Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘
dc.contributor.authorFang-Yu Liuen
dc.contributor.author劉芳宇zh_TW
dc.date.accessioned2021-05-20T20:33:48Z-
dc.date.available2013-08-05
dc.date.available2021-05-20T20:33:48Z-
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation1.Marr, R. and A. Kopp, Liquid Membrane Technology - a Survey of Phenomena, Mechanisms, and Models. International Chemical Engineering, 1982. 22(1): p. 44-60.
2. Kemperman, A.J.B., D. Bargeman, T. Vandenboomgaard and H. Starthmann, Stability of Supported Liquid Membrane: State of the Art. Separation Science and Technology, 1996. 31(20): p. 2733-2762.
3. Danesi, P.R., Separation of Metal Species by Supported Liquid Membranes. Separation Science and Technology, 1984. 19(11-12): p. 857-894.
4. Ho, W.S.W., B. Wang, T.E. Neumuller and J. Roller, Supported Liquid membranes for Removal and Recovery of Metals from Waste Waters and Process Streams. Environmental Progress, 2001. 20(2): p. 117-121.
5. Ho, W.S.W. and T.K. Poddar, New Membrane Technology for Removal and Recovery of Chromium from Waste Waters. Environmental Progress, 2001. 20(1):
p. 44-52.
6. Fabiani, C., M. Merigiola, G. Scibona and A.M. Castagnola, Degradation of
Supported Liquid Membranes under an Osmotic-Pressure Gradient. Journal of
Membrane Science, 1987. 30(1): p. 97-104.
7. Danesi, P.R., L. Reichleyyinger and P.G. Rickert, Lifetime of Supported Liquid
Membranes - the Influence of Interfacial Properties, Chemical Composition and
Water Transport on the Long-Term Stability of the Membranes. Journal of
Membrane Science, 1987. 31(2-3): p. 117-145.
8. Belfer, S. and S. Binman, Immobilized Extractants - Selective Transport of
Magnesium and Calcium from a Mixed Chloride Solution via a Hollow Fiber
Module. Journal of Applied Polymer Science, 1990. 40(11-12): p. 2073-2085.
9. Ritcey, G.M. and A.W. Ashbrook, Solvent Extraction - Principles and Applications
to Process Metallurgy - part 1. Elsevier Science Publishers B. V.,1984. Amsterdam.
10. Chiarizia, R., Application of Supported Liquid Membranes for Removal of Nitrate,
Technetium(VII) and Chromium-(VI) from Groundwater. Journal of Membrane
Science, 1991. 55(1-2): p. 39-64.
11. Yurtov, E.V. and N.M. Murashova, Gels, Emulsions, and Liquid Crystals in
Extraction Systems with Di(2-ethylhexyl) Phosphoric Acid. Theoretical
Foundations of Chemical Engineering, 2007. 41(5): p. 737-742.
12. Kertes, A.S. and C.J. King, Extraction Chemistry of Fermentation Product
Carboxylic-Acids. Biotechnology and Bioengineering, 1986. 28(2): p. 269-282.
13. King, C.J., Amine-Based Systems for Carboxylic-Acid Recovery. Chemtech, 1992.
22(5): p. 285-291.
14. Zhang, J. and Y.Y. Dai, Extraction Technique Based on Chemical Complexation
and Its Applications. Modern Chemical Industry, 2000. 20(2): p. 19-22.
15. Cao, Y.Q., W. Qin and Y.Y. Dai, Third-Phases Behavior in Extraction of Oxalic
Acid with Trioctylamine. Journal of Chemical Industry and Engineering, 2003.
54(5): p. 585-589.
16. Rousseau, R.W., Handbook of Separation Process Technology. John Wiley &
Sons,1987. New York.
17. 王樹楷, 銦冶金. 冶金工業出版社, 2007. 北京.
18. 戴猷元, 秦煒, 張瑾及單欣昌, 有機物絡合萃取技術. 化學工業出版社, 2007.
北京.
19. Rydberg, J., C. Musikas and G.R. Choppin, Principles and Practices of Solvent
Extraction. Marcel Dekker, Inc., 1992. New York.
20. Marcus, Y. and A.S. Kertes, Ion Exchange and Solvent Extraction of Metal
Complexes. John Wiley & Sons, 1969. Jerusalem.
21. Sato, T., H. Watanabe and H. Nakamura, Extraction of Lactic, Tartaric, Succinic,
and Citric Acids by Trioctylamine. Bunseki Kagaku, 1985. 34: p. 559-563.
22. Tamada, J.A. and C.J. King, Extraction of Carboxylic-Acids with Amine
Extractants -III- Effect of Temperature, Water Coextraction, and Process
Considerations. Industrial & Engineering Chemistry Research, 1990. 29(7): p.
