請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李伯訓(Bor-Shiunn Lee) | |
| dc.contributor.author | Yu-Lun Pao | en |
| dc.contributor.author | 包鈺綸 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:34:12Z | - |
| dc.date.available | 2008-08-08 | |
| dc.date.available | 2021-05-20T20:34:12Z | - |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | 參考文獻
Aarden EM, Wassenaar AM, Alblas MJ, Nijweide PJ (1996). Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem Cell Biol 106(5):495-501. Agrawal CM, Athanasiou KA (1997). Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res 38(2):105-14. Atmani H, Chappard D, Basle MF (2003). Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J Cell Biochem 89(2):364-72. Banovac K, Koren E (2000). Triiodothyronine stimulates the release of membrane-bound alkaline phosphatase in osteoblastic cells. Calcif Tissue Int 67(6):460-5. Bellows CG, Heersche JN, Aubin JE (1992). Inorganic phosphate added exogenously or released from beta-glycerophosphate initiates mineralization of osteoid nodules in vitro. Bone Miner 17(1):15-29. Beresford JN, Joyner CJ, Devlin C, Triffitt JT (1994). The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol 39(11):941-7. Blumberg P, Brenner R, Budny S, Kresse H (1997). Increased turnover of small proteoglycans synthesized by human osteoblasts during cultivation with ascorbate and beta-glycerophosphate. Calcif Tissue Int 60(6):554-60. Boskey AL, Posner AS (1976). Extraction of a calcium-phospholipid-phosphate complex from bone. Calcif Tissue Res 19(4):273-83. Brehm A, Ohbo K, Scholer H (1997). The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Mol Cell Biol 17(1):154-62. Causa F, Netti PA, Ambrosio L, Ciapetti G, Baldini N, Pagani S, et al. (2006). Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J Biomed Mater Res A 76(1):151-62. Chen L, Scholler J, Foged NT (1996). ALP induction by beta-glycerophosphate during the non-mineralization phase in vitro. J Tongji Med Univ 16(1):20-4. Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV (1994). Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134(1):277-86. Coombes AG, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA (2004). Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 25(2):315-25. Dean DD, Schwartz Z, Bonewald L, Muniz OE, Morales S, Gomez R, et al. (1994). Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycan-degrading metalloproteinases after addition of beta-glycerophosphate and ascorbic acid. Calcif Tissue Int 54(5):399-408. Dressman JB, Fleisher D (1986). Mixing-tank model for predicting dissolution rate control or oral absorption. J Pharm Sci 75(2):109-16. Driessens FC (1980). Probable phase composition of the mineral in bone. Z Naturforsch [C] 35(5-6):357-62. Friedman CD, Costantino PD, Takagi S, Chow LC (1998). BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 43(4):428-32. Ganta DR, McCarthy MB, Gronowicz GA (1997). Ascorbic acid alters collagen integrins in bone culture. Endocrinology 138(9):3606-12. Gorbunoff MJ, Timasheff SN (1984). The interaction of proteins with hydroxyapatite. III. Mechanism. Anal Biochem 136(2):440-5. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL (1999). Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14(9):1522-35. Hanada K, Dennis JE, Caplan AI (1997). Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res 12(10):1606-14. Harada S, Matsumoto T, Ogata E (1991). Role of ascorbic acid in the regulation of proliferation in osteoblast-like MC3T3-E1 cells. J Bone Miner Res 6(9):903-8. Hunter GK, Poitras MS, Underhill TM, Grynpas MD, Goldberg HA (2001). Induction of collagen mineralization by a bone sialoprotein--decorin chimeric protein. J Biomed Mater Res 55(4):496-502. Ishida Y, Tertinegg I, Heersche JN (1996). Progesterone and dexamethasone stimulate proliferation and differentiation of osteoprogenitors and progenitors for adipocytes and macrophages in cell populations derived from adult rat vertebrae. J Bone Miner Res 11(7):921-30. Kalfas IH (2001). Principles of bone healing. Neurosurg Focus 10(4):E1. Kamiya N, Takagi M (2001). Differential expression of dentin matrix protein 1, type I collagen and osteocalcin genes in rat developing mandibular bone. Histochem J 33(9-10):545-52. Kim HW, Knowles JC, Kim HE (2004). Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes. J Biomed Mater Res A 70(3):467-79. Klemm JD, Rould MA, Aurora R, Herr W, Pabo CO (1994). Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77(1):21-32. Komori T (2000). A fundamental transcription factor for bone and cartilage. Biochem Biophys Res Commun 276(3):813-6. Kuhne JH, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M (1994). Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand 65(3):246-52. Lewandrowski KU, Venugopalan V, Tomford WW, Schomacker KT, Mankin HJ, Deutsch TF (1996). Kinetics of cortical bone demineralization: controlled demineralization--a new method for modifying cortical bone allografts. J Biomed Mater Res 31(3):365-72. Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999). In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res 47(3):324-35. McCulloch CA, Tenenbaum HC (1986). Dexamethasone induces proliferation and terminal differentiation of osteogenic cells in tissue culture. Anat Rec 215(4):397-402. Nagase M, Chen RB, Asada Y, Nakajima T (1989). Radiographic and microscopic evaluation of subperiosteally implanted blocks of hydroxylapatite-gelatin mixture in rabbits. J Oral Maxillofac Surg 47(1):40-5. Niwa H (2001). Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 26(3):137-48. Posner AS (1969). Crystal chemistry of bone mineral. Physiol Rev 49(4):760-92. Queiroz AC, Santos JD, Monteiro FJ, Gibson IR, Knowles JC (2001). Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites. Biomaterials 22(11):1393-400. Schiller C, Epple M (2003). Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters. Biomaterials 24(12):2037-43. Sugaya A, Minabe M, Tamura T, Hori T, Watanabe Y (1989). Effects on wound healing of hydroxyapatite-collagen complex implants in periodontal osseous defects in the dog. J Periodontal Res 24(4):284-8. Walsh S, Jordan GR, Jefferiss C, Stewart K, Beresford JN (2001). High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis. Rheumatology (Oxford) 40(1):74-83. Walsh WR, Labrador DP, Kim HD, Guzelsu N (1994). The effect of in vitro fluoride ion treatment on the ultrasonic properties of cortical bone. Ann Biomed Eng 22(4):404-15. Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, et al. (1990). Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 87(6):2220-4. Yang L, Tao T, Wang X, Du N, Chen W, Tao S, et al. (2003). Effects of dexamethasone on proliferation, differentiation and apoptosis of adult human osteoblasts in vitro. Chin Med J (Engl) 116(9):1357-60. Yuan H, Corbi N, Basilico C, Dailey L (1995). Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9(21):2635-45. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9662 | - |
| dc.description.abstract | 人工骨填補材種類繁多,可吸收高分子與生醫陶瓷所結合成的複合型骨填補材,在許多研究中均被證實可獲得兩類材料的優點與更多元的操作可塑性。聚己內酯其高度生物相容性已在動物實驗中獲得證實。在生物降解性藥物釋放載體及作為骨填補材支架的研究應用已相當廣泛,且有更優勢的價格及取得便利性。實驗設計以不同相的磷酸鈣鹽類生醫陶瓷,包括有 Hydroxyapatite 、Calcium Diphosphate 與Calcium phosphate dibasic,及傳統硫酸鈣類生醫陶瓷:二水合硫酸鈣,分別與聚己內酯共構成複合型骨填補材。經過多種溶劑及製程的嘗試,我們找出使用1,4 Dioxan為溶劑佐以冷凍乾燥法可製作出具有規則孔洞的三維立體支架。本實驗開發出能將複合型骨填補材製做為平整的二維薄膜、具有均勻孔洞的三維支架,使得材料可分別對應於骨缺損處覆蓋與填補。
在材料特性的檢測上,體外細胞實驗使用人類胚胎上顎間質細胞(human embryonic palatal mesenchymal cells)為實驗模型,觀察不同組合的材料,對於骨型成時期出現的ALP、 OC 、BMP-2 基因交互關係與骨引導性(osteoconductive)、骨誘導性(osteoinductive)。實驗中,細胞可在所有實驗組2-D平面薄膜貼附生長,生長速率卻無法達到培養皿同等水平,然而部分實驗組在初期時間點可誘導出400倍以上高量的ALP基因表現。但在動物實驗中發現,實驗組材料對於骨誘導再生與在斷層掃描下發現骨質密度並不理想,且在切片上有看到發炎細胞的存在,所以我們推測的原因為實驗組材料的吸收速率較實驗動物骨形成的速度慢,雖然材料具有骨引導性與骨誘導性,但在細胞生長所需空間的讓位上並不理想,所以可從加速材料的崩解並降低發炎反應時間的傾向上,再度對材料的製程做設計。 | zh_TW |
| dc.description.abstract | There are los of artificial bone grafts. It was proved in many experiments that combined type of high polymer and bioceramic bone grafts have more benefits and plasticities. The biocompatible characters of the polycaprolactone were proved in many animal experiments. And it was applicated frequently in drug-released carriers with low cost and using convenient. Based on the dynamic-balancing of bone apatite, we tried to rule out the bone healing effects of different phase of apatites and Calcium Sulfate, for find the good composite bone graft materials. The material characters of different kinds of Polycaprolactone composited bioceramics including Hydroxyapatite、Calcium Diphosphate、 Calcium phosphate dibasic and Calcium Sulfate were compared in this examination . After many trial and error, we figured out that good porous scaffolds could be fabricated by Freeze-dried method with 1,4 Dioxan as solvent. The human embryonic palatal mesenchymal cells was selected as cell mode for observing the osteo-induction 、 osteo-conduction effects and the serial expressions of bone related genes including ALP 、OC 、BMP2.We found that the cell adherence of our all materials can reach the level of the control dishes. We found that the cell adherence of our all materials can reach the level of the control dishes. And the high ALP expression was noted 24 days after cell seeding. But the CT scan bone densities in animal experiments of our all composite materials were not so good to our expectation. We suppose that the absorption rates of the materials were slower than the bony formation, and the degradable small polymer particle may cause enhanced inflammation effects. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:34:12Z (GMT). No. of bitstreams: 1 ntu-97-R94450017-1.pdf: 14094474 bytes, checksum: cb1da0452e5b14fa75e7355bf9d10d99 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書…………………………………………………… i 中文摘要……………………………………………………………… ii 英文摘要……………………………………………………………. iii 第一章 背景 1.1骨生理概述………………………………………………...… 1 1.1.1 骨骼的生長…………………………………………...…… 1 1.1.2 骨骼的形成和再塑過程……………………………..….… 3 1.1.3 骨生理相關基因……………………………………...…… 5 1.1.4 骨誘導……………………………………………….…..… 8 1.2 骨無機相礦物基質組成…………………………….…...… 12 1.3 骨填補材的市場需求及產品現況………………….…...… 13 1.4 骨填補材生醫陶瓷………………………………….…...… 14 1.4.1 磷酸鈣鹽類生醫陶瓷…………….……………….…...… 15 1.4.2 硫酸鈣類生醫陶瓷……………….……………….…...… 17 1.5 複合型骨填補材的選擇………….……………...….…...… 18 1.5.1 聚己內酯(PCL, Poly(e- caprolactone)) ...……………...… 19 1.5.2 共構聚己內酯及氫氧基磷灰石之複合型骨填補材.....… 21 1.6 幹細胞與幹性相關基因……….…..………...….……….… 22 1.6.1 幹細胞…………………...…….…………...….……….… 22 1.6.2 幹性相關基因…………...…….…………...….……….… 23 1.7 實驗目的…………...…….………...………...….……….… 25 第二章 研究材料與方法 2.1 所使用細胞株及細胞培養條件…...…….…..….……….… 28 2.2 人類胚胎上顎間質細胞分裂複製能力試驗..….……….… 29 2.3 人類胚胎上顎間質細胞免疫染色...…….…..….……….… 30 2.4 人類胚胎上顎間質細胞誘導實驗…….….….………….… 31 2.4.1 人類胚胎上顎間質細胞鹼性磷酸酵素染色法……….… 31 2.4.2 人類胚胎上顎間質細胞礦物質沉積染色…………….… 33 2.4.3 人類胚胎上顎間質細胞礦物質穿透式電子顯微鏡檢測 34 2.5 材料的合成.….….……….….……….….……….….…...… 34 2.5.1鹽類的選擇與製備…….….….…….….……….….…...… 34 2.5.2複合材混合液及二維薄膜型、三維支架型與複合材微粒製備方法.….….……….….……….….……….……………....…...… 35 2.5.2.1複合材混合液製備….…..……….……………....…...… 35 2.5.2.2二維(2D)薄膜型複合材製備方法.……………....…...… 35 2.5.2.3三維(3D)支架型複合材製備方法.……………....…...… 36 2.6 掃瞄式電子顯微鏡之樣本製備…....……………….……... 36 2.7 二維薄膜細胞培養方法…....……………………….…...… 37 2.8生物毒性測試…....…………………………….…….…...… 37 2.9核糖核酸的製備與定量與反轉錄聚合酶反應.………....… 38 2.9.1 核糖核酸的製備與定量…………………….………....… 38 2.9.2 反轉錄聚合酶反應…………………………..………...… 39 2.10 及時定量聚合酵素鏈鎖反應……………….….……....… 40 2.11 動物實驗…....…………………………….…………….… 41 第三章 結果 3.1人類胚胎上顎間質細胞分裂複製能力試驗實驗結果….… 43 3.2 人類胚胎上顎間質細胞幹性相關基因免疫染色實驗結果 43 3.3 間質細胞表面抗原免疫染色實驗結果…….…………...… 44 3.4 人類胚胎上顎間質細胞誘導實驗…….…………….......… 45 3.4.1 鹼性磷酸酵素染色實驗結果…….…………………....… 45 3.4.2 礦物質沉積染色實驗結果……………………….........… 45 3.4.3 及時定量聚合酵素鏈鎖反應實驗結果…………….....… 46 3.4.4 礦化物質穿透式電子顯微鏡實驗結果…………….....… 46 3.4.4.1 骨誘導礦化物質穿透式電子顯微鏡實驗結果……...... 46 3.4.4.2 造牙本質母細胞誘導礦化物質穿透式電子顯微鏡實驗結果…….......................................................................................… 47 3.5 生物毒性測試實驗結果……………………………........… 47 3.6 掃瞄式電子顯微鏡實驗結果………………………........… 48 3.7 及時定量聚合酵素鏈鎖反應實驗結果…………............… 50 3.8 動物實驗斷層掃描結果…………....................................… 50 3.9 動物實驗組織切片結果………........................................… 51 第四章 討論 4.1人類胚胎上顎間質細胞作於實驗模式細胞之合適性…..… 52 4.2合成材料之生物毒性檢驗………......................................… 53 4.3選擇合成材料之不同製程………......................................… 54 4.4 二維薄膜即時定量聚合酵素鏈鎖反應實驗....................… 55 4.5動物實驗……….................................................................… 56 表 …….............................................................................. ..... 57 圖 ……........................................................................... ........ 63 參考文獻…………………………………………………………... 120 | |
| dc.language.iso | zh-TW | |
| dc.title | 人類胚胎上顎間質細胞在不同無機鹽聚己內酯複合
材上之成骨細胞活性 | zh_TW |
| dc.title | Osteoblastic activity of human embryonic palatal mesenchymal cells cultured on different inorganic-polycaprolactone composites | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 郭彥彬 | |
| dc.contributor.oralexamcommittee | 張麗冠 | |
| dc.subject.keyword | 人類胚胎上顎間質細胞,聚己內酯, | zh_TW |
| dc.subject.keyword | HEPM,PCL, | en |
| dc.relation.page | 124 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 13.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
