請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96583完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林國峰 | zh_TW |
| dc.contributor.advisor | Gwo-Fong Lin | en |
| dc.contributor.author | 梁書嚴 | zh_TW |
| dc.contributor.author | Suu-Yan Liang | en |
| dc.date.accessioned | 2025-02-19T16:38:04Z | - |
| dc.date.available | 2025-02-20 | - |
| dc.date.copyright | 2025-02-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-01-10 | - |
| dc.identifier.citation | [1] Appelo, C. A. J. (2013). A review of porosity and diffusion in bentonite. Posiva Oy, Helsinki (Finland).
[2] Arcos, D., Grandia, F., Domènech, C., Fernández, A. M., Villar, M. V., Muurinen, A., ... & Hernán, P. (2008). Long-term geochemical evolution of the near field repository: Insights from reactive transport modelling and experimental evidences. Journal of Contaminant Hydrology, 102(3-4), 196-209. [3] Ballarini, E., Graupner, B., & Bauer, S. (2017). Thermal–hydraulic–mechanical behavior of bentonite and sand-bentonite materials as seal for a nuclear waste repository: Numerical simulation of column experiments. Applied Clay Science, 135, 289-299. [4] Bethke, C. M. and Altaner, S. P., 1986, Layer-by-layer mechanism of smectite illitization and application to a new rate law, Clays and clay minerals, Vol. 34, 136-145. [5] Bethke, C.M. and Yeakel, S., 2014. The Geochemist’s Workbench, Release 10.0. Essentials Guide. Aqueous solution, LLC, Champain, Illinois, USA. [6] Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., Dewonck, S., ... & Wieczorek, K. (2018). Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Mont Terri Rock Laboratory, 20 years: Two decades of research and experimentation on claystones for geological disposal of radioactive waste, 3-22. [7] Bradbury, M. H., & Baeyens, B. (2011). Physico-chemical characterisation data and sorption measurements of Cs, Ni, Eu, Th, U, Cl, I and Se on MX-80 bentonite (No. PSI--11-05). Paul Scherrer Institute (PSI). [8] Bray, H.J. and Redfern, S.A.T. (1999) Kinetics of dehydration of Ca-montmorillonite. Physics and Chemistry of Minerals, 26, 591-600. [9] Brown, K. M., & Ransom, B. (1996). Porosity corrections for smectite-rich sediments: Impact on studies of compaction, fluid generation, and tectonic history. Geology, 24(9), 843-846. [10] Bruce, C. H., 1984, Smectite Dehydration – Its Relation to Structure Development and Hydrocarbon Accumulation in Northern Gulf to Mexico Basin, American Association Of Petroleum Geologists Bulletin, Vol.68, No. 6, 673-683. [11] Campos, I., D. Perez, E. Colàs, L. Duro and M. Grivé, A.J. 2018, Fuller Track-changes and track-error document: From version 9b0 to version 10a, TCIII-2018-01E, ThermoChimie Technical report, France. [12] Chen, T., Sedighi, M., Jivkov, A. P., & Seetharam, S. C. (2021). A model for hydraulic conductivity of compacted bentonite–inclusion of microstructure effects under confined wetting. Géotechnique, 71(12), 1071-1084. [13] Colten-Bradley, V. A. (1987), Role of pressure in smectite dehydration - effects on geopressure and smectite-to-illite transformation, The American Association of Petroleum Geologists Bulletin, Vol. 71, No. 11, 1414-1427. [14] Dagher, E. E., Nguyen, T. S., & Infante Sedano, J. A. (2019). Development of a mathematical model for gas migration (two-phase flow) in natural and engineered barriers for radioactive waste disposal. Geological Society, London, Special Publications, 482(1), 115-148. [15] Dresden-Rossendorf, H. Z. (2013). RES³T-Rossendorf Expert System for Surface and Sorption Thermodynamics. RES³T-Rossendorf Expert System for Surface and Sorption Thermodynamics, Dresden, Germany. [16] Ferrage, E., Kirk, C. A., Cressey, G., & Cuadros, J. (2007). Dehydration of Ca-montmorillonite at the crystal scale. Part 2. Mechanisms and kinetics. American Mineralogist, 92(7), 1007-1017. [17] Filipská, P., Zeman, J., Všianský, D., Honty, M., & Škoda, R. (2017). Key processes of long-term bentonite-water interaction at 90 C: mineralogical and chemical transformations. Applied Clay Science, 150, 234-243. [18] Fitts, T. G., & Brown, K. M. (1999). Stress-induced smectite dehydration: ramifications for patterns of freshening and fluid expulsion in the N. Barbados accretionary wedge. Earth and Planetary Science Letters, 172(1-2), 179-197. [19] Freed, R. L., Peacor, D. R., 1989, Geopressured shale and sealing effect of smectite to illite transition, American Association of Petroleum Geologists Bulletin, Vol. 73, 1223-1232. [20] Fu, M. H., Zhang, Z. Z., Low, P. F., 1990, Changes in the properties of a montmorillonite -water system during the adsorption and desorption of water: hysteresis, Clays and clay minerals, Vol. 38, No. 5, 485-492. [21] Grim, R. E., 1953, Clay Mineralogy 2nd ed., McGraw Hill Book Company, New York. [22] Guindy, N.M., El-Akkad, T.M., Flex, N.S., El-Massry, S.R., and Nashed, S. (1985) Thermal dehydration of mono- and di-valent montmorillonite cationic derivates. Thermochimica Acta, 88, 369.378. [23] Guo, G., & Fall, M. (2021). Advances in modelling of hydro-mechanical processes in gas migration within saturated bentonite: A state-of-art review. Engineering Geology, 287, 106123. [24] Hawkins, R. K., & Egelstaff, P. A. (1980). Interfacial water structure in montmorillonite from neutron diffraction experiments. Clays and Clay Minerals, 28, 19-28. [25] Hoch, A. R., Cliffe, K. A., Swift, B. T., & Rodwell, W. R. (2004). Modelling gas migration in compacted bentonite: gambit club phase 3. Final report. [26] Huang, W. L., Longo, J. M., & Pevear, D. R. (1993). An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41(2), 162-177. [27] Huang, W. L., Longo, J. M., Pevear, D. R., 1993, An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals. Vol.41, No. 2, 162-177. [28] IAEA. (2006). Geological Disposal of Radioactive Waste–Safety Requirements. [29] Itälä, A., & Olin, M. (2011). Chemical evolution of bentonite buffer in a final repository of spent nuclear fuel during the thermal phase. Nuclear technology, 174(3), 342-352. [30] JNC, 2000, H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Project Overview Report, 2nd Progress Report on Research and Development for the Geological Disposal of HLW in Japan, JNC Technical Report TN1410 2000-001, Japan Nuclear Cycle Development Institute, Tokai-mura Japan, pp. IV-9. [31] Karnland O, Olsson S, Nilsson U, 2006. Mineralogy and sealing properties of various bentonites and smectite-rich clay materials. SKB TR-06-30, Svensk Kärnbränslehantering AB. [32] Kolditz, O., Shao, H., Wang, W., & Bauer, S. (2016). Thermo-hydro-mechanical chemical processes in fractured porous media: modelling and benchmarking (Vol. 25). Berlin: Springer. [33] Liang, S. Y., Lin, W. S., Chen, C. P., Liu, C. W., & Fan, C. (2021a). A review of geochemical modeling for the performance assessment of radioactive waste disposal in a subsurface system. Applied sciences, 11(13), 5879. [34] Liang, S. Y., Lin, W. S., Chen, C. P., Liu, C. W., & Fan, C. (2021b). A review of geochemical modeling for the performance assessment of radioactive waste disposal in a subsurface system. Applied sciences, 11(13), 5879. [35] Liu, C. W., & Lin, W. S. (2005). A smectite dehydration model in a shallow sedimentary basin: model development. Clays and clay minerals, 53(1), 55-70. [36] Matusewicz, M., & Olin, M. (2019). Comparison of microstructural features of three compacted and water-saturated swelling clays: MX-80 bentonite and Na-and Ca-purified bentonite. Clay Minerals, 54(1), 75-81. [37] McBride, M. B., 1994, Environmental chemistry of soils, Oxford University Press, New York, 406pp. [38] Mitchell, J. K., 1993, Fundamental of Soil Behavior, 2nd Edition, John Wiley and Sons, Inc., New York, 437pp. [39] Molera, M., Eriksen, T., & Jansson, M. (2003). Anion diffusion pathways in bentonite clay compacted to different dry densities. Applied Clay Science, 23(1-4), 69-76. [40] Mulla, D. J., Low, P. F., 1983, The molar adsorptivity of interparticle water in clay-water systems, Journal of Colloid and Interface Science, Vol. 95, No. 1, 51-60. [41] Multiphysics, C. O. M. S. O. L. (1998). Introduction to comsol multiphysics®. COMSOL Multiphysics, Burlington, MA, accessed Feb, 9(2018), 32. [42] Narkuniene, A., Poskas, P., & Justinavicius, D. (2021). The modeling of laboratory experiments with COMSOL Multiphysics using simplified hydromechanical model. Minerals, 11(7), 754. [43] Nash, P. J., Swift, B. T., Goodfield, M., & Rodwell, W. R. (1998). Modelling gas migration in compacted bentonite. A report produced for the GAMBIT club (No. POSIVA--98-08). Posiva Oy. [44] NWMO, 2017. Postclosure Safety Assessment of a Used Fuel Repository in Crystalline Rock. Nuclear Waste Management Organization. Nuclear Waste Management Organization, NWMO TR-2017-02. [45] Ochs M, Lothenbach B, Wanner H, Sato H, Yui M, 2001. An integrated sorptiondiffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite. J. Contam. Hydrol. 47, 283–296. [46] Ochs, M., & Talerico, C. (2004). SR-Can. Data and uncertainty assessment. Migration parameters for the bentonite buffer in the KBS-3 concept (No. SKB-TR--04-18). Swedish Nuclear Fuel and Waste Management Co.. [47] Oliphant, J. L., Low, P. F., 1982, The relative partial specific enthalpy of water in montmorillonite-water systems and its relation to the swelling of these systems, Journal of Colloid and Interface Science, Vol. 89, No. 2, 366-373. [48] Park, S., Yoon, S., Kwon, S., Lee, M. S., & Kim, G. Y. (2021). Temperature effect on the thermal and hydraulic conductivity of Korean bentonite buffer material. Progress in Nuclear Energy, 137, 103759. [49] Poinsignon, C., Yvon, J., and Mercier, R. (1982) Dehydration energy of the exchangeable cations in montmorillonite. A DTA study. Israel Journal of Chemistry, 22, 253-255. [50] Posner, A. M., Quirk, J. P., 1964, Changes in basal spacing of montmorillonite in electrolyte solution, Journal colloid sci., Vol.19, 789-812. [51] Puigdomenech, I., 2012. Make Equilibrium using Sophisticated Algoritms (MEDUSA) Program. Inorganic Chemistry Department Website. <http://www.kemi.kth.se/medusa/> [52] Pusch, R. (1999). Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW?. [53] Pusch, R. (2001). The buffer and backfill handbook. Part 2: Materials and techniques (No. SKB-TR--02-12). Swedish Nuclear Fuel and Waste Management Co.. [54] Pusch, R. (2009). Geological storage of highly radioactive waste: current concepts and plans for radioactive waste disposal. [55] Pusch, R; Svemar, C. (2004). CROP - Cluster Repository Project. Deliverable D6. Comparison of repository concepts & recommendations for design and construction of future safe repositories. (無APA) [56] Pusch, Roland, 1978, Highly compacted Na Bentonite as buffer substance, Lulea Institute of Technology, 1978-03-02 [57] Pytte, A. M., Reynolds, R. C., 1988, The thermal transformation of smectite to illite, in Vaeser, N. D., and McCulloh, T. H., ed., Thermal Histories of Sedimentary Basins: New York, Springer Verlag, p.133-140. [58] Ransom, B. and Helgeson, H. C., 1994a, A chemical and thermodynamic model of aluminous dioctahedral 2:1 layer clay minerals in diagenetic processes: regular solution reprsentation of interlayer dehydration in Smectite, American Journal of Science, Vol. 294, 449-484. [59] Ransom, B. and Helgeson, H. C., 1995, A chemical and thermodynamic model of aluminous dioctahedral 2:1 layer clay minerals in diagenetic processes: dehydration of diotahedral aluminous Smectite as a function of temperature and depth in sedimentary basins, American Journal of Science, Vol. 295, 245-281. [60] Ransom, B., & Helgeson, H. C. (1993). Compositional end members and thermodynamic components of illite and dioctahedral aluminous smectite solid solutions. Clays and Clay minerals, 41(5), 537-550. [61] Ransom, B., & Helgeson, H. C. (1994). A chemical and thermodynamic model of aluminous dioctahedral 2: 1 layer clay minerals in diagenetic processes; regular solution representation of interlayer dehydration in smectite. American Journal of Science, 294(4), 449-484. [62] Sato H, Assida T, Kohara Y, Yui M, Sasaki N, 1992. Effect of dry density on diffusion of some radionuclides in compacted sodium bentonite, J. Nuclear Sci. Technol., 29(9), 873–882. [63] Schwyn B, 2003. Sorption values (Kd), effective diffusion coefficients (De) and accessible porosities (e) for bentonite used in safety assessment calculations within the Project Opalinus Clay (Entsorgungsnachweis). In Near-field sorption data bases for compacted MX-80 bentonite for performance assessment of high-level radioactive waste repository in Opalinus Clay host rock. NAGRA technical report 02-18, 125–130. [64] Selroos, J. O., & Follin, S. (2010). SR-Site groundwater flow modelling methodology, setup and results. [65] Sivakumar, V., Tan, W. C., Murray, E. J., & McKinley, J. D. (2006). Wetting, drying and compression characteristics of compacted clay. Géotechnique, 56(1), 57-62. [66] SKB. (2010). Data report for the safety assessment SR-Site. Technical Report TR-10-52, Swedish Nuclear Fuel and Waste Management Co., Stockholm. [67] Steefel, C. I. (2009). Software for modeling multicomponent reactive flow and transport. Rapport technique Lawrence Berkeley National Laboratory. [68] Sun, H., Mašín, D., Najser, J., & Scaringi, G. (2020). Water retention of a bentonite for deep geological radioactive waste repositories: High-temperature experiments and thermodynamic modeling. Engineering geology, 269, 105549. [69] Taipower. (2017). The Spent Nuclear Fuel Final Disposal Program - Potential Host Rock Characterization and Evaluation Stage: The Technical Feasibility Assessment Report on Spent Nuclear Fuel Final Disposal. Main Report. Taiwan Power Company. [70] Taipower. (2022). Final Disposal Project for Spent Nuclear Fuel in Taiwan. 108 Annual Results Report. Taipower company. [71] Taipower. (2022). Final Disposal Project Plan for Spent Nuclear Fuel in Taiwan. Taipower company. [72] Velde, B., Vasseur, G., 1992, Estimation of the diagenetic smectite-to-illite transformation in time-temperature space. American Mineralogist, Vol. 77, 967-976. [73] Villar, M. V. (2004). Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report. [74] Villar, M. V. (2021). Thermo-hydro-mechanical characterisation of a bentonite from Cabo de Gata. A study applied to the use of bentonite as sealing material in high level radioactive waste repositories. [75] Villar, M. V., & Lloret, A. (2008). Influence of dry density and water content on the swelling of a compacted bentonite. Applied Clay Science, 39(1-2), 38-49. [76] Villar, M. V., Gómez-Espina, R., & Lloret, A. (2010). Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite. Journal of Rock Mechanics and Geotechnical Engineering, 2(1), 71-78. [77] Villar, M. V., Gómez-Espina, R., Campos, R., Barrios, I., & Gutiérrez, L. (2012). Porosity changes due to hydration of compacted bentonite. In Unsaturated Soils: Research and Applications: Volume 1 (pp. 137-144). Springer Berlin Heidelberg. [78] Villar, M. V., Iglesias, R. J., & García-Siñeriz, J. L. (2018). State of the in situ Febex test (GTS, Switzerland) after 18 years: a heterogeneous bentonite barrier. Environmental Geotechnics, 7(2), 147-159. [79] Villar, M. V., Iglesias, R. J., García-Siñeriz, J. L., Lloret, A., & Huertas, F. (2020). Physical evolution of a bentonite buffer during 18 years of heating and hydration. Engineering geology, 264, 105408. [80] Volckaert, G., Bernier, F., Alonso, E., Gens, A., Samper, J., Villar, M., ... & Zingarelli, V. (1996). Thermal-hydraulic-mechanical and geochemical behaviour of the clay barrier in radioactive waste repositories(model development and validation). EUR(Luxembourg). [81] Wersin, P., Johnson, L. H., & McKinley, I. G. (2007). Performance of the bentonite barrier at temperatures beyond 100 C: A critical review. Physics and Chemistry of the Earth, Parts A/B/C, 32(8-14), 780-788. [82] Witherspoon, P. A. (1996). Geological problems in radioactive waste isolation-second worldwide review. [83] Witherspoon, P. A., & Bodvarsson, G. S. (2001). Geological challenges in radioactive waste isolation: Third worldwide review. Geological Challenges in Radioactive Waste Isolation. [84] Witherspoon, P. A., & Bodvarsson, G. S. (2006). Geological challenges in radioactive waste isolation: fourth worldwide review. [85] Wu, Q., & Wang, J. (2020). A thermo-hydro-mechanical coupling analysis for the contaminant transport in a bentonite barrier with variable saturation. Water, 12(11), 3114. [86] Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., & Pruess, K. (2011). TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Computers & Geosciences, 37(6), 763-774. [87] Ye, W. M., Wan, M., Chen, B., Chen, Y. G., Cui, Y. J., & Wang, J. (2012). Temperature effects on the unsaturated permeability of the densely compacted GMZ01 bentonite under confined conditions. Engineering Geology, 126, 1-7. [88] Zhang, Z. Z., Low, P. F., 1989, Relation between the heat of immersion and the initial water content of Li-, Na, and K-montmorillonite, Journal of Colloid and Interface Science, Vol. 133, No. 2, 461-472. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96583 | - |
| dc.description.abstract | 高放射性廢棄物地質處置的概念是使用多重障壁系統來隔絕輻射可能對人類的影響,範圍涵蓋處置設施周圍環境提供的天然地質屏障,以及人造工程障壁系統,其中包括廢棄物包件、廢棄物罐、緩衝材料和回填材料。 多重障壁系統可在廢棄物包件失效時發揮其所需功能,延遲廢棄物罐中的核種流出至地質圈中。 由於放射性核種衰變熱與處置設施中的水力和水-礦物反應會有交互作用,溫度與壓力導致的膨潤土製作成的緩衝材料功能降低。國際上較少討論熱-水-化對與蒙脫石脫水影響的相關研究。因此,本研究採用蒙脫石脫水化學動力學模型來計算蒙脫石黏土礦物受到用過核子燃料衰變熱影響而排出的水量。本研究發現,蒙脫石黏土會因層間水的損失而導致體積收縮。了解衰變熱是否會引起膨潤土孔隙率變化,並評估了孔隙率變化對放射性核種通過緩衝材料的影響。 本研究進行熱傳計算得知處置設施的溫度峰值約會出現在10年左右。大約2萬年後,用過核子燃料釋放產生的熱量已經逐漸消散,溫度降低到接近地溫的背景水平。緩衝材料中因溫度改變而造成孔隙率變化,陽離子的修正孔隙率為0.177、0.321、0.435,陰離子的修正孔隙率為0.174、0.128、0.07。 在近場放射性核種傳輸模擬結果中,本研究不同過往近場核種傳輸模型,使用3維模式建模,進行熱與傳輸的耦合模型計算,耦合模型考慮溫度變化下的修正孔隙率,並使用地化模式計算受不同溫度下的吸附係數,本研究發現修正後的有效孔隙率可以獲得更保守的濃度,此結果可用於處置設施的安全評估,黏土礦物的脫水概念可以進階分析高放射性廢棄物處置設施的受到用過核子燃料衰變熱的性能影響。 | zh_TW |
| dc.description.abstract | The concept of geological disposal for high-level radioactive waste (HLW) is based on a multi-barrier system comprising the natural geological barrier that repository host rock provides and its surroundings, as well as an engineered barrier system (EBS) that includes waste form, waste canisters, buffer materials, and backfill. The multi-barrier system is expected to perform its desired functions to isolate waste from the biosphere and achieve HLW disposal. Because of the interaction processes of radionuclide decay heat with hydraulic and water–mineral reactions in the radioactive waste repository, the bentonite buffer degradation resulting from the external temperature and pressure warrants investigation. However, seldom addressed the influence of thermo-hydro-chemical (T-H-C) processes on buffer material degradation in the EBS of HLW disposal repositories as related to smectite clay dehydration. Therefore, we adopted the chemical kinetic model of smectite dehydration to calculate the amount of water expelled from smectite clay minerals caused by higher temperatures of waste decay heat. We discovered that smectite clay could cause volume shrinkage because of a loss of interlayer water, which can lead to bentonite buffer compression. We investigated whether the decay heat caused the bentonite porosity change and evaluated the influence of porosity change on the radionuclide transport through the buffer material. We found that the temperature peak occurred about 10 years. After ap-proximately 20,000 years, the thermal caused by the release of the canister had dispersed and the temperature had reduced close to the geothermal background level. The modified cation porosity of buffer due to the temperature evolution was equal to 0.177, 0.321, 0,435. The modified anion porosity of buffer was equal to 0.174, 0.128, and 0.071. In the simulation results of near-field radionuclides transport, we found that the modified effective porosity can obtain a more conservative concentration which can be used for the safety assessment of the repository. The results of this study may be used in advanced research on the evolution of bentonite degradation for both performance assessments and safety analyses of final HLW disposal. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:38:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-19T16:38:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF TABLES vii LIST OF FIGURES viii Chapter 1 Introduction 1 Chapter 2 Literature Review 5 Chapter 3 Research methods 10 3.1 Thermal effective in engineer barriers 11 3.2 Smectite Hydration Properties 18 3.3 Comparison of Analytical Solution and Numerical Simulation for Radionuclide Transport 26 3.4 Effects of Porosity Change on the Radionuclides Transport through the Buffer Material 32 3.5 Simulation dynamic Kd of temperature 36 Chapter 4 Results 43 Chapter 5 Discussion 62 Chapter 6 Conclusions & suggestions 67 REFERENCE 69 | - |
| dc.language.iso | en | - |
| dc.subject | 工程障壁系統 | zh_TW |
| dc.subject | 核種傳輸 | zh_TW |
| dc.subject | 高放射性廢棄物 | zh_TW |
| dc.subject | 膨潤土脫水 | zh_TW |
| dc.subject | geological disposal | en |
| dc.subject | radionuclides | en |
| dc.subject | smectite dehydration | en |
| dc.subject | multi-barrier system | en |
| dc.subject | performance assessments | en |
| dc.title | 用過核子燃料衰變熱對緩衝材料傳輸行為之影響 | zh_TW |
| dc.title | The Effect of Decay Heat from Spent Nuclear Fuel on the Transport Properties of Buffer Material | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李方中;范致豪;陳清田;林文欽 | zh_TW |
| dc.contributor.oralexamcommittee | Fong-Chung Lee;Chih-Hao Fan;Ching-Tien Chen;Wen-Chin Lin | en |
| dc.subject.keyword | 膨潤土脫水,高放射性廢棄物,核種傳輸,工程障壁系統, | zh_TW |
| dc.subject.keyword | radionuclides,smectite dehydration,multi-barrier system,performance assessments,geological disposal, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202500073 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-01-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 2.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