1333-1338.
23. Akiba, K. and H. Freiser, The Role of the Solvent in Equilibrium and Kinetic
Aspects of Metal Chelate Extractions. Analytica Chimica Acta, 1982. 136: p.
329-337.
24. Muller, W. and R.M. Diamond, The Extraction of Hydrohalic Acids by
Trilaurylamine. Journal of Physical Chemistry, 1966. 70(11): p. 3469-3479.
25. Ferraro, J.R., Solvent Effects on the Infrared Spectra of Organophosphorus
Compounds. Applied Spectroscopy, 1963. 17(1): p. 12-14.
26. Healy, T.V., Synergism in the Solvent Extraction of Di-Valent, Tri Valent and
Tetravalent Metal Ions - Synergic Effects in So-Called Inert Diluents. Journal of
Inorganic & Nuclear Chemistry, 1961. 19(3-4): p. 328-339.
27. Marinova, M., J. Albet, J Molinier and G. Kyuchoukov, Specific Influence of the
Modifier (1-Decanol) on the Extraction of Tartaric Acid by Different Extractants.
Industrial & Engineering Chemistry Research, 2005. 44(17): p. 6534-6538.
28. Sasaki, Y., Z.X. Zhu, Y. Sugo, H. Suzuki and T. Kimura, Extraction Capacity of
Diglycolamide Derivatives for Ca(II), Nd(III) and Zr(IV) from Nitric Acid to
n-Dodecane Containing a Solvent Modifier. Analytical Sciences, 2005. 21(10): p.
1171-1175.
29. Huo, X.P., W. Qin, X.W. Sun and Y.Y. Dai, Recovery of Chromium(III) by Solvent
Extraction with D2EHPA. Journal of Chemical and Engineering of Chinese
University, 2007. 21(5): p. 849-852.
30. Porter, M.C., Handbook of Industrial Membrane Technology. Noyes Publications,
1988. New Jersey.
31. Shean, G.M. and K. Sollner, Carrier Mechanisms in Movement of Ions across
Porous and Liquid Ion Exchanger Membranes. Annals of the New York Academy
of Sciences, 1966. 137(A2): p. 759-776.
32. Baker, R.W., M.E. Tuttle, D.J. Kelly and H.K. Lonsdale, Coupled Transport
Membranes -1- Copper Separations. Journal of Membrane Science, 1977. 2: p.
213-233.
33. Li, N.N. and N.J. Somerset, Separating Hydrocarbons with Liquid Membranes.
United State Patent Office: 3410794, 1968.
34. Baker, R.W., Membrane Technology and Applications. John Wiley & Sons, 2004.
West Sussex.
35. Chiarizia, R., Stability of Supported Liquid Membranes Containing Long-Chain
Aliphatic-Amines as Carriers. Journal of Membrane Science, 1991. 55(1-2): p.
65-77.
36. Neplenbroek, A.M., D. Bargeman and C.A. Smolders, Mechanism of Supported
Liquid Membrane Degradation - Emulsion Formation. Journal of Membrane
Science, 1992. 67(2-3): p. 133-148.
37. Zha, F.F., A.G. Fane, C.J.D. Fell and R.W Schofield, Critical Displacement
Pressure of a Supported Liquid Membrane. Journal of Membrane Science, 1992.
75(1-2): p. 69-80.
38. Prasad, R. and K.K. Sirkar, Dispersion-Free Solvent-Extraction with Microporous
Hollow-Fiber Modules. Aiche Journal, 1988. 34(2): p. 177-188.
39. Dahuron, L. and E.L. Cussler, Protein Extractions with Hollow Fibers. Aiche
Journal, 1988. 34(1): p. 130-136.
40. Prasad, R. and K.K. Sirkar, Hollow Fiber Solvent-Extraction - Performances and
Design. Journal of Membrane Science, 1990. 50(2): p. 153-175.
41. Alexander, P.R. and R.W. Callahan, Liquid Liquid Extraction and Stripping of Gold
with Microporous Hollow Fibers. Journal of Membrane Science, 1987. 35(1): p.
57-71.
42. Teramoto, M., H. Matsuyama, T. Yamashiro and S. Okmoto, Separation of
Ethylene from Ethane by a Flowing Liquid Membrane Using Silver-Nitrate as a
Carrier. Journal of Membrane Science, 1989. 45(1-2): p. 115-136.
43. Sengupta, A., R. Basu and K.K. Sirkar, Separation of Solutes from Aqueous
Solution by Contained Liquid Membranes. Aiche Journal, 1988. 34(10): p.