Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96626Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡劭璞 | zh_TW |
| dc.contributor.advisor | Shao-Pu Tsai | en |
| dc.contributor.author | 林昱銓 | zh_TW |
| dc.contributor.author | Yu-Chuan Lin | en |
| dc.date.accessioned | 2025-02-20T16:15:59Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-21 | - |
| dc.identifier.citation | [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6(5) (2004) 299–303.
[2] J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A 35 (2004) 2533–2536. [3] P.K. Huang, J.W. Yeh, T. Shun, S.K. Chen, Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater. 6(1–2) (2004) 74–78. [4] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat. 31(6) (2006) 633–648. [5] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258–268. [6] A. Munitz, S. Salhov, S. Hayun, N. Frage, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy, J. Alloys Compd. 683 (2016) 221–230. [7] F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61(15) (2013) 5743–5755. [8] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59(16) (2011) 6308–6317. [9] J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, D. Fabijanic, The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures, Wear 428–429 (2019) 32–44. [10] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698–706. [11] C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics 62 (2015) 76–83. [12] H. Luo, Z. Li, A.M. Mingers, D.Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros. Sci. 134 (2018) 131–139. [13] J. Wang, W. Li, H. Yang, H. Huang, S. Ji, J. Ruan, Z. Liu, Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions, Corros. Sci. 177 (2020) 108973. [14] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM 65 (2013) 1759–1771. [15] D. Xu, M. Wang, X.W. T. Li, Y. Lu, A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys, Microstructures 2 (2022) 2022001. [16] A. Gali, E.P. George, Tensile properties of high-and medium-entropy alloys, Intermetallics 39 (2013) 74–78. [17] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441. [18] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292–303. [19] J.B. Seol, J.W. Bae, Z. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366–376. [20] I. Moravcik, V. Hornik, P. Minárik, L. Li, I. Dlouhy, M. Janovska, D. Raabe, Z. Li, Interstitial doping enhances the strength-ductility synergy in a CoCrNi medium entropy alloy, Mater. Sci. Eng. A 781 (2020) 139242. [21] I. Moravcik, H. Hadraba, L.L. Li, I. Dlouhy, D. Raabe, Z. Li, Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility, Scr. Mater. 178 (2020) 391–397. [22] P. Sathiyamoorthi, P. Asghari-Rad, J.M. Park, J. Moon, J.W. Bae, A. Zargaran, H.S. Kim, Exceptional cryogenic strength-ductility synergy in Al0.3CoCrNi medium-entropy alloy through heterogeneous grain structure and nano-scale precipitates, Mater. Sci. Eng. A 766 (2019) 138372. [23] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloys Compd. 790 (2019) 732–743. [24] D.E. Jodi, N. Park, Phase separation and its effect on atomic interactions in CoCrNiCux medium-entropy alloys, Mater. Lett. 255 (2019) 126528. [25] W.C. Chang, C.H. Hsueh, Strengthening of CoCrNi medium entropy alloy with Ti additions, Intermetallics 163 (2023) 108072. [26] C. Wang, T.H. Li, Y.C. Liao, C.L. Li, J.S.C. Jang, C.H. Hsueh, Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping, Mater. Sci. Eng. A 764 (2019) 138192. [27] S.N. Chan, C.H. Hsueh, Effects of La addition on the microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Alloys Compd. 894 (2022) 162401. [28] N. Zhong, X.D. Wang, L. Wang, Y.H. Rong, Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching–partitioning–tempering process, Mater. Sci. Eng. A 506(1–2) (2009) 111–116. [29] B.K. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakondaiah, Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel, Mater. Sci. Eng. A 527 (2010) 1595–1604. [30] H. Najafi, J. Rassizadehghani, S. Asgari, As-cast mechanical properties of vanadium/niobium microalloyed steels, Mater. Sci. Eng. A 486(1–2) (2008) 1–7. [31] S. Huang, H. Wu, H. Zhu, Z. Xie, Effect of niobium addition upon microstructure and tensile properties of CrMnFeCoNix high entropy alloys, Mater. Sci. Eng. A 809(102) (2021) 140959. [32] W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics 60 (2015) 1–8. [33] N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloys Compd. 628 (2015) 170–185. [34] C. Ke, C. Wang, X. Wang, Superior low temperature mechanical properties and microstructure of (NiCoCr)95V5 medium entropy alloy, Intermetallics 162 (2023) 108034. [35] F. Cao, P. Munroe, Z. Zhou, Z. Xie, Medium entropy alloy CoCrNi coatings: Enhancing hardness and damage-tolerance through a nanotwinned structuring, Surf. Coat. Technol. 335 (2018) 257–264. [36] H.W. Peng, C.H. Hsueh, Effects of silicon and neodymium additions on microstructures and mechanical properties of CoCrNi medium entropy alloy films, Surf. Coat. Technol. 476 (2024) 130206. [37] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375 (2004) 213–218. [38] E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Mater. 188 (2020) 435–474. [39] L. Gao, J. Song, Z. Jiao, W. Liao, J. Luan, J.U. Surjadi, J. Li, H. Zhang, D. Sun, C.T. Liu, High‐entropy alloy (HEA)‐coated nanolattice structures and their mechanical properties, Adv. Eng. Mater. 20(1) (2018) 1700625. [40] P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite, Mater. Des. 134 (2017) 426–433. [41] M. Vaidya, A. Karati, A. Marshal, K.G. Pradeep, B.S. Murty, Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys, J. Alloys Compd. 770 (2019) 1004–1015. [42] X. Yan, H.Guo, W. Yang, S. Pang, Q. Wang, Y. Liu, P.K. Liaw, T. Zhang, Al0. 3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties, J. Alloys Compd. 860 (2021) 158436. [43] Y. Shi, B. Yang, P.K. Liaw, Corrosion-resistant high-entropy alloys: a review, Metals 7(2) (2017) 43. [44] W. Li, P.K. Liaw, Y. Gao, Fracture resistance of high entropy alloys: A review, Intermetallics 99 (2018) 69–83. [45] C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, J.W. Yeh, Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Curr. Opin. Solid. State. Mater. Sci. 21(6) (2017) 299–311. [46] J.W. Yeh, Physical metallurgy of high-entropy alloys, JOM 67(10) (2015) 2254–2261. [47] L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.C. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun. 6(1) (2015) 5964. [48] O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng. A 565 (2013) 51–62. [49] T. Huang, H. Jiang, Y. Lu, T. Wang, T. Li, Effect of Sc and Y addition on the microstructure and properties of HCP-structured high-entropy alloys, Appl. Phys. A: Mater. 125 (2019) 1–5. [50] M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, J.A. Hawk, High-entropy alloys in hexagonal close-packed structure, Metall. Mater. Trans. A 47 (2016) 3322–3332. [51] T. Sonar, M. Ivanov, E. Trofimov, A. Tingaev, I. Suleymanova, A comprehensive review on fusion welding of high entropy alloys–processing, microstructural evolution and mechanical properties of joints, Int. J. Lightweight Mater. Manuf. 7(1) (2024) 122–183. [52] C.L. Lu, S.Y. Lu, J.W. Yeh, W.K. Hsu, Thermal expansion and enhanced heat transfer in high-entropy alloys, J. Appl. Crystallogr. 46(3) (2013) 736–739. [53] Y. Zhang, T.T. Zuo, Y.Q. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity and malleability, Sci. Rep. 3(1) (2013) 1455. [54] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys, Acta Mater. 61(13) (2013) 4887–4897. [55] R.S. Mishra, R.S. Haridas, P. Agrawal, High entropy alloys–Tunability of deformation mechanisms through integration of compositional and microstructural domains, Mater. Sci. Eng. A 812 (2021) 141085. [56] K.K. Tseng, Y.C. Yang, C.C. Juan, T.S. Chin, C.W. Tsai, J.W. Yeh, A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35, Sci. China Technol. Sci. 61 (2018) 184–188. [57] N. Singh, Y. Shadangi, V. Shivam, N.K. Mukhopadhyay, MgAlSiCrFeNi low-density high entropy alloy processed by mechanical alloying and spark plasma sintering: Effect on phase evolution and thermal stability, J. Alloys Compd. 875 (2021) 159923. [58] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758–1765. [59] O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng. A 529 (2011) 311–320. [60] W.J. Shen, M.H. Tsai, K.Y. Tsai, C.C. Juan, C.W. Tsai, J.W. Yeh, Y.S. Chang, Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride, J. Electrochem. Soc. 160(11) (2013) C531. [61] B.R. Anne, S. Shaik, M. Tanaka, A. Basu, A crucial review on recent updates of oxidation behavior in high entropy alloys, SN Appl. Sci. 3 (2021) 1–23. [62] Z.G. Zhu, K.H. Ma, Q. Wang, C.H. Shek, Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys, Intermetallics 79 (2016) 1–11. [63] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153–1158. [64] Z. Wu, H. Bei, F. Otto, G. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131–140. [65] N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, J. Tanaka, H. Inui, E.P. George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep. 6(1) (2016) 35863. [66] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56(3) (2000) 159–172. [67] X.H. Yan, J.S. Li, W.R. Zhang, Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys. 210 (2018) 12–19. [68] Y. Zhang, Z. Zhang, X. Wang, W. Yao, X. Liang, Structure and properties of high-entropy amorphous thin films: A review, JOM 74(3) (2022) 794–807. [69] Z. Wang, C. Wang, Y.L. Zhao, T.H. Huang, C.L. Li, J.J. Kai, C.T. Liu, C.H. Hsueh, Growth, microstructure and mechanical properties of CoCrFeMnNi high entropy alloy films, Vacuum 179 (2020) 109553. [70] Y.Y.T. Lin, C.L. Li, C.H. Hsueh, Effects of cerium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy films, Surf. Coat. Technol. 424 (2021) 127645. [71] Y.S. Lin, Y.C. Lu, C.H. Hsueh, Strengthening of CoCrNi medium entropy alloy with gadolinium additions, Vacuum 211 (2023) 111969. [72] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62 (2014) 105–113. [73] Y.H. Liang, C.L. Li, C.H. Hsueh, Effects of Nb Addition on Microstructures and Mechanical Properties of Nbx-CoCrFeMnNi High Entropy Alloy Films, Coatings 11(12) (2021) 1539. [74] S. Fang, C. Wang, C.L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh, Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films, J. Alloys Compd. 820 (2020) 153388. [75] W. Soboyejo, Mechanical properties of engineered materials, CRC press (2002). [76] Y. Zhang, High Entropy Materials: Microstructures and Properties, BoD–Books on Demand (2023). [77] L. Li, R.D. Kamachali, Z. Li, Z. Zhang, Grain boundary energy effect on grain boundary segregation in an equiatomic high-entropy alloy, Phys. Rev. Mater. 4(5) (2020) 053603. [78] S.N. Naik, S.M. Walley, The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals, J. Mater. Sci. 55(7) (2020) 2661–2681. [79] L. Zhang, L. C, K. Tieu, A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals, Comput. Mater. Sci 118 (2016) 180–191. [80] Q. Fang, L. Li, J. Li, H. Wu, Z. Huang, B. Liu, Y. Liu, P.K. Liaw, A statistical theory of probability-dependent precipitation strengthening in metals and alloys, J. Mech. Phys. Solids. 122 (2019) 177–189. [81] N. Ali, L. Zhang, D. Liu, H. Zhou, K. Sanaullah, C. Zhang, J. Chu, Y. Nian, J. Cheng, Strengthening mechanisms in high entropy alloys: A review, Mater. Today Commun. 33 (2022) 104686. [82] E. Sjölander, S. Seifeddine, The heat treatment of Al–Si–Cu–Mg casting alloys, J. Mater. Process. Technol. 210(10) (2010) 1249–1259. [83] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Adv. Eng. Mater. 10(6) (2008) 534–538. [84] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109(10) (2011) 103505. [85] S. Gou, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci 21(6) (2011) 433–446. [86] D. Broek, The role of inclusions in ductile fracture and fracture toughness, Eng. Fract. Mech. 5(1) (1973) 57–66. [87] C.A. Pampillo, Flow and fracture in amorphous alloys, J. Mater. Sci. 10 (1975) 1194–1227. [88] X. Hao, J.Q. Zhao, Y.K. Liu, C.X. Zhang, J.T. Luo, δ-phase precipitation regularity of cold-rolled fine-grained GH4169 alloy plate and its effect on mechanical properties, Trans. Nonferrous Met. Soc. China 30(12) (2020) 3287–3295. [89] E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T.H. Gnaeupel-Herold, D.S. Ng, Formation of the Ni3Nb δ-phase in stress-relieved Inconel 625 produced via laser powder-bed fusion additive manufacturing, Metall. Mater. Trans. A 48 (2017) 5547–5558. [90] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46(12) (2005) 2817–2829. [91] F.T.L. Muniz, M.A.R. Miranda, C. Morilla-Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallogr. A 72 (2016) 385–390. [92] N. Saowadee, K. Agersted, J. Bowen, Lattice constant measurement from electron backscatter diffraction patterns, J. Microsc. 266(2) (2017) 200–210. [93] C.G. Pope, X-ray diffraction and the Bragg equation, J. Chem. Educ. 74(1) (1997) 129. [94] H. Wu, W. Wang, T. Liu, P. Yan, W. Ren, J. Chen, The microstructures and mechanical properties of CoNiCrx medium-entropy alloys, Mater. Sci. Eng. A 891 (2024) 145957. [95] C.R.M. Afonso, K. Martinez-Orozco, V. Amigo, C.A.D. Rovere, J.E. Spinelli, C.S. Kiminami, Characterization, corrosion resistance and hardness of rapidly solidified Ni–Nb alloys, J. Alloys Compd. 829 (2020) 154529. [96] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583. [97] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off, Mater. Des. 197 (2021) 109202. [98] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246(1–2) (2000) 1–11. [99] X. Chen, Y. Du, Y.W. Chung, Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings, Thin Solid Films 688 (2019) 137265. [100] G. Yang, S.J. Park, Deformation of single crystals, polycrystalline materials, and thin films: A Review, Materials 12(12) (2019) 2003. [101] S. Xie, E.P. George, Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing, Acta Mater. 56(18) (2008) 5202–5213. [102] Y.H. Wu, C. Wang, C.H. Hsueh, T.H. Li, C.H. Chang, H.C. Chen, J.S.C. Jang, J.C. Huang, Z.H. Ma, Microstructure and mechanical properties of Zr-Ti-Cu-Nd metallic glass composites, J. Alloys Compd. 702 (2017) 318–326. [103] Y.L. Wu, C.C. Tsai, P.Y. Chen, J.D. You, C.H. Hsueh, Transforming microstructures and mechanical properties of (CoCrNi)93–xAl7Ndx medium entropy alloy films by annealing, Surf. Coat. Technol. 477 (2024) 130331. [104] Y.C. Hsu, C.L. Li, C.H. Hsueh, Effects of Al addition on microstructures and mechanical properties of CoCrFeMnNiAlx high entropy alloy films, Entropy 22(1) (2019) 2. [105] T.H. Huang, C.H. Hsueh, Microstructures and mechanical properties of (CoCrFeMnNi)100–xMox high entropy alloy films, Intermetallics 135 (2021) 107236. [106] Y.C. Hsu, C.L. Li, C.H. Hsueh, Modifications of microstructures and mechanical properties of CoCrFeMnNi high entropy alloy films by adding Ti element, Surf. Coat. Technol. 399 (2020) 126149. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96626 | - |
| dc.description.abstract | 本研究利用磁控濺鍍設備,藉由鈷鉻鎳靶、鈮靶和釩靶進行三靶共鍍,成功製備了一系列 (CoCrNi)100–2xNbxVx(標稱為NbxVx,x = 0, 1, 2, 2.5, 3, 4)中熵合金薄膜,目的在探討改變鈮和釩元素的添加對鈷鉻鎳中熵合金薄膜系統之顯微結構與機械性能的影響。隨著鈮和釩含量增加,掃描式電子顯微鏡影像展示薄膜的斷裂橫截面發生了延性—脆性的變化。X光繞射和穿透式電子顯微鏡圖譜呈現Nb2.5V2.5薄膜由單一面心立方CoCrNi固溶相轉變為面心立方晶相CoCrNi基地相和斜方晶相Ni3Nb析出相共存。Nb3V3薄膜開始出現奈米晶體,並且鈮和釩進一步的添加,Nb4V4薄膜將出現非晶區域。奈米壓痕和微柱壓縮測試的結果表明,Nb2.5V2.5薄膜在所有中熵合金薄膜中達到最佳的硬度(10.17 GPa)、降伏強度(5.45 GPa)和斷裂強度(7.58 GPa)。此外,高分辨率穿透式電子顯微鏡影像顯示,奈米晶體和非晶結構的形成可能與薄膜機械性能的下降相關。綜合上述實驗結果,可以推論固溶強化和析出強化為 (CoCrNi)100–2xNbxVx中熵合金薄膜的主要強化機制。 | zh_TW |
| dc.description.abstract | A series of (CoCrNi)100–2xNbxVx (denoted as nominal NbxVx, x = 0, 1, 2, 2.5, 3, 4) medium entropy alloy films (MEAFs) were successfully fabricated using magnetron sputtering with CoCrNi, Nb, and V targets via a three-target co-sputtering process. This study investigated the effects of niobium (Nb) and vanadium (V) additions on microstructures and mechanical properties of the CoCrNi MEAFs. With increasing Nb and V content, scanning electron microscopy (SEM) images revealed the ductile-to-brittle transition in the cross-section of the fractured films. X-ray diffraction (XRD) and transmission electron microscopy (TEM) patterns of Nb2.5V2.5 indicated a phase transformation from a single face-centered cubic (FCC) CoCrNi solid solution to the coexistence of an FCC CoCrNi matrix and orthorhombic Ni3Nb precipitates. The formation of nanocrystals was initially observed in Nb3V3, while the addition of further Nb and V led to the emergence of amorphous regions in Nb4V4. Nanoindentation and micropillar compression tests demonstrated that Nb2.5V2.5 film achieved the highest hardness (10.17 GPa), yield strength (5.45 GPa) and fracture strength (7.58 GPa), respectively, among all the MEAFs. Additionally, high-resolution transmission electron microscopy (HRTEM) images showed that the formation of nanocrystalline and amorphous structures was likely associated with the obvious decrease in mechanical behaviors. The experimental results suggested solid solution strengthening and precipitation hardening would be the primary strengthening mechanisms in the (CoCrNi)100–2xNbxVx MEAFs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:15:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:15:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
謝辭 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xv Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 High Entropy Alloys (HEAs) 5 2.1.1 Background and Definition of HEAs 5 2.1.2 Four Core Effects of HEAs 8 2.2 Representative Quinary HEAs and Ternary MEAs 13 2.2.1 CoCrFeMnNi HEAs 13 2.2.2 CoCrNi MEAs 15 2.3 PVD Process Technology 18 2.3.1 Magnetron Sputtering Deposition 18 2.3.2 Quinary HEAFs and Ternary MEAFs 20 2.4 Effects of Element Additions 24 2.4.1 Substitutional and Interstitial Element Additions 24 2.4.2 Substitutional Addition of Niobium Element 24 2.4.3 Substitutional Addition of Vanadium Element 32 2.5 Strengthening Mechanisms 43 2.5.1 Solid Solution Strengthening 43 2.5.2 Grain Boundary Strengthening 44 2.5.3 Precipitation Strengthening 45 Chapter 3 Experimental Procedures 47 3.1 Experimental Flow 47 3.2 Sample Preparation and Deposition Process 48 3.3 Analytical Techniques 50 3.3.1 Electron Probe X-ray Microanalyzer (EPMA) 50 3.3.2 Scanning Electron Microscope (SEM) 50 3.3.3 X-ray Diffractometer (XRD) 50 3.3.4 Transmission Electron Microscope (TEM) 51 3.3.5 Nanoindentation 51 3.3.6 Picoindentation 51 Chapter 4 Results and Discussion 53 4.1 Chemical Composition 53 4.2 SEM Observation 55 4.3 XRD Pattern 57 4.4 TEM Observation 62 4.5 Nanoindentation 68 4.6 Micropillar Compression Test 71 Chapter 5 Conclusions 74 5.1 (CoCrNi)100–2xNbxVx MEAFs 74 5.2 Evaluation of mechanical properties for (CoCrNi)100–2xNbxVx MEAFs with other MEAFs and HEAFs 76 References 77 | - |
| dc.language.iso | en | - |
| dc.subject | 置換型固溶體 | zh_TW |
| dc.subject | 析出物 | zh_TW |
| dc.subject | 機械性能 | zh_TW |
| dc.subject | 顯微結構 | zh_TW |
| dc.subject | 中熵合金薄膜 | zh_TW |
| dc.subject | Precipitation | en |
| dc.subject | Medium entropy alloy films | en |
| dc.subject | Microstructures | en |
| dc.subject | Mechanical properties | en |
| dc.subject | Substitutional solid solution | en |
| dc.title | 研究鈮與釩摻雜對鈷鉻鎳中熵合金薄膜顯微結構與機械性質之影響 | zh_TW |
| dc.title | Investigating Effects of Niobium and Vanadium Doping on Microstructures and Mechanical Properties of CoCrNi Medium Entropy Alloy Films | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 薛承輝;林新智;姚栢文 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Hway Hsueh;Hsin-Chih Lin;Pak-Man Yiu | en |
| dc.subject.keyword | 中熵合金薄膜,顯微結構,機械性能,置換型固溶體,析出物, | zh_TW |
| dc.subject.keyword | Medium entropy alloy films,Microstructures,Mechanical properties,Substitutional solid solution,Precipitation, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202500208 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-01-21 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-1.pdf Restricted Access | 9.37 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
