Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96579
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林國峰zh_TW
dc.contributor.advisorGwo-Fong Linen
dc.contributor.author廖宥弘zh_TW
dc.contributor.authorYou-Hong Liaoen
dc.date.accessioned2025-02-19T16:36:59Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-14-
dc.identifier.citation1. Adebayo Olatunbosun, S., Zayed, T. (2022). Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. Environmental Research 203, 111609. https://doi.org/10.1016/j.envres.2021.111609
2. Bowes, B. D., Wang, C., Ercan, M. B., Culver, T. B., Beling, P. A., Goodall, J. L. (2022). Reinforcement learning-based real-time control of coastal urban stormwater systems to mitigate flooding and improve water quality. Environmental Science: Water Research & Technology 8(10), 2065–2086. http://dx.doi.org/10.1039/D1EW00582K
3. Cembrano, G., Quevedo, J., Salamero, M., Puig, V., Figueras, J., Martı́, J. (2004). Optimal control of urban drainage systems. A case study. Control Engineering Practice 12(1), 1–9. https://doi.org/10.1016/S0967-0661(02)00280-0
4. Chen, S., Qin, H. P., Zheng, Y., Fu, G. (2019). Spatial variations of pollutants from sewer interception system overflow. Journal of Environmental Management 233, 748–756. https://doi.org/10.1016/j.jenvman.2018.09.082
5. García, L., Barreiro-Gomez, J., Escobar, E., Téllez, D., Quijano, N., Ocampo-Martinez, C. (2015). Modeling and real-time control of urban drainage systems: A review. Advances in Water Resources 85, 120–132. https://doi.org/10.1016/j.advwatres.2015.08.007
6. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. ArXiv abs/1801.01290: n. pag. https://api.semanticscholar.org/CorpusID:28202810
7. Joseph, S. B., Dada, E. G., Abidemi, A., Oyewola, D. O., Khammas, B. M. (2022). Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems. Heliyon 8(5), e09399. https://doi.org/10.1016/j.heliyon.2022.e09399
8. Kroll, S., Weemaes, M., Impe, J. V., Willems, P. (2018). A methodology for the design of RTC strategies for combined sewer networks. Water 10(11), 1675. https://doi.org/10.3390/w10111675
9. Li, T., Zhang, W., Feng, C., Shen, J. (2014). Performance assessment of separate and combined sewer systems in metropolitan areas in Southern China. Water Sci Technol 69(2), 422–9. https://doi: 10.2166/wst.2013.732
10. Lin, S. S., Zhu, K. Y., Zhang, X. H., Liu, Y. C., Wang, C. Y. (2023). Development of a Microservice-Based Storm Sewer Simulation System with IoT Devices for Early Warning in Urban Areas. Smart Cities 6, 3411–3426. https://doi.org/10.3390/smartcities6060151
11. Lowe, S. A. (2010). Sanitary sewer design using EPA storm water management model (SWMM). Computer Applications in Engineering Education 18(2) 1061–3773. https://doi.org/10.1002/cae.20124
12. Martel, J. L., Brissette, F. P., Lucas-Picher, P., Troin, M., Arsenault, R. (2021). Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation. Journal of Hydrologic Engineering 26(10), 03121001. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-5584.0002122
13. McDonnell, B. E., Ratliff, K., Tryby, M. E., Wu, J. J. X., Mullapudi, A. (2020). PySWMM: The Python Interface to Stormwater Management Model (SWMM). Journal of Open Source Software 5(52), 2292. https://doi.org/10.21105/joss.02292
14. Owolabi, T. A., Mohandes, S. R., Zayed, T. (2022). Investigating the impact of sewer overflow on the environment: A comprehensive literature review paper. Journal of Environmental Management 301, 113810. https://doi.org/10.1016/j.jenvman.2021.113810.
15. Rodríguez-Molina, A., Mezura-Montes, E., Villarreal-Cervantes, M. G., Aldape-Pérez, M. (2020). Multi-objective meta-heuristic optimization in intelligent control: A survey on the controller tuning problem. Applied Soft Computing 93, 106342. https://doi.org/10.1016/j.asoc.2020.106342
16. Saliba, S. M., Bowes, B. D., Adams, S., Beling, P. A., Goodall, J. L. (2020). Deep Reinforcement Learning with Uncertain Data for Real-Time Stormwater System Control and Flood Mitigation. Water 12(11), 3222. https://doi.org/10.3390/w12113222
17. Schertzinger, G., Zimmermann, S., Sures, B. (2019). Predicted sediment toxicity downstream of combined sewer overflows corresponds with effects measured in two sediment contact bioassays. Environmental Pollution 248, 782–791. https://doi.org/10.1016/j.envpol.2019.02.079
18. Shakya, A. K., Pillai, G., Chakrabarty, S. (2023). Reinforcement learning algorithms: A brief survey. Expert Systems with Applications 231, 120495. https://doi.org/10.1016/j.eswa.2023.120495
19. Shao, Z., Zhang, X., Li, S., Deng, S., Chai, H. (2017). A Novel SWMM Based Algorithm Application to Storm Sewer Network Design. Water 9(10), 747. https://doi.org/10.3390/w9100747
20. Subramani, T., Mangaiyarkarasi, M., Kathirvel, C. (2014). Impact of sewage and industrial effluent on soil plant health act on environment. Jornal of Engineering Research and Applications 4(6), 270–273.
21. Sun, C., Romero, L., Joseph-Duran, B., Meseguer, J., Muñoz, E., Guasch, R., Martinez, M., Puig, V., Cembrano, G. (2020). Integrated pollution-based real-time control of sanitation systems. Journal of Environmental Management 269, 110798. https://doi.org/10.1016/j.jenvman.2020.110798
22. Tao, D. Q., Pleau, M., Akridge, A., Fradet, O., Grondin, F., Laughlin, S., Miller, W., Shoemaker, L. (2020). Analytics and Optimization Reduce Sewage Overflows to Protect Community Waterways in Kentucky. INFORMS Journal on Applied Analytics 50(1), 7–20. https://doi.org/10.1287/inte.2019.1022
23. Tian, W. C., Liao, Z. L., Zhang, Z. Y., Wu, H., Xin, K. L. (2022). Flooding and Overflow Mitigation Using Deep Reinforcement Learning Based on Koopman Operator of Urban Drainage Systems. Water Resources Research 58(7), 0043–1397. https://doi.org/10.1029/2021WR030939
24. Tryby, M. E., Buahin, C. A., McDonnell, B. E., Knight, W. J., Fortin-Flefil, J., VanDoren, M., Eckenwiler, S., Boyer, H. (2024). Intelligent control of combined sewer systems using PySWMM—A Python wrapper for EPA’s Stormwater Management Model. Environmental Modelling & Software 179, 106114. https://doi.org/10.1016/j.envsoft.2024.106114
25. Yang, Y., Chen, G., Reniers, G., Goerlandt, F. (2020). A bibliometric analysis of process safety research in China: Understanding safety research progress as a basis for making China’s chemical industry more sustainable. Journal of Cleaner Production 263, 121433. https://doi.org/10.1016/j.jclepro.2020.121433
26. Yin, H. L., Yi, L., Xu, Z., Li, H., Schwegler, B. R. (2017). Characteristics of the overflow pollution of storm drains with inappropriate sewage entry. Environmental Science and Pollution Research 24(5), 4902–4915. https://doi.org/10.1007/s11356-016-8145-4
27. Zimmer, A., Schmidt, A., Ostfeld, A., Minsker, B. (2018). Reducing Combined Sewer Overflows through Model Predictive Control and Capital Investment. Journal of Water Resources Planning and Management 144(2), 04017091. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000879
28. 許晃雄、王嘉琪、陳正達、李明旭、詹士樑 (2024)。國家氣候變遷科學報告2024:現象、衝擊與調適 [許晃雄、李明旭 主編]。國家科學及技術委員會與環境部聯合出版。
29. 表燈時間電價試算評估 (2021)。台灣電力公司Retrieved November 27, 2024, from https://service.taipower.com.tw/taipowerdsm/residential-and-commercial
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96579-
dc.description.abstract都市排水的主要目標是排除雨水與污水,並透過地下管路輸送至適當地點處理或排放。都市排水管路設計上,雨水流經雨水下水道並排放至河道中,而污水流經污水下水道並輸送至污水處理廠處理後,排放至海中。本研究之研究區域臺北市即是使用此雨污分離的設計。然而,本應完全分離的雨污下水道系統,因管線老舊滲入或雨污管線錯接等問題,導致降雨期間污水管線內的水量暴增,應對此現象即須仰賴污水抽水站操作人員制定雨天與晴天的抽水策略並進一步監視與即時控制。
為了增加決策應變時間,並減少人為操作的誤差,引入物聯網技術、自動控制、即時監控與演算等需求逐漸提升,因此,本研究提出即時決策模式,可依即時觀測資料預測未來25小時的濕井水位和抽水機啟閉建議以提供抽水站人員參考。
即時決策模式先以暴雨管理模型模擬臺北市污水下水道系統,並以控制演算方法,提出最適合的操作策略。控制演算方法包括規則導向控制(Rule-based Control, RBC)與深度強化學習(Deep Reinforcement Learning, DRL),其中前者為基於現行抽水站操作策略制定,後者是基於設施操作規則獎勵懲罰方法訓練而出。為量化兩種模式的控制能力,本研究制定了多項評鑑指標,涵蓋系統控制目標(水位控制)、設施運行限制(抽水機與閘門操作)以及電力消耗,以評估兩方法在現行抽水站目標與限制條件下的表現,並比較控制能力於不同目標的優劣。此外,本研究進一步探討輸入資料誤差對模擬的影響,即模擬不完美輸入情境,檢測兩方法在系統輸入數據或模擬誤差累積對結果的不確定性影響,以比較微小擾動影響下的穩定性。
晴天結果顯示水位控制與電力成本評鑑指標之間呈現權衡關係,DRL雖呈現較佳的節電效果,但是在水位控制上表現略差於RBC。雨天結果顯示由於水位控制與抽水機操作之間具權衡之關係,RBC因為受到規則嚴格控制,在多項目標分歧時以水位控制為優先,因此,RBC模式在水位控制上有較好的表現;而DRL模式由於為多目標之間的權衡,因此,即便多項目標分歧時仍盡可能地減少違反抽水機的操作規則,在遵守抽水機規則目標中即表現較好。在不完美輸入模擬中,由於RBC模式規則為二元式判斷且規則的高度複雜等原因,不僅相較DRL機率式模式更易犯下錯誤的判斷,在進行錯誤行為後的補救行為也較遲鈍,因此RBC模擬的變異較大,在污水量大時較易於違反水位控制的基礎限制。
本研究針對晴天與雨天各別提出RBC和DRL模式,生成操作策略並將其輸入至污水模擬系統。結果顯示在晴天模擬下,由於RBC具備較佳且穩定的水位控制能力,因此選擇RBC作為晴天的污水控制模式;而在雨天模擬下,DRL展現出更穩定的控制能力,因此選擇DRL作為雨天的污水控制模式。
zh_TW
dc.description.abstractThe primary goal of urban drainage systems is to discharge stormwater and sewage by transporting them through underground pipelines to appropriate locations for treatment or discharge. In the design of urban drainage pipelines, stormwater flows through stormwater drainage pipelines and is discharged into rivers, while sewage flows through sewage pipelines, is transported to sewage treatment plants for treatment, and subsequently discharged into the river. The study area, Taipei City, employs this separate drainage system design for stormwater and sewage. However, due to issues such as aging infrastructure causing infiltration or misconnected pipelines, the sewage pipelines which supposedly separate from stormwater experience a significant increase in sewage volume during rainfall events. Addressing this issue requires reliance on sewage pumping station operators to formulate pumping strategies for both wet and dry days and enhance monitoring and real-time control.
To increase decision-making response time and reduce human operational errors, the demand for integrating IoT (Internet of Things) technology, automatic control, real-time monitoring, and computational algorithms has been steadily rising. Therefore, this study proposes a real-time decision-making model capable of predicting wet well water levels and providing pump operation recommendations for the next 25 hours based on real-time observational data, offering valuable guidance for pumping station personnel.
The real-time decision-making model first simulates sewer system of Taipei City using the Storm Water Management Model (SWMM) and applies control algorithms to propose the most optimal operations. The control algorithms include Rule-Based Control (RBC) and Deep Reinforcement Learning (DRL). RBC is formulated based on the current operational strategies of pumping stations, while DRL is trained using a reward-penalty mechanism derived from facility operation rules. To quantify the control capabilities of the two approaches, this study establishes multiple evaluation metrics, encompassing system control objectives (water level regulation), facility operational constraints (pump and gate operations), and electricity consumption. These metrics are used to assess the performance of both methods under the current goals and constraints of pumping stations and to compare their effectiveness across different objectives. Furthermore, this study investigates the impact of input data errors on the simulation by simulating imperfect input scenarios. This analysis examines how accumulated errors in system input data or simulation affect the results, comparing the stability of the two methods under small perturbations and uncertainties.
The results for dry days show a trade-off between water level control and electricity cost metrics. While DRL demonstrates better performance in electricity cost metric, its water level control is slightly inferior to that of RBC. In wet days, the results indicate a trade-off between water level control and pump operation. RBC, due to its strict rule-based control, prioritizes water level regulation when multiple objectives diverge, leading to better performance in water level control. In contrast, DRL, as a multi-objective method, aims to minimize violations of pump operation rules even when multiple objectives diverge, thus performing better in adhering to pump operation rules. In the simulation with imperfect inputs, RBC, with its binary decision rules and high complexity, is more prone to making erroneous judgments compared to the probabilistic DRL model. Furthermore, RBC is slower to recover from errors in behavior, leading to larger variations in the simulation. When wastewater volume is high, RBC is more likely to violate the fundamental water level control constraints.
This study proposes RBC and DRL models for dry and wet days, respectively, to generate operational strategies and input them into the sewer simulation system. The results show that in dry days, RBC is selected as the wastewater control mode due to its superior and more stable water level control capabilities. In the wet days, DRL is chosen as the wastewater control mode due to its more stable control performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:36:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:36:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 II
Abstract IV
目次 VII
圖次 XI
表次 XIV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.2.1 污水下水道污水溢流成因與影響 3
1.2.2 污水下水道的類型 4
1.2.3 污水下水道系統控制 6
1.3 論文架構 8
第二章 研究區域與資料 9
2.1 研究區域 9
2.2 研究區域資料 10
2.2.1 污水下水道人孔管線資料 10
2.2.2 集污區範圍劃設與參數設定 11
2.2.3 設施資料 12
2.2.4 氣象水文資料 14
2.2.5 液位、流量監測與操作歷史資料 15
第三章 研究方法 16
3.1 模式演算設計 16
3.1.1 規則導向控制模式 17
3.1.2 比例積分微分控制 17
3.1.3 深度強化學習控制模式 21
第四章 模式建立與應用 26
4.1 研究流程 26
4.2 指標 27
4.3 水理模式建制 28
4.3.1 基礎水理演算工具 28
4.3.2 污水系統基礎模式建制與驗證 29
4.3.3 抽水機抽水效率分析 33
4.3.4 模式基礎設置 36
4.4 RBC模式建制 38
4.4.1 控制規則 38
4.4.2 閘門開度調整演算法 40
4.5 DRL模式建制 42
4.5.1 環境建置 42
4.5.2 行為空間與狀態設計 42
4.5.3 回饋設計 44
4.6 評鑑指標 47
第五章 結果與討論 50
5.1 晴天場次結果 50
5.1.1 晴天場次切分 50
5.1.2 RBC晴天場次結果 51
5.1.3 DRL晴天場次結果 56
5.1.4 晴天RBC與DRL結果比較 61
5.2 雨天場次結果 68
5.2.1 雨天場次切分 68
5.2.2 RBC雨天場次結果 71
5.2.3 DRL雨天場次結果 82
5.2.4 雨天RBC與DRL結果比較 91
5.2.5 不完美輸入 99
第六章 結論與建議 105
6.1 結論 105
6.2 建議 107
參考文獻 108
-
dc.language.isozh_TW-
dc.subject污水系統即時控制zh_TW
dc.subject規則導向控制zh_TW
dc.subject深度強化學習控制zh_TW
dc.subject污水系統預測zh_TW
dc.subjectreinforcement learning-based controlen
dc.subjectSewer system real-time controlen
dc.subjectsewer system predictionen
dc.subjectrule-based controlen
dc.title基於規則與強化學習方法的城市污水系統即時控制研究zh_TW
dc.titleReal-time control of urban sewer system using rule-based and reinforcement learning-based approachesen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisor游景雲zh_TW
dc.contributor.coadvisorGene Jiing-Yun Youen
dc.contributor.oralexamcommittee胡明哲;林軒宇;王志煌zh_TW
dc.contributor.oralexamcommitteeMing-Che Hu;Hsuan-Yu Lin;Jhih-Huang Wangen
dc.subject.keyword污水系統即時控制,污水系統預測,規則導向控制,深度強化學習控制,zh_TW
dc.subject.keywordSewer system real-time control,sewer system prediction,rule-based control,reinforcement learning-based control,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202500052-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-01-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2030-01-07-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
8.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved