請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96571
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李泰成 | zh_TW |
dc.contributor.advisor | Tai-Cheng Lee | en |
dc.contributor.author | 陳麒任 | zh_TW |
dc.contributor.author | Ci-Ren Chen | en |
dc.date.accessioned | 2025-02-19T16:34:46Z | - |
dc.date.available | 2025-02-20 | - |
dc.date.copyright | 2025-02-19 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-14 | - |
dc.identifier.citation | [1] C.C. Liu, S.J. Chang, G.Y. Huang, and Y.Z. Lin, “A 10bit 50MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. SolidState Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[2] C.Y. Liou and C.C. Hsieh, “A 2.4to5.2fJ/conversionstep 10b 0.5to4MS/s SAR ADC with chargeaverage switching DAC in 90nm CMOS,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 280–281. [3] M. Liu, A. H. M. van Roermund, and P. Harpe, “A 7.1fJ/ConversionStep 88dB SFDR SAR ADC With EnergyFree “Swap To Reset”,” IEEE J. SolidState Circuits, vol. 52, no. 11, pp. 2979–2990, Nov. 2017. [4] J. Fredenburg and M. Flynn, “A 90MS/s 11MHz bandwidth 62dB SNDR noiseshaping SAR ADC,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 468–470. [5] J. Liu, D. Li, Y. Zhong, X. Tang, and N. Sun, “27.1 A 250kHzBW 93dBSNDR 4thOrder NoiseShaping SAR Using Capacitor Stacking and Dynamic Buffering,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 369–371. [6] S. Li, B. Qiao, M. Gandara, D. Z. Pan, and N. Sun, “A 13ENOB SecondOrder NoiseShaping SAR ADC Realizing Optimized NTF Zeros Using the ErrorFeedback Structure,” IEEE J. SolidState Circuits, vol. 53, no. 12, pp. 3484–3496, Dec. 2018. [7] Y.S. Shu, L.T. Kuo, and T.Y. Lo, “An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS,” IEEE J. SolidState Circuits, vol. 51, no. 12, pp. 2928–2940, Dec. 2016. [8] J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang, and N. Sun, “9.3 A 40kHzBW 90dBSNDR NoiseShaping SAR with 4× Passive Gain and 2ndOrder Mismatch Error Shaping,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 158–160. [9] Y. Shen, H. Li, H. Xin, E. Cantatore, and P. Harpe, “A 103dB SFDR CalibrationFree Oversampled SAR ADC With Mismatch Error Shaping and PreComparison Techniques,” IEEE J. SolidState Circuits, vol. 57, no. 3, pp. 734–744, Mar. 2022. [10] K. Hasebe, S. Etou, D. Miyazaki, T. Iguchi, Y. Yagishita, M. Takasaki, T. Nogamida, H. Watanabe, T. Matsumoto, and Y. Katayama, “A 100kHzBandwidth 98.3dBSNDR NoiseShaping SAR ADC with Improved Mismatch Error Shaping and SpeedUp Techniques,” in Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), Jun. 2022, pp. 56–57. [11] V. Quiquempoix, P. Deval, A. Barreto, G. Bellini, J. Markus, J. Silva, and G. Temes, “A lowpower 22bit incremental ADC,” IEEE J. SolidState Circuits, vol. 41, no. 7, pp. 1562–1571, Jul. 2006. [12] R. Wu, Y. Chae, J. H. Huijsing, and K. A. A. Makinwa, “A 20b ± 40mV Range ReadOut IC With 50nV Offset and 0.04% Gain Error for Bridge Transducers,” IEEE J. SolidState Circuits, vol. 47, no. 9, pp. 2152–2163, Sep. 2012. [13] Y. Chae, K. Souri, and K. A. A. Makinwa, “A 6.3 µW 20 bit Incremental ZoomADC with 6 ppm INL and 1 µV Offset,” IEEE J. SolidState Circuits, vol. 48, no. 12, pp. 3019–3027, Dec. 2013. [14] J. Garcia, S. Rodriguez, and A. Rusu, “A LowPower CT Incremental 3rd Order ∆Σ ADC for Biosensor Applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 1, pp. 25–36, Jan. 2013. [15] S. Pavan, T. Halder, and A. Kannan, “ContinuousTime Incremental DeltaSigma Modulators With FIR Feedback,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 8, pp. 3222–3231, Aug. 2021. [16] I. Lee, B. Kim, and B.G. Lee, “A LowPower Incremental Delta–Sigma ADC for CMOS Image Sensors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 4, pp. 371–375, Apr. 2016. [17] B. Wang, S.W. Sin, S.P. U., F. Maloberti, and R. P. Martins, “A 550 µ W 20kHz BW 100.8dB SNDR Linear Exponential MultiBit Incremental Σ∆ ADC With 256 Clock Cycles in 65nm CMOS,” IEEE J. SolidState Circuits, vol. 54, no. 4, pp. 1161–1172, Apr. 2019. [18] C. Chen, Z. Tan, and M. A. P. Pertijs, “A 1V 14b selftimed zerocrossingbased incremental ΔΣ ADC,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 274–275. [19] X. Tang, X. Yang, J. Liu, W. Shi, D. Z. Pan, and N. Sun, “27.4 A 0.4to40MS/s 75.7dBSNDR Fully Dynamic EventDriven Pipelined ADC with 3Stage Cascoded Floating Inverter Amplifier,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 376–378. [20] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. McGrawHill, 2001. [21] J. Markus, J. Silva, and G. Temes, “Theory and applications of incremental /spl Delta//spl Sigma/ converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 4, pp. 678–690, Apr. 2004. [22] Y.Z. Lin, C.Y. Lin, S.C. Tsou, C.H. Tsai, and C.H. Lu, “20.2 A 40MHzBW 320MS/s Passive NoiseShaping SAR ADC With Passive SignalResidue Summation in 14nm FinFET,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 330–332. [23] B. Razavi, Principles of Data Conversion System Design. WileyIEEE Press, 1994. [24] S. Pavan, R. Schreier, and G. C. Temes, Understanding DeltaSigma Data Converters, 2nd ed. WileyIEEE Press, 2017. [25] M.C. Huang and S.I. Liu, “A Fully Differential ComparatorBased SwitchedCapacitor ∆Σ Modulator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 5, pp. 369–373, May 2009. [26] Y.T. Chang, M.R. Wu, and C.C. Hsieh, “A 40MS/s 12bit ZeroCrossing Based SARAssisted TwoStage Pipelined ADC with Adaptive Level Shifting,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–4. [27] P. Vogelmann, J. Wagner, M. Haas, and M. Ortmanns, “A Dynamic Power Reduction Technique for Incremental ∆Σ Modulators,” IEEE J. SolidState Circuits, vol. 54, no. 5, pp. 1455–1467, May 2019. [28] K. Lee, M. R. Miller, and G. C. Temes, “An 8.1 mW, 82 dB deltasigma ADC with 1.9 MHz BW and −98 dB THD,” in 2008 IEEE Custom Integrated Circuits Conference, Sep. 2008, pp. 93–96. [29] P. Vogelmann, M. Haas, and M. Ortmanns, “A 1.1mW 200kS/s incremental ΔΣ ADC with a DR of 91.5dB using integrator slicing for dynamic power reduction,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 236–238. [30] Y. Zhang, C.H. Chen, T. He, and G. C. Temes, “A 16 b MultiStep Incremental AnalogtoDigital Converter With SingleOpamp MultiSlope Extended Counting,” IEEE J. SolidState Circuits, vol. 52, no. 4, pp. 1066–1076, Apr. 2017. [31] S.H. Wu, Y.S. Shu, A. Y.C. Chiou, W.H. Huang, Z.X. Chen, and H.Y. Hsieh, “9.1 A CurrentSensing FrontEnd Realized by A ContinuousTime Incremental ADC with 12b SAR Quantizer and ResetThenOpen Resistive DAC Achieving 140dB DR and 8ppm INL at 4kS/s,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 154–156. [32] A. AlMarashli, J. Anders, J. Becker, and M. Ortmanns, “A 107 dB SFDR, 80 kS/s Nyquistrate SAR ADC using a hybrid capacitive and incremental ΣΔ DAC,” in Proc. Symp. VLSI Circuits, Jun. 2017, pp. C240–C241. [33] K. Choo, H. An, D. Sylvester, and D. Blaauw, “27.2 14.1ENOB 184.9dBFoM CapacitorArrayAssisted Cascaded ChargeInjection SAR ADC,” in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 372– 374. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96571 | - |
dc.description.abstract | 本篇論文提出了一個二階增量型三角積分類比數位轉換器。將傳統運算放大器替換為動態基於比較器之放大器,以實現可調頻率功耗。此外,由於基於比較器之放大器的數位操作特性,非同步事件驅動的時脈成為可能,這不僅加快了轉換速度,還消除了對高頻全域時脈的需求。為了放寬基於比較器之放大器的噪聲要求,提出了一種時域噪聲切片技術,利用增量型三角積分類比數位轉換器輸出的不同權重和基於比較器之放大器的噪聲–斜率關係來調整每個週期的噪聲和功率效率,並優化性能指標。此外,還提出了一種噪聲整形技術,分別應用於第一級放大器以壓制閃爍和熱噪聲,及量化器用來更進一步壓抑量化誤差,以實現更好的噪聲和功耗性能。
本晶片採用台積電40奈米互補式金屬氧化物半導體技術製造,操作於三十二萬取樣頻率,並於有效頻寬十六萬赫茲下得到80.1 dB的訊號雜訊失真比。在1.8伏特的電源供應下總共消耗628微瓦,晶片的核心面積小於0.078平方毫米,Schreier的性能評價(FOMs)達到了164.2 dB。 | zh_TW |
dc.description.abstract | In this thesis, a second-order incremental sigma-delta modulator (ISDM) ADC is presented. We replace the traditional operational amplifiers with dynamic comparator-based (CB) amplifiers to achieve frequency-scalable power consumption. Moreover, owing to the digital-like operation of CB amplifiers, an asynchronous event-driven clocking becomes feasible, which not only speeds up the conversion but also removes the demand for a high-frequency global clock. To relax the noise requirement of the CB amplifiers, a time-domain noise-slicing (TDNS) technique is proposed, taking advantage of the different weights of ISDM ADC outputs and the noise-slope relationship of the CB amplifier to adjust the noise and the power efficiency of each cycle and optimize the figure of merit (FoM). Additionally, proposed noise-shaping (NS) techniques are applied respectively to the first-stage amplifier to suppress flicker and thermal noise, and to the quantizer to further improve the quantization error, achieving better noise and power performance.
Fabricated in TSMC 40nm CMOS technology, the proposed ADC operates at a 350-kHz frequency and achieves 80.1-dB SNDR in a 160-kHz bandwidth. It achieves a Schreier FoM of 164.2 dB and consumes 628 uW under a 1.8 V supply voltage. The active area of this work occupies less than 0.078 mm^2. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:34:46Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-19T16:34:46Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Contents
誌謝 iii 摘要 vi Abstract vii Contents viii List of Figures xi List of Tables xiii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Fundamental 4 2.1 Introduction of the quantization . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Performance Metrics of ADCs . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Sampling rate/frequency (fs) . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Bandwidth (BW) . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 Differential nonlinearity (DNL) . . . . . . . . . . . . . . . . . . 7 2.2.4 Integral nonlinearity (INL) . . . . . . . . . . . . . . . . . . . . . 7 2.2.5 Signaltonoise ratio (SNR) . . . . . . . . . . . . . . . . . . . . 7 2.2.6 Signaltonoise and distortion ratio (SNDR) . . . . . . . . . . . . 7 2.2.7 Effective number of bits (ENOB) . . . . . . . . . . . . . . . . . 8 2.2.8 Spurious free dynamic range (SFDR) . . . . . . . . . . . . . . . 8 2.2.9 Dynamic range (DR) . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.10 Figureofmerit (FoM) . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Incremental sigmadelta modulation (ISDM) ADCs . . . . . . . . . . . . 9 2.3.1 The principle of ISDM operation . . . . . . . . . . . . . . . . . . 9 2.3.2 Inputreferred noise of ISDM . . . . . . . . . . . . . . . . . . . 12 3 System Architecture And Implementation 14 3.1 The traditional SC integrator . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 The proposed CB amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Asynchronous operation . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Coefficient Decision . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 Noise in CB Amplifier . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 The propose TDNS and NS techniques . . . . . . . . . . . . . . . . . . . 25 3.4.1 The proposed TDNS technique . . . . . . . . . . . . . . . . . . . 26 3.4.2 Optimization of TDNS Slicing Parameters . . . . . . . . . . . . . 27 3.4.3 The Proposed NS technique . . . . . . . . . . . . . . . . . . . . 28 3.4.4 Derivation of Transfer Function . . . . . . . . . . . . . . . . . . 31 3.4.5 kT/C Noise Considerations . . . . . . . . . . . . . . . . . . . . . 32 3.4.6 The Proposed Noiseshaping SAR quantizer . . . . . . . . . . . . 34 3.5 The whole ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5.1 The CT Comparator . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.2 The Current Sources . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.3 The CMFB Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5.4 The Passive Adder . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5.5 Bootstrapped Switch . . . . . . . . . . . . . . . . . . . . . . . . 40 3.6 Layout floor plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7 PostLayout Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Measurement 45 4.1 Chip Micrograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Printed Circuit Board Designed . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5 Performance Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Conclusion 52 5.1 Comparison table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Bibliography 54 | - |
dc.language.iso | en | - |
dc.title | 一個具有噪聲整形動態放大器和時域噪聲切片的非同步運作增量型三角積分類比數位轉換器 | zh_TW |
dc.title | An Asynchronous ISDM ADC With Noise Shaping Dynamic Amplifier and Time-Domain Noise-Slicing Technique | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳信樹;林宗賢;彭盛裕 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Shu Chen;Tsung-Hsien Lin;Sheng-Yu Peng | en |
dc.subject.keyword | 非同步操作,增量型三角積分類比數位轉換器,基於比較器之放大器,噪聲整形,時域噪聲切片, | zh_TW |
dc.subject.keyword | Asynchronous operation,comparator-based (CB) op,incremental ∆Σ modulator (ISDM),noise-shaping (NS),time-domain noise-slicing (TDNS), | en |
dc.relation.page | 58 | - |
dc.identifier.doi | 10.6342/NTU202500119 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-01-15 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電子工程學研究所 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 6.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。