_TW |
dc.contributor.author | Daisuke Oskao | en |
dc.date.accessioned | 2025-02-20T16:17:20Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-22 | - |
dc.identifier.citation | [1] Kaus, M.R.; Warfield, S.K.; Nabavi, A.; Black, P.M.; Jolesz, F.A.; Kikinis, R. Automated Segmentation of MR Images of Brain Tumors. Radiology 2001, 218, 586–591.
[2] Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G. A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 2004, 8, 275–283. [3] Hui, J.; Xixi, J.; Lei, Z. Clustering based content and color adaptive tone mapping. Comput. Vis. Image Underst. CVIU 2018, 168, 37–49. [4] Nanda, A.; Barik, R.C.; Bakshi, S. SSO-RBNN driven brain tumor classification with Saliency-K-means segmentation technique. Biomed. Signal Process. Control 2023, 81, 104356. [5] Usman Akbar, M., Larsson, M., Blystad, I. et al. Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models. Sci Data 2024, 11, 259. [6] Wang, T.; Cheng, I.; Basu, A. Fluid vector flow and applications in brain tumor segmentation. IEEE Trans. Biomed. Eng. 2009, 56, 781-789. [7] Khotanlou, H.; Colliot, O.; Atif, J.; Bloch, I. 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 2009, 160, 1457-1473. [8] Kermi, A.; Andjouh, K.; Zidane, F. Fully automated brain tumour segmentation system in 3D-MRI using symmetry analysis of brain and level sets. IET Image Process. 2018, 12, 1964-1971. [9] Khosravanian, A.; Rahmanimanesh, M.; Keshavarzi, P.; Mozaffari, S.; Kazemi, K. Level set method for automated 3D brain tumor segmentation using symmetry analysis and kernel induced fuzzy clustering. Multimed. Tools Appl. 2022, 22, 89. [10] El-Dahshan, E.S.A.; Hosny, T.; Salem, A.B.M. Hybrid intelligent techniques for MRI brain images classification. Digit. Signal Process. 2010, 20, 433-441. [11] Abd-Ellah, M.K.; Awad, A.I.; Khalaf, A.A.M.; Hamed, H.F.A. Design and implementation of a computer-aided diagnosis system for brain tumor classification. J. Comput. Sci. 2016, 16, 1-13. [12] Zhang, Y.; Dong, Z.; Wu, L.; Wang, S. A hybrid method for MRI brain image classification. Expert Syst. Appl. 2011, 38, 10049-10053. [13] Devasena, T.; Hemalatha, M. A hybrid approach for brain tumor detection and classification using support vector machine and artificial neural networks. Int. J. Comput. Appl. 2014, 93, 21-25. [14] Sarith, M.; Sreeja, S. A novel approach for brain tumor detection using hybrid techniques. Int. J. Comput. Appl. 2015, 116, 1-5. [15] Khairandish, M.; Khosravi, A.; Nahavandi, S.; Nguyen, T. A hybrid deep learning model for brain tumor classification. Comput. Methods Programs Biomed. 2020, 190, 105-123. [16] Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Int. Conf. Med. Image Comput. Comput.-Assist. Interv. 2015, 9351, 234-241. [17] Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. Int. Conf. 3D Vis. 2016, 10, 565-571. [18] Isensee, F.; Jaeger, P. F.; Kohl, S. A.; Petersen, J.; Maier-Hein, K. H. nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation. Nat. Methods 2021, 18, 203-211. [19] Xu, Y.; Xu, C.; Zou, L.; Li, X.; Zhao, Y.; Cai, J. Hybrid Transformer and Convolutional Neural Network for Medical Image Segmentation. Med. Image Anal. 2022, 79, 102472. [20] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. IEEE Int. Conf. Comput. Vis. 2017, 618-626. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96631 | - |
dc.description.abstract | None | zh_TW |
dc.description.abstract | Tumor segmentation in medical imaging plays a critical role in the accurate diagnosis and treatment planning of cancer. This study proposes a hybrid framework that combines complementary convolutional neural network (CNN) models and advanced post-processing techniques to achieve robust and accurate tumor segmentation. The initial model (Model 1) employs CLAHE preprocessing, CNN-based predictions, and active contour refinement to provide a baseline segmentation. However, its performance is limited by difficulties in capturing complex tumor boundaries. To address these challenges, a second model (Model 2) incorporates noise-augmented preprocessing and iterative detection, enhancing the segmentation of subtle and irregular tumor regions.
The outputs of both models are merged using logical operations and refined further with edge correction and size filtering. Additionally, an enhanced merging model integrates a Spatial Intensity Metric (SIM) expansion, which leverages spatial and intensity relationships to refine and expand tumor regions, particularly addressing under-segmented areas. This enhancement results in significant improvements, as demonstrated by higher F1 and IoU scores compared to earlier models. The study also highlights the limitations of the grid-based 16×16 classification approach, especially for large tumors, and suggests future directions such as adaptive grid sizes, more detailed labeling schemes, and the incorporation of local texture analysis for malignancy assessment. The proposed framework demonstrates the potential of integrating machine learning and traditional image processing techniques for accurate tumor segmentation, paving the way for more reliable and clinically valuable diagnostic tools. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:17:20Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:17:20Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | ACKNOWLEDGMENTS I
ABSTRACT II CONTENT IV LIST OF FIGURES VI LIST OF TABLES VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 1 Chapter 2 Related Works 4 2.1. General Image Processing Method 4 2.1.1 Morphological processing 4 2.1.2 Gaussian filter 5 2.1.3 Contrast Limited Adaptive Histogram Equalization (CLAHE) 5 2.1.4 Active Contour Model 6 2.2. Deep Learning Method 7 2.2.1 Convolutional Neural Networks (CNN) 7 2.3. Evaluation Method 8 2.3.1 Intersection over Union (IoU) 8 2.3.2 F1 Score 8 Chapter 3 Grid-based CNN Model Part 10 3.1. Preprocessing 10 3.1.1 Model 1 10 3.1.2 Model 2 11 3.2. Model Structure 12 3.3. Performance 13 3.4. Grid Prediction 13 3.4.1 Model Prediction 13 3.4.2 Grid Connection 14 Chapter 4 Post Processing Part 15 4.1 Region Expansion Method 15 4.1.1 Refinement of Predicted Regions Using Active Contour Model 15 4.1.2 Region Expansion Using Spatial Intensity Metric (SIM) 16 4.2 Region Exclusion Method 18 4.2.1 Region Exclusion Based on Geometric Feature 18 4.2.2 Region Exclusion Based on Positional Constraints 21 4.2.3 Region Exclusion Based on Size Constraints 22 Chapter 5 Experiments 24 5.1 Tumor Segmentation Using Model 1 24 5.1.1 Experimental Methodology 1 24 5.1.2 Results and Analysis 1 26 5.2 Tumor Segmentation Using Model 2 29 5.2.1 Experimental Methodology 2 30 5.2.2 Results and Analysis 2 31 5.3 First Merged Models 34 5.3.1 Experimental Methodology 3 34 5.3.2 Results and Analysis 3 35 5.4 Second Merged Models 37 5.4.1 Experimental Methodology 4 37 5.4.2 Results and Analysis 4 38 Chapter 6 Conclusion and future work 41 6.1. Conclusion 41 6.2. Future Work 43 References 45 LIST OF FIGURES Fig 1 Model1 Preprocessing Flow Chart 11 Fig 2 Model2 Preprocessing Flow Chart 11 Fig 3 Overall layer structure 12 Fig 4 Selected Points Example 16 Fig 5 Geometric Feature 20 Fig 6 Flow Chart of Tumor Segmentation Using Model1 24 Fig 7 F1 score distribution using Model 1 27 Fig 8 IoU score distribution using Model 1 27 Fig 9 Results of each step in successful case of Experiment1 28 Fig 10 Results of each step in failure case of Experiment1 29 Fig 11 Flow Chart of Tumor Segmentation Using Model2 30 Fig 12 F1 score distribution using Model 2 32 Fig 13 IoU score distribution using Model 2 32 Fig 14 Successful iterative refinement and final segmentation results using Model 2 33 Fig 15 Flow Chart of Tumor Segmentation Using First Merged Model 34 Fig 16 F1 score distribution merging Model 1 and Model 2 35 Fig 17 IoU score distribution merging Model 1 and Model 2 36 Fig 18 Example of a case where the active contour model does not work well 37 Fig 19 Flow Chart of Tumor Segmentation Using Second Merged Model 37 Fig 20 F1 score distribution incorporating the Spatial Intensity Metric (SIM) 39 Fig 21 IoU score distribution incorporating the Spatial Intensity Metric (SIM) 39 Fig 22 Example of a case where the SIM is working effectively 40 Fig 23 Examples of cases where improvements are needed 43 LIST OF TABLES Table 1 Layer Structure Details 13 Table 2 Test accuracy of CNN models 13 Table 3 Average F1 and IoU Score using Model1 26 Table 4 Average F1 and IoU Score using Model2 31 Table 5 Average F1 and IoU Score merging Model 1 and Model 2 35 Table 6 Average F1 and IoU Score incorporating the Spatial Intensity Metric (SIM) 39 | - |
dc.language.iso | en | - |
dc.title | Filters and Learning-based Methods for Tumor Detection from Ultrasonic Images | zh_TW |
dc.title | Filters and Learning-based Methods for Tumor Detection from Ultrasonic Images | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 余執彰;許文良;歐陽良昱 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Chang Yu;Wen-Liang Hsue;Liang-Yu Ou Yang | en |
dc.subject.keyword | none, | zh_TW |
dc.subject.keyword | Tumor segmentation,Machine learning, | en |
dc.relation.page | 47 | - |
dc.identifier.doi | 10.6342/NTU202500232 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-01-23 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
dc.date.embargo-lift | 2025-02-21 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 2.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。