Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96571
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李泰成zh_TW
dc.contributor.advisorTai-Cheng Leeen
dc.contributor.author陳麒任zh_TW
dc.contributor.authorCi-Ren Chenen
dc.date.accessioned2025-02-19T16:34:46Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-14-
dc.identifier.citation[1] C.­C. Liu, S.­J. Chang, G.­Y. Huang, and Y.­Z. Lin, “A 10­bit 50­MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid­State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[2] C.­Y. Liou and C.­C. Hsieh, “A 2.4­to­5.2fJ/conversion­step 10b 0.5­to­4MS/s SAR ADC with charge­average switching DAC in 90nm CMOS,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 280–281.
[3] M. Liu, A. H. M. van Roermund, and P. Harpe, “A 7.1­fJ/Conversion­Step 88­dB SFDR SAR ADC With Energy­Free “Swap To Reset”,” IEEE J. Solid­State Circuits, vol. 52, no. 11, pp. 2979–2990, Nov. 2017.
[4] J. Fredenburg and M. Flynn, “A 90MS/s 11MHz bandwidth 62dB SNDR noiseshaping SAR ADC,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 468–470.
[5] J. Liu, D. Li, Y. Zhong, X. Tang, and N. Sun, “27.1 A 250kHz­BW 93dB­SNDR 4th­Order Noise­Shaping SAR Using Capacitor Stacking and Dynamic Buffering,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 369–371.
[6] S. Li, B. Qiao, M. Gandara, D. Z. Pan, and N. Sun, “A 13­ENOB SecondOrder Noise­Shaping SAR ADC Realizing Optimized NTF Zeros Using the ErrorFeedback Structure,” IEEE J. Solid­State Circuits, vol. 53, no. 12, pp. 3484–3496, Dec. 2018.
[7] Y.­S. Shu, L.­T. Kuo, and T.­Y. Lo, “An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS,” IEEE J. Solid­State Circuits, vol. 51, no. 12, pp. 2928–2940, Dec. 2016.
[8] J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang, and N. Sun, “9.3 A 40kHz­BW 90dBSNDR Noise­Shaping SAR with 4× Passive Gain and 2nd­Order Mismatch Error Shaping,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 158–160.
[9] Y. Shen, H. Li, H. Xin, E. Cantatore, and P. Harpe, “A 103­dB SFDR CalibrationFree Oversampled SAR ADC With Mismatch Error Shaping and Pre­Comparison Techniques,” IEEE J. Solid­State Circuits, vol. 57, no. 3, pp. 734–744, Mar. 2022.
[10] K. Hasebe, S. Etou, D. Miyazaki, T. Iguchi, Y. Yagishita, M. Takasaki, T. Nogamida, H. Watanabe, T. Matsumoto, and Y. Katayama, “A 100kHz­Bandwidth 98.3dBSNDR Noise­Shaping SAR ADC with Improved Mismatch Error Shaping and Speed­Up Techniques,” in Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), Jun. 2022, pp. 56–57.
[11] V. Quiquempoix, P. Deval, A. Barreto, G. Bellini, J. Markus, J. Silva, and G. Temes, “A low­power 22­bit incremental ADC,” IEEE J. Solid­State Circuits, vol. 41, no. 7, pp. 1562–1571, Jul. 2006.
[12] R. Wu, Y. Chae, J. H. Huijsing, and K. A. A. Makinwa, “A 20­b ± 40­mV Range Read­Out IC With 50­nV Offset and 0.04% Gain Error for Bridge Transducers,” IEEE J. Solid­State Circuits, vol. 47, no. 9, pp. 2152–2163, Sep. 2012.
[13] Y. Chae, K. Souri, and K. A. A. Makinwa, “A 6.3 µW 20 bit Incremental Zoom­ADC with 6 ppm INL and 1 µV Offset,” IEEE J. Solid­State Circuits, vol. 48, no. 12, pp. 3019–3027, Dec. 2013.
[14] J. Garcia, S. Rodriguez, and A. Rusu, “A Low­Power CT Incremental 3rd Order ∆Σ ADC for Biosensor Applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 1, pp. 25–36, Jan. 2013.
[15] S. Pavan, T. Halder, and A. Kannan, “Continuous­Time Incremental Delta­Sigma Modulators With FIR Feedback,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 8, pp. 3222–3231, Aug. 2021.
[16] I. Lee, B. Kim, and B.­G. Lee, “A Low­Power Incremental Delta–Sigma ADC for CMOS Image Sensors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 4, pp. 371–375, Apr. 2016.
[17] B. Wang, S.­W. Sin, S.­P. U., F. Maloberti, and R. P. Martins, “A 550­ µ W 20­kHz BW 100.8­dB SNDR Linear­ Exponential Multi­Bit Incremental Σ∆ ADC With 256 Clock Cycles in 65­nm CMOS,” IEEE J. Solid­State Circuits, vol. 54, no. 4, pp. 1161–1172, Apr. 2019.
[18] C. Chen, Z. Tan, and M. A. P. Pertijs, “A 1V 14b self­timed zero­crossing­based incremental ΔΣ ADC,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 274–275.
[19] X. Tang, X. Yang, J. Liu, W. Shi, D. Z. Pan, and N. Sun, “27.4 A 0.4­to­40MS/s 75.7dB­SNDR Fully Dynamic Event­Driven Pipelined ADC with 3­Stage Cascoded Floating Inverter Amplifier,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 376–378.
[20] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. McGraw­Hill, 2001.
[21] J. Markus, J. Silva, and G. Temes, “Theory and applications of incremental /spl Delta//spl Sigma/ converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 4, pp. 678–690, Apr. 2004.
[22] Y.­Z. Lin, C.­Y. Lin, S.­C. Tsou, C.­H. Tsai, and C.­H. Lu, “20.2 A 40MHz­BW 320MS/s Passive Noise­Shaping SAR ADC With Passive Signal­Residue Summation in 14nm FinFET,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 330–332.
[23] B. Razavi, Principles of Data Conversion System Design. Wiley­IEEE Press, 1994.
[24] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta­Sigma Data Converters, 2nd ed. Wiley­IEEE Press, 2017.
[25] M.­C. Huang and S.­I. Liu, “A Fully Differential Comparator­Based SwitchedCapacitor ∆Σ Modulator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 5, pp. 369–373, May 2009.
[26] Y.­T. Chang, M.­R. Wu, and C.­C. Hsieh, “A 40MS/s 12­bit Zero­Crossing Based SAR­Assisted Two­Stage Pipelined ADC with Adaptive Level Shifting,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–4.
[27] P. Vogelmann, J. Wagner, M. Haas, and M. Ortmanns, “A Dynamic Power Reduction Technique for Incremental ∆Σ Modulators,” IEEE J. Solid­State Circuits, vol. 54, no. 5, pp. 1455–1467, May 2019.
[28] K. Lee, M. R. Miller, and G. C. Temes, “An 8.1 mW, 82 dB delta­sigma ADC with 1.9 MHz BW and −98 dB THD,” in 2008 IEEE Custom Integrated Circuits Conference, Sep. 2008, pp. 93–96.
[29] P. Vogelmann, M. Haas, and M. Ortmanns, “A 1.1mW 200kS/s incremental ΔΣ ADC with a DR of 91.5dB using integrator slicing for dynamic power reduction,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 236–238.
[30] Y. Zhang, C.­H. Chen, T. He, and G. C. Temes, “A 16 b Multi­Step Incremental Analog­to­Digital Converter With Single­Opamp Multi­Slope Extended Counting,” IEEE J. Solid­State Circuits, vol. 52, no. 4, pp. 1066–1076, Apr. 2017.
[31] S.­H. Wu, Y.­S. Shu, A. Y.­C. Chiou, W.­H. Huang, Z.­X. Chen, and H.­Y. Hsieh, “9.1 A Current­Sensing Front­End Realized by A Continuous­Time Incremental ADC with 12b SAR Quantizer and Reset­Then­Open Resistive DAC Achieving 140dB DR and 8ppm INL at 4kS/s,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 154–156.
[32] A. AlMarashli, J. Anders, J. Becker, and M. Ortmanns, “A 107 dB SFDR, 80 kS/s Nyquist­rate SAR ADC using a hybrid capacitive and incremental ΣΔ DAC,” in Proc. Symp. VLSI Circuits, Jun. 2017, pp. C240–C241.
[33] K. Choo, H. An, D. Sylvester, and D. Blaauw, “27.2 14.1­ENOB 184.9dB­FoM Capacitor­Array­Assisted Cascaded Charge­Injection SAR ADC,” in IEEE Int. Solid­State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 372– 374.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96571-
dc.description.abstract本篇論文提出了一個二階增量型三角積分類比數位轉換器。將傳統運算放大器替換為動態基於比較器之放大器,以實現可調頻率功耗。此外,由於基於比較器之放大器的數位操作特性,非同步事件驅動的時脈成為可能,這不僅加快了轉換速度,還消除了對高頻全域時脈的需求。為了放寬基於比較器之放大器的噪聲要求,提出了一種時域噪聲切片技術,利用增量型三角積分類比數位轉換器輸出的不同權重和基於比較器之放大器的噪聲–斜率關係來調整每個週期的噪聲和功率效率,並優化性能指標。此外,還提出了一種噪聲整形技術,分別應用於第一級放大器以壓制閃爍和熱噪聲,及量化器用來更進一步壓抑量化誤差,以實現更好的噪聲和功耗性能。
本晶片採用台積電40奈米互補式金屬氧化物半導體技術製造,操作於三十二萬取樣頻率,並於有效頻寬十六萬赫茲下得到80.1 dB的訊號雜訊失真比。在1.8伏特的電源供應下總共消耗628微瓦,晶片的核心面積小於0.078平方毫米,Schreier的性能評價(FOMs)達到了164.2 dB。
zh_TW
dc.description.abstractIn this thesis, a second-order incremental sigma-delta modulator (ISDM) ADC is presented. We replace the traditional operational amplifiers with dynamic comparator-based (CB) amplifiers to achieve frequency-scalable power consumption. Moreover, owing to the digital-like operation of CB amplifiers, an asynchronous event-driven clocking becomes feasible, which not only speeds up the conversion but also removes the demand for a high-frequency global clock. To relax the noise requirement of the CB amplifiers, a time-domain noise-slicing (TDNS) technique is proposed, taking advantage of the different weights of ISDM ADC outputs and the noise-slope relationship of the CB amplifier to adjust the noise and the power efficiency of each cycle and optimize the figure of merit (FoM). Additionally, proposed noise-shaping (NS) techniques are applied respectively to the first-stage amplifier to suppress flicker and thermal noise, and to the quantizer to further improve the quantization error, achieving better noise and power performance.
Fabricated in TSMC 40nm CMOS technology, the proposed ADC operates at a 350-kHz frequency and achieves 80.1-dB SNDR in a 160-kHz bandwidth. It achieves a Schreier FoM of 164.2 dB and consumes 628 uW under a 1.8 V supply voltage. The active area of this work occupies less than 0.078 mm^2.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:34:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:34:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
誌謝 iii
摘要 vi
Abstract vii
Contents viii
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Fundamental 4
2.1 Introduction of the quantization . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Performance Metrics of ADCs . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Sampling rate/frequency (fs) . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Bandwidth (BW) . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Differential nonlinearity (DNL) . . . . . . . . . . . . . . . . . . 7
2.2.4 Integral nonlinearity (INL) . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 Signal­to­noise ratio (SNR) . . . . . . . . . . . . . . . . . . . . 7
2.2.6 Signal­to­noise and distortion ratio (SNDR) . . . . . . . . . . . . 7
2.2.7 Effective number of bits (ENOB) . . . . . . . . . . . . . . . . . 8
2.2.8 Spurious free dynamic range (SFDR) . . . . . . . . . . . . . . . 8
2.2.9 Dynamic range (DR) . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.10 Figure­of­merit (FoM) . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Incremental sigma­delta modulation (ISDM) ADCs . . . . . . . . . . . . 9
2.3.1 The principle of ISDM operation . . . . . . . . . . . . . . . . . . 9
2.3.2 Input­referred noise of ISDM . . . . . . . . . . . . . . . . . . . 12
3 System Architecture And Implementation 14
3.1 The traditional SC integrator . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The proposed CB amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Asynchronous operation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Coefficient Decision . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Noise in CB Amplifier . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 The propose TDNS and NS techniques . . . . . . . . . . . . . . . . . . . 25
3.4.1 The proposed TDNS technique . . . . . . . . . . . . . . . . . . . 26
3.4.2 Optimization of TDNS Slicing Parameters . . . . . . . . . . . . . 27
3.4.3 The Proposed NS technique . . . . . . . . . . . . . . . . . . . . 28
3.4.4 Derivation of Transfer Function . . . . . . . . . . . . . . . . . . 31
3.4.5 kT/C Noise Considerations . . . . . . . . . . . . . . . . . . . . . 32
3.4.6 The Proposed Noise­shaping SAR quantizer . . . . . . . . . . . . 34
3.5 The whole ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 The CT Comparator . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 The Current Sources . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.3 The CMFB Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.4 The Passive Adder . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.5 Bootstrapped Switch . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Layout floor plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Post­Layout Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 Measurement 45
4.1 Chip Micrograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Printed Circuit Board Designed . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Performance Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5 Conclusion 52
5.1 Comparison table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Bibliography 54
-
dc.language.isoen-
dc.title一個具有噪聲整形動態放大器和時域噪聲切片的非同步運作增量型三角積分類比數位轉換器zh_TW
dc.titleAn Asynchronous ISDM ADC With Noise Shaping Dynamic Amplifier and Time-Domain Noise-Slicing Techniqueen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳信樹;林宗賢;彭盛裕zh_TW
dc.contributor.oralexamcommitteeHsin-Shu Chen;Tsung-Hsien Lin;Sheng-Yu Pengen
dc.subject.keyword非同步操作,增量型三角積分類比數位轉換器,基於比較器之放大器,噪聲整形,時域噪聲切片,zh_TW
dc.subject.keywordAsynchronous operation,comparator-based (CB) op,incremental ∆Σ modulator (ISDM),noise-shaping (NS),time-domain noise-slicing (TDNS),en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202500119-
dc.rights.note未授權-
dc.date.accepted2025-01-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
6.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved