Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96594
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡zh_TW
dc.contributor.advisorChing-I Huangen
dc.contributor.author蕭宇鴻zh_TW
dc.contributor.authorYu-Hung Hsiaoen
dc.date.accessioned2025-02-19T16:41:00Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-15-
dc.identifier.citation[1] M. Rakotomalala, S. Wagner, M. Döring, Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications, Materials 3 (2010) 4300-4327.
[2] R. Dallaev, T. Pisarenko, N. Papež, P. Sadovský, V. Holcman, A brief overview on epoxies in electronics: properties, applications, and modifications, Polymers 15 (2023) 3964.
[3] I. Hackman, L. Hollaway, Epoxy-layered silicate nanocomposites in civil engineering, Compos. Part A: Appl. S. 37 (2006) 1161-1170.
[4] J. Michels, R. Widmann, C. Czaderski, R. Allahvirdizadeh, M. Motavalli, Glass transition evaluation of commercially available epoxy resins used for civil engineering applications, Compos., Part B: Eng. 77 (2015) 484-493.
[5] E. Ramon, C. Sguazzo, P. M. Moreira, A review of recent research on bio-based epoxy systems for engineering applications and potentialities in the aviation sector, Aerospace 5 (2018) 110.
[6] L. Guadagno, S. Pantelakis, A. Strohmayer, M. Raimondo, High-performance properties of an aerospace epoxy resin loaded with carbon nanofibers and glycidyl polyhedral oligomeric silsesquioxane, Aerospace 9 (2022) 222.
[7] A. Subie, A. Mouritz, O. Troynikov, Sustainable design and environmental impact of materials in sports products, Sports Technol. 2 (2009) 67-79.
[8] N. Saba, M. Jawaid, O. Alothman, M. Paridah, A. Hassan. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J. Reinf. Plast. Comp. 35 (2016) 447-470.
[9] J. Pascault, R. Williams, Glass transition temperature versus conversion relationships for thermosetting polymers, J. Polym. Sci., Part B: Polym. Phys. 28 (1990) 85-95.
[10] W. N. dos Santos, J. De Sousa, R. Gregorio Jr, Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures, Polym. Test. 32 (2013) 987-994.
[11] D. Droste, A. Dibenedetto, The glass transition temperature of filled polymers and its effect on their physical properties, J. Appl. Polym. Sci. 13 (1969) 2149-2168.
[12] J. Hutchinson, Determination of the glass transition temperature: Methods correlation and structural heterogeneity, J. Therm. Anal. Calorim. 98 (2009) 579-589.
[13] B. Ellis, Introduction to the Chemistry, Synthesis, Manufacture and Characterization of Epoxy Resins. In Chemistry and Technology of Epoxy Resins, Springer (1993) 1−36
[14] P. Mohan, A critical review: the modification, properties, and applications of epoxy resins, Polym-Plast. Technol. 52 (2013) 107-125.
[15] S. Kumar, S. K. Samal, S. Mohanty, S. K. Nayak, Recent development of biobased epoxy resins: a review, Polym-Plast. Technol. 57 (2018) 133-155.
[16] J. M. Raquez, M. Deléglise, M. F. Lacrampe, P. Krawczak, Thermosetting (bio) materials derived from renewable resources: A critical review, Prog. Polym. Sci. 35 (2010) 487-509.
[17] T. Aziz, F. Haq, A. Farid, L. Cheng, L. F. Chuah, A. Bokhari, M. Mubashir, D. Y. Y. Tang, P. L. Show, The epoxy resin system: function and role of curing agents, Carbon Lett. 34 (2024) 477-494.
[18] P. Jain, V. Choudhary, I. Varma, Effect of structure on thermal behaviour of epoxy resins, Eur. Polym. J. 39 (2003) 181-187.
[19] G. Palmese, R. McCullough, Effect of epoxy–amine stoichiometry on cured resin material properties, J. Appl. Polym. Sci. 46 (1992) 1863-1873.
[20] P. Suma Sindhu, D. Ghindani, N. Mitra, S. S. Prabhu, Morphological changes in epoxy resin (DGEBA/TETA) exposed to low temperatures, J. Adhes. Sci. Technol. 34 (2020) 2262-2273.
[21] L. Li, Z. Cai, Flame-retardant performance of transparent and tensile-strength-enhanced epoxy resins, Polymers 12 (2020) 317.
[22] D. Haba, A. J. Brunner, M. Barbezat, D. Spetter, W. Tremel, G. Pinter, Correlation of epoxy material properties with the toughening effect of fullerene-like WS2 nanoparticles, Eur. Polym. J. 84 (2016) 125-136.
[23] V. Reuscher, S. Haag, G. Patzelt, B. Mayer, Aging of anhydride‐hardened epoxies in lubricants at elevated temperatures, J. Appl. Polym. Sci. 134 (2017) 44877.
[24] A. Idesaki, H. Uechi, Y. Hakura, H. Kishi, Effects of gamma-ray irradiation on a cyanate ester/epoxy resin, Radiat. Phys. Chem. 98 (2014) 1-6.
[25] C. H. Lin, K. Z. Yang, T. S. Leu, C. H. Lin, J. W. Sie, Synthesis, characterization, and properties of novel epoxy resins and cyanate esters, J. Polym. Sci., Part A: Polym. Chem. 44 (2006) 3487-3502.
[26] M. R. Soleimany, M. Jamal-Omidi, S. M. Nabavi, M. Tavakolian, Molecular dynamics predictions of thermo-mechanical properties of carbon nanotube/polymeric composites, Int. Nano Lett. 11 (2021) 179-194.
[27] M. Karelson, V. S. Lobanov, A. R. Katritzky, Quantum-chemical descriptors in QSAR/QSPR studies, Chem. Rev. 96 (1996) 1027-1044.
[28] A. R. Katritzky, V. S. Lobanov, M. Karelson, QSPR: the correlation and quantitative prediction of chemical and physical properties from structure, Chem. Soc. Rev. 24 (1995) 279-287.
[29] T. Le, V. C. Epa, F. R. Burden, D. A. Winkler, Quantitative structure–property relationship modeling of diverse materials properties, Chem. Rev. 112 (2012) 2889-2919.
[30] J. Hu, X. Zhang, Z. Wang, A review on progress in QSPR studies for surfactants, Int. J. Mol. Sci. 11 (2010) 1020-1047.
[31] K. Paduszyński, K. Kłębowski, M. Królikowska, Predicting melting point of ionic liquids using QSPR approach: Literature review and new models, J. Mol. Liq. 344 (2021) 117631.
[32] E. N. Muratov, E. V. Varlamova, A. G. Artemenko, P. G. Polishchuk, V. E. Kuz'min, Existing and developing approaches for QSAR analysis of mixtures, Mol. Inf. 31 (2012) 202-221.
[33] H. Liu, A. Uhlherr, M. K. Bannister, Quantitative structure–property relationships for composites: prediction of glass transition temperatures for epoxy resins, Polymer 45 (2004) 2051-2060.
[34] V. Bellenger, J. Verdu, E. Morel, Effect of structure on glass transition temperature of amine crosslinked epoxies, J. Polym. Sci., Part B: Polym. Phys. 25 (1987) 1219-1234.
[35] M. Y. Chen, Design of novel curing agents for high temperature resistant epoxy resins by genetic algorithm. 臺灣大學高分子科學與工程學研究所學位論文 (2021) 1-72.
[36] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, Machine learning in materials informatics: recent applications and prospects, npj Comput. Mater. 3 (2017) 54.
[37] L. Ward, C. Wolverton, Atomistic calculations and materials informatics: A review, Curr. Opin. Solid State Mater. Sci. 21 (2017) 167-176.
[38] K. Rajan, Materials informatics: The materials “gene” and big data, Annu. Rev. Mater. Res. 45 (2015) 153-169.
[39] D. J. Audus, J. J. de Pablo, Polymer informatics: opportunities and challenges, ACS Macro Lett. 6 (2017) 1078-1082.
[40] C. Kim, A. Chandrasekaran, T. D. Huan, D. Das, R. Ramprasad, Polymer genome: a data-powered polymer informatics platform for property predictions, J. Phys. Chem. C 122 (2018) 17575-17585.
[41] C. Higuchi, D. Horvath, G. Marcou, K. Yoshizawa, A. Varnek, Prediction of the glass-transition temperatures of linear homo/heteropolymers and cross-linked epoxy resins, ACS Appl. Polym. Mater. 1 (2019) 1430-1442.
[42] S. Meier, R. Q. Albuquerque, M. Demleitner, H. Ruckdäschel, Modeling glass transition temperatures of epoxy systems: a machine learning study, J. Mater. Sci. (2022) 13991-14002.
[43] P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation, Encyclopedia of database systems (2009) 532-538.
[44] D. Rogers, M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 (2010) 742-754.
[45] J. R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986) 81-106.
[46] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5-32.
[47] J. H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. Stat. (2001) 1189-1232.
[48] T. Chen, Xgboost: extreme gradient boosting, R package version 0.4-2 (2015).
[49] J. Quinonero-Candela, C. E. Rasmussen, A unifying view of sparse approximate Gaussian process regression, J. Mach. Learn. Res. 6 (2005) 1939-1959.
[50] O. Sagi, L. Rokach, Ensemble learning: A survey, Wires. Data Min. Knowl. 8 (2018) e1249.
[51] N. Nagelkerke, A note on a general definition of the coefficient of determination, Biometrika 78 (1991) 691–692.
[52] T. Chai, R. R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature, Geosci. Model Dev. 7 (2014) 1247-1250.
[53] S. Lundberg, A unified approach to interpreting model predictions, arXiv:1705 (2017) 07874.
[54] X. Ying, An overview of overfitting and its solutions, J. Phys.: Conf. Ser. 1168 (2019) 022022
[55] T. Okabe, T. Takehara, K. Inose, N. Hirano, M. Nishikawa, T. Uehara, Curing reaction of epoxy resin composed of mixed base resin and curing agent: Experiments and molecular simulation, Polymer 54 (2013) 4660-4668.
[56] W. Liu, Prediction of glass transition temperatures of aromatic heterocyclic polyimides using an ANN model, Polym. Eng. Sci. 50 (2010) 1547-1557.
[57] R. Xie, A. R. Weisen, Y. Lee, M. A. Aplan, A. M. Fenton, A. E. Masucci, F. Kempe, M. Sommer, C. W. Pester, R. H. Colby, Glass transition temperature from the chemical structure of conjugated polymers, Nat. commun. 11 (2020) 893.
[58] F. Hu, S. K. Yadav, J. J. La Scala, J. M. Sadler, G. R. Palmese, Preparation and characterization of fully furan‐based renewable thermosetting epoxy‐amine systems, Macromol. Chem. Phys. 216 (2015) 1441-1446.
[59] H. Ishida, Handbook of Benzoxazine Resins, Elsevier: Amsterdam (2011) 688.
[60] K. Fu, Q. Xie, F. LÜ, Q. Duan, X. Wang, Q. Zhu, Z. Huang, Molecular Dynamics Simulation and Experimental Studies on the Thermomechanical Properties of Epoxy Resin with Different Anhydride Curing Agents, Polymers 11 (2019) 975.
[61] A. Hale, C. W. Macosko, H. E. Bair, Glass transition temperature as a function of conversion in thermosetting polymers, Macromolecules 24 (1991) 2610-2621.
[62] K. Binder, J. Baschnagel, W. Paul, Glass transition of polymer melts: test of theoretical concepts by computer simulation, Prog. Polym. Sci. 28 (2003) 115-172.
[63] C. May, F. Weir, Dynamic mechanical properties of epoxy resins, Polym. Eng. Sci. 2 (1962) 207-212.
[64] H. Van Hoorn, A dynamic mechanical study of the effect of chemical variations on the internal mobility of linear epoxy resins (polyhydroxyethers), J. Appl. Polym. Sci. 12 (1968) 871-888.
[65] A. Cerit, M. E. Marti, U. Soydal, S. Kocaman, G. Ahmetli, Research Article Effect of Modification with Various Epoxide Compounds on Mechanical, Thermal, and Coating Properties of Epoxy Resin, Int. J. Polym. Sci. (2016) 4968365.
[66] D. J. Allen, H. Ishida, Physical and mechanical properties of flexible polybenzoxazine resins: Effect of aliphatic diamine chain length, J. Appl. Polym. Sci. 101 (2006) 2798-2809.
[67] Y. C. Chiu, I. C. Chou, W. C. Tseng, C. C. M. Ma, Preparation and thermal properties of diglycidylether sulfone epoxy, Polym. Degrad. Stab. 93 (2008) 668-676.
[68] W. Li, J. Ma, S. Wu, J. Zhang, J. Cheng, The effect of hydrogen bond on the thermal and mechanical properties of furan epoxy resins: molecular dynamics simulation study, Polym. Test. 101 (2021) 107275.
[69] J. Zhou, J. P. Lucas, Hygrothermal effects of epoxy resin. Part II: variations of glass transition temperature, Polymer 40 (1999) 5513-5522.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96594-
dc.description.abstract環氧樹脂因其卓越的黏著力、機械強度和耐熱性,已廣泛應用於電子、航空航太和土木工程等領域。為了滿足這些應用的需求,開發具有高玻璃轉移溫度(Tg)的環氧樹脂成為一個重要且迫切的課題。為了更有效地開發高Tg環氧樹脂的新型固化劑,本研究利用監督式機器學習方法來實現固化劑化學結構與基於DGEBA的環氧樹脂Tg之間的關聯(結構-性質關係)。在本研究中,我們首先訓練機器學習模型,通過輸入固化劑的化學結構來快速且準確地預測DGEBA-based環氧樹脂的Tg,接著透過分析該模型來確定固化劑結構中影響環氧樹脂Tg的關鍵因素。過去開發優良材料通常是基於經驗法則進行,因此總是需要大量的時間和金錢成本。我們期望本研究不僅能為實驗專家提供一種更明確的設計策略以開發耐高溫的環氧樹脂新型固化劑,還能提供一種材料開發的創新方法,進而促進其他領域的發展。zh_TW
dc.description.abstractEpoxy resins have been widely used in several fields such as electronics, aerospace, and civil engineering because of their outstanding adhesion ability, mechanical strength, and heat resistance. To meet demands in these application, developing epoxy resins with high glass transition temperature (Tg) is one of the significant and urgent issue. To develop novel curing agents of high-Tged epoxy resins more efficiently, we utilize supervised machine-learning method to realize the correlation between chemical structures of curing agents and Tg of DGEBA-based epoxy resins (structure-property relationship). In this study, we firstly train a model which can rapidly and accurately predict Tg of DGEBA-based epoxy resins by inputting chemical structures of curing agents, then figure out critical factors in Tg of epoxy resins via analysis of our model. In the past, finding a useful material always spent lots of time and money because it was executed by empirical methods. We expect our research can provide not only a more distinct design strategy to experimental experts to develop novel curing agents of high-temperature resistant epoxy resins, but an innovative way, which can obviously decrease costs in experiments, to develop new materials in other fields.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:41:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:41:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭.............................................i
中文摘要........................................ii
Abstract......................................iii
Figure Captions.................................v
Table Captions.................................vi
Chapter 1. Introduction.........................1
Chapter 2. Methods.............................10
2.1 Data collection............................10
2.2 Machine learning model.....................10
Chapter 3. Results and Discussion..............15
3.1 Model building and evaluations.............15
3.2 Key factors analysis.......................18
Conclusion.....................................34
References.....................................47
-
dc.language.isoen-
dc.subject重要結構因素zh_TW
dc.subject機器學習zh_TW
dc.subject環氧樹脂zh_TW
dc.subject玻璃轉移溫度zh_TW
dc.subject極致梯度提升決策數zh_TW
dc.subjectMachine learningen
dc.subjectKey structural factorsen
dc.subjectEpoxy resinsen
dc.subjectExtreme gradient boosted decision treeen
dc.subjectGlass transition temperatureen
dc.title藉由機器學習方法探討固化劑結構對環氧樹脂系統玻璃轉移溫度的關鍵因素zh_TW
dc.titleInvestigating the key effects of chemical structures of curing agents on glass transition temperature of epoxy resins by machine learningen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳錦文;林立強zh_TW
dc.contributor.oralexamcommitteeChin-Wen Chen;Li-Chiang Linen
dc.subject.keyword環氧樹脂,機器學習,玻璃轉移溫度,極致梯度提升決策數,重要結構因素,zh_TW
dc.subject.keywordEpoxy resins,Machine learning,Glass transition temperature,Extreme gradient boosted decision tree,Key structural factors,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202500091-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-01-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2030-01-15-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
3.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved