Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96596
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor崔茂培zh_TW
dc.contributor.advisorMao-Pei Tsuien
dc.contributor.author許嘉麟zh_TW
dc.contributor.authorJia-Lin Hsuen
dc.date.accessioned2025-02-19T16:41:32Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-20-
dc.identifier.citation[1] M. Berger. Pincement riemannien et pincement holomorphe. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 14:151–159, 1960.
[2] S. Bochner. Harmonic surfaces in Riemann metric. Trans. Amer. Math. Soc., 47:146–154, 1940.
[3] Y. M. Chen and W. Y. Ding. Blow-up and global existence for heat flows of harmonic maps. Invent. Math., 99(3):567–578, 1990.
[4] J. Eells, Jr. and J. H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86:109–160, 1964.
[5] J. Eells, Jr. and J. H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86:109–160, 1964.
[6] M. Grayson and R. S. Hamilton. The formation of singularities in the harmonic map heat flow. Comm. Anal. Geom., 4(4):525–546, 1996.
[7] R. S. Hamilton. Three-manifolds with positive Ricci curvature. J. Differential Geometry, 17(2):255–306, 1982.
[8] R. S. Hamilton. A matrix Harnack estimate for the heat equation. Comm. Anal. Geom., 1(1):113–126, 1993.
[9] R. S. Hamilton. Monotonicity formulas for parabolic flows on manifolds. Comm. Anal. Geom., 1(1):127–137, 1993.
[10] R. Hermann. A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. Amer. Math. Soc., 11:236–242, 1960.
[11] T. Huang. Regularity and uniqueness of some geometric heat flows and it’s applications. ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–University of Kentucky.
[12] M.-C. Lee, L.-F. Tam, and J. Wan. Rigidity of area non-increasing maps. arXiv preprint arXiv:2312.10940, 2023.
[13] M.-C. Lee and J. Wan. Rigidity of contracting map using harmonic map heat flow. arXiv:2306.12258, 2023.
[14] L. Lin. Uniformity of harmonic map heat flow at infinite time. Anal. PDE, 6(8):1899–1921, 2013.
[15] C. B. Morrey, Jr. The problem of Plateau on a Riemannian manifold. Ann. of Math. (2), 49:807–851, 1948.
[16] Z. M. Shen. On complete manifolds of nonnegative kth-Ricci curvature. Trans. Amer. Math. Soc., 338(1):289–310, 1993.
[17] J. Simons. Minimal varieties in riemannian manifolds. Ann. of Math. (2), 88:62–105, 1968.
[18] M. Struwe. On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv., 60(4):558–581, 1985.
[19] M. Struwe. On the evolution of harmonic maps in higher dimensions. J. Differential Geom., 28(3):485–502, 1988.
[20] P. Topping. The harmonic map heat flow from surfaces. PhD thesis, University of Warwick, 1996.
[21] P. M. Topping. Rigidity in the harmonic map heat flow. J. Differential Geom., 45(3):593–610, 1997.
[22] C.-J. Tsai, M.-P. Tsui, and M.-T. Wang. A new monotone quantity in mean curvature flow implying sharp homotopic criteria. arXiv preprint arXiv:2301.09222, 2023.
[23] M.-P. Tsui and M.-T. Wang. Mean curvature flows and isotopy of maps between spheres. Comm. Pure Appl. Math., 57(8):1110–1126, 2004.
[24] M.-T. Wang. Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension. Invent. Math., 148(3):525–543, 2002.
[25] B. White. Infima of energy functionals in homotopy classes of mappings. J. Differential Geom., 23(2):127–142, 1986.
[26] H. Wu. Manifolds of partially positive curvature. Indiana Univ. Math. J., 36(3):525–548, 1987.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96596-
dc.description.abstract在第一章中,我們回顧了調和映射熱流的理論,並整理了 Yunmei Chen 及Wei-Yue Ding 對爆破解的狄利克雷能量下界的證明,該結果被用來證明調和映射熱流有限時間奇異點的存在性。

在第二章中,我們證明了從 S^m 到 S^n 的任何映射,如果其能量密度至多為min(n, m)/2,則該映射僅可能是等距嵌入到赤道的映射、或是在同倫上平凡。此外,我們還建立了一種系統性方法來研究在若干曲率條件下壓縮映射的剛性,包括愛因斯坦流形和正截面曲率鉗制條件。

在第三章中,我們證明了在複射影空間中,滿足一特定曲率支配條件的的封閉極小子流形是線性子空間。我們還證明了在具有正全純截面曲率的凱勒四維流形中,每個滿足相同曲率支配條件的極小封閉曲面 ι : Σ^2 → X 是凱勒子流形的。
當母空間是代數曲面時,該浸入映射是某單一正常交叉有理代數曲線的正規化映射。
zh_TW
dc.description.abstractIn Chapter 1, we review the theory of harmonic map heat flow and reformulate the proof of the lower bound for the Dirichlet energy of blow-up solutions to harmonic map heat flows established by Yunmei Chen and Wei-Yue Ding. This result is crucial in proving the existence of finite-time singularities in harmonic map heat flow.

In Chapter 2, we generalize Man-Chun Lee and Jingbo Wang’s results in the rigidity of contracting maps. For example, we prove that for any map from S^m to S^n with energy density bounded above by min(n, m)/2, it is either an isometric embedding into an equator or homotopically trivial. In this proof, we establish a systematic method to investigate the rigidity of contracting maps under several curvature conditions, including Einstein manifolds and positive sectional curvature pinching conditions.

In Chapter 3, we prove that minimal varieties in complex projective spaces satisfying some curvature dominance conditions are linear subspaces. We also prove that every minimal closed surface ι : Σ2 → X satisfying the same curvature dominance condition in a Kähler 4-manifold of positive holomorphic sectional curvature is sub-Kähler, and the immersion is the normalization map of simple normal crossing rational algebraic curve when the ambient manifold is an algebraic surface.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:41:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:41:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
Page
Verification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
Chapter 1 Blow-up Solutions for Harmonic Map Heat Flows 1
1.1 The Harmonic Map Heat Flow and The Evolution Equation of Energy
Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Interior Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Entropy near a singular point in space-time . . . . . . . . . . . . . . 16
1.4 Monotonicity Formula . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Lower Bound of Dirichlet Energy and its Application . . . . . . . . . 23
Chapter 2 Deformation of Contracting Maps under Harmonic Map Heat
Flow 27
2.1 Revised Evolution Equation of Energy Density using SVD Frames . . 29
2.2 Convergence Result . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Condition σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Rigidity of Contracting Maps . . . . . . . . . . . . . . . . . . . . . 53
Chapter 3 Minimal Varieties in Kähler Manifolds 57
3.1 Extrinsic Kähler Geometry . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Partial Scalar Curvature and Minimal Submanifold . . . . . . . . . . 62
3.3 Minimal Varieties in Complex Projective Space . . . . . . . . . . . . 65
3.4 Minimal Surfaces in positively curved Kähler Manifolds . . . . . . . 66
References 69
Appendix A — Tensor Maximum Principle 73
A.1 Appendix: Tensor Maximum Princple . . . . . . . . . . . . . . . . . 73
Appendix B — Maximizing k-vectors of symmetric bilinear forms 79
B.1 Maximizing k-vectors of symmetric bilinear forms . . . . . . . . . . 79
-
dc.language.isoen-
dc.subject極小多樣體zh_TW
dc.subject凱勒幾何zh_TW
dc.subject壓縮映射zh_TW
dc.subject奇異點zh_TW
dc.subject調和映射熱流zh_TW
dc.subjectKähler geometryen
dc.subjectharmonic map heat flowen
dc.subjectsingularityen
dc.subjectcontracting mapen
dc.subjectminimal varietiesen
dc.title調和映射熱流的研究zh_TW
dc.titleAn Investigation into the Harmonic Map Heat Flowen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡忠潤;王慕道zh_TW
dc.contributor.oralexamcommitteeChung-Jun Tsai;Mu-Tao Wangen
dc.subject.keyword調和映射熱流,奇異點,壓縮映射,極小多樣體,凱勒幾何,zh_TW
dc.subject.keywordharmonic map heat flow,singularity,contracting map,minimal varieties,Kähler geometry,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202500165-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-20-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
dc.date.embargo-lift2025-02-20-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf7.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved