Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟zh_TW
dc.contributor.advisorGuo-Dung J. Suen
dc.contributor.author馮博暉zh_TW
dc.contributor.authorBo-Huei Fungen
dc.date.accessioned2025-02-19T16:33:36Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-15-
dc.identifier.citation[1] A. Arbabi and A. Faraon, "Advances in optical metalenses," Nat. Photonics, Review vol. 17, no. 1, pp. 16-25, Jan 2023, doi: 10.1038/s41566-022-01108-6.
[2] I. Moreno, "Optics of the metalens," Eur. J. Phys., Article vol. 43, no. 6, p. 11, Nov 2022, Art no. 065302, doi: 10.1088/1361-6404/ac93c8.
[3] N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, vol. 13, no. 2, pp. 139-150, 2014, doi: 10.1038/nmat3839.
[4] C. E. Gutierrez and A. Sabra, "Chromatic aberration in metalenses," Adv. Appl. Math., Article vol. 124, p. 26, Mar 2021, Art no. 102134, doi: 10.1016/j.aam.2020.102134.
[5] Z.-B. Fan et al., "A broadband achromatic metalens array for integral imaging in the visible," Light: Science & Applications, vol. 8, no. 1, p. 67, 2019, doi: 10.1038/s41377-019-0178-2.
[6] W. T. Chen et al., "A broadband achromatic metalens for focusing and imaging in the visible," Nature nanotechnology, vol. 13, no. 3, pp. 220-226, 2018, doi: 10.1038/s41565-017-0034-6.
[7] M. Khorasaninejad et al., "Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion," Nano Lett., Article vol. 17, no. 3, pp. 1819-1824, Mar 2017, doi: 10.1021/acs.nanolett.6b05137.
[8] M. Khorasaninejad et al., "Polarization-insensitive metalenses at visible wavelengths," Nano Lett., vol. 16, no. 11, pp. 7229-7234, 2016, doi: 10.1021/acs.nanolett.6b03626.
[9] M. Khorasaninejad, W. T. Chen, R. C. Devlin, et al., “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194, 2016, doi: 10.1126/science.aaf6644.
[10] Z. Liu, D. Wang, H. Gao, et al., “Metasurface-enabled augmented reality display: a review,” Adv. Photonics 5(03), 034001, 2023, doi: 10.1117/1.AP.5.3.034001.
[11] A. Arbabi, E. Arbabi, Y. Horie, et al., “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420, 2017, doi: 10.1038/nphoton.2017.96.
[12] R. Fu, Z. Li, G. Zheng, et al., “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27(9), 12221–12230, 2019, doi: 10.1364/OE.27.012221.
[13] C. Gennarelli, A. Capozzoli, L. J. Foged, et al., “Recent advances in near-field to far-field transformation techniques,” International Journal of Antennas and Propagation, 2012, doi: 10.1155/2012/243203.
[14] A. Arbabi, Y. Horie, A. J. Ball, et al., “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069, 2015, doi: 10.1038/ncomms8069.
[15] Xin Jin et al., "Eye-Tracking in AR/VR: A Technological Review and Future Directions," IEEE Open Journal on Immersive Displays, vol. 1, pp.146-154, 2024, doi: 10.1109/OJID.2024.3450657.
[16] C. S. Lin et al., "Polar Coordinate Mapping Method for An Improved Infrared Eye-Tracking System," Biomedical Engineering: Applications, Basis and Communications, vol. 17, no. 03, pp. 141-146, 2005, doi: 10.4015/S1016237205000226.
[17] H. Kitabayashi, et al., "Development of High Power Infrared LED," SEI Technical review, vol. 70, no.71, 2010.
[18] C.H. Morimoto et al., "Pupil detection and tracking using multiple light sources," ScienceDirect, vol. 18, no.4, pp. 331-335, Mar 2000, doi: 10.1016/S0262-8856(99)00053-0.
[19] C. Y. Fan, T. J. Chuang, K. H. Wu, and G. D. J. Su, "Electrically modulated varifocal metalens combined with twisted nematic liquid crystals," Opt. Express, Article vol. 28, no. 7, pp. 10609-10617, Mar 2020, doi: 10.1364/oe.386563.
[20] M. Altissimo, "E-beam lithography for micro-/nanofabrication," Biomicrofluidics, vol. 4, no. 2, p. 026503, 2010, doi: 10.1063/1.3437589.
[21] C. Vieu et al., "Electron beam lithography: resolution limits and applications," Applied surface science, vol. 164, no. 1-4, pp. 111-117, 2000, doi: 10.1016/S0169-4332(00)00352-4.
[22] J. Vac., "UV/ozone cleaning of surfaces," Vacuum Science & Technology A, vol. 3, no. 3, pp. 1027–1034, 1985.
[23] G. M. Wu et al., "InGaN/GaN multiple quantum wells with surface micro hole array structures," IEEE NANO, vol.7, pp.498-501, 2007, doi: 10.1109/NANO.2007.4601240.
[24] A.-S. Rollier et al., "High yield grafting of carbon nanotube on ultra-sharp silicon nanotips: Mechanical characterization and AFM imaging," IEEE MEMS, vol.20, p.878, 2007, doi: 10.1109/MEMSYS.2007.4433179.
[25] G. E. Mustoe, "Uranium Mineralization of Fossil Wood," Geosciences, vol.10, no.4, p.133., 2020, doi: 10.3390/geosciences10040133.
[26] S. Esmitt, "Gist: Pupil detection sample," GitHub. [Online]. Available: https://gist.github.com/esmitt/61edc8ed6ccbc7a7e857074299449990.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96567-
dc.description.abstract為了運用光的物理性質,傳統透鏡往往需要多種透鏡組合而成,因此受限於鏡片厚重的困擾,而超穎透鏡則可以解決此困境。
它是利用電腦進行計算及模擬,結合半導體製程技術,製作出一種具有次波長尺寸的微型結構,其本身非常微小,在現有的材料上進行表面的加工,透過產生特定線寬的奈米柱排列,以改變入射光的物理性質,進而達成聚焦的效果來偵測瞳孔。
在我本篇論文中,運用製程技術將非晶矽作為超穎透鏡的材料製作於玻璃基板上。首先我使用電子束光刻(正光阻)將圖案呈現在材料上,畫出所需奈米結構的圖案,緊接著蒸鍍一層鎳金屬作為蝕刻的遮擋層,再經過lift-off的步驟去除光阻與其上方金屬,並保留圖案,最後再使用,感應耦合式的電漿離子蝕刻出非晶矽的奈米柱。
我將製作於透明基板上的超穎透鏡結合現有的光學感測元件,將瞳孔的影像透過超穎透鏡聚焦於光學感光元件上,並利用公開平台上的瞳孔偵測軟體,進行瞳孔偵測,為超穎透鏡應用於瞳孔偵測取得了階段性的成功,未來期待能將成果運用於更多領域上。
zh_TW
dc.description.abstractTo regulate the physical properties of light, traditional lenses often require a combination of multiple lenses, resulting in bulkiness. However, metalens can overcome the limitations of conventional lenses.
They are created using computational capabilities and software for optical simulations, and finally fabricated with semiconductor processing techniques. These metalens are composed of sub-wavelength-sized microstructures. By fabricating specific patterns of nanostructures on the surface of existing materials, they can manipulate the physical properties of light, and achieve focusing effects, such as for pupil detection.
In this thesis, semiconductor fabrication techniques are employed to create metalenses consisting of amorphous silicon on a transparent glass substrate. First, I employed electron-beam lithography (positive resist) to define the necessary nanostructures on the material. Then, a thin layer of metal (nickel) was deposited as an etching protection layer, After the lift-off process, the resist and the metal will be removed, leaving only the pattern standing. Finally, inductively coupled plasma reactive ion etching (ICP-RIE) was used to etch.
I fabricated metalens on transparent substrate and integrated it with existing optical sensing components, focusing the pupil's image onto the optical sensor through the metalens. Using open-source pupil detection software, I successfully detected the pupil, achieving a milestone in applying metalenses for pupil detection. In the future, I look forward to extending these results to other fields and applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:33:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:33:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
FIGURES LIST viii
TABLES LIST xiii
Chapter 1 Introduction 1
1.1 Principle of Metalens 1
1.2 Metalens Design and Simulation 4
1.3 Eye Tracking 13
1.4 Comparing LED and Laser 16
1.5 Comparison between 940 nm LED and 850 nm LED. 18
1.6 Infrared Camera 20
1.7 Motivation 21
Chapter 2 Fabrication Technology 22
2.1 Cleaning 22
2.2 Lithography 24
2.2.1 Lithography step 24
2.2.2 Electron-Beam Lithography 28
2.3 Lift-off Process 31
2.4 Etching 33
2.4.1 Physical Etching 33
2.4.2 Chemical Etching 33
Chapter 3 Method of Experiment 35
3.1 Fabrication of Metalens 36
3.1.1 Fabrication Process 36
3.1.2 Equipment of Fabrication 38
3.2 Measurement setup 56
Chapter 4 Experiment Data and Results 63
4.1 Fabrication of Metalens 63
4.1.1 Substrate Cleaning 63
4.1.2 Photoresist pattern by Lithography 65
4.1.3 Etching Process with ICP-RIE and Wet Etching 72
4.2 Measurement and analysis of Metalens 78
4.3 Future Application 88
Chapter 5 Summary 90
REFERENCE 92
-
dc.language.isoen-
dc.subject光學量測zh_TW
dc.subject電子束顯影zh_TW
dc.subject非晶矽zh_TW
dc.subject超穎透鏡zh_TW
dc.subjectoptical measurementen
dc.subjectmetasurfaceen
dc.subjectsubwavelength interfaceen
dc.subjectamorphous siliconen
dc.subjectelectron-beam lithographyen
dc.title利用940nm超穎透鏡的瞳孔偵測zh_TW
dc.titlePupil Detection by Using 940nm Metalensen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林建中;丁建均zh_TW
dc.contributor.oralexamcommitteeChien-Chung Lin;Jian-Jiun Dingen
dc.subject.keyword超穎透鏡,非晶矽,電子束顯影,光學量測,zh_TW
dc.subject.keywordmetasurface,subwavelength interface,amorphous silicon,electron-beam lithography,optical measurement,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202404691-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2025-02-20-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf8.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved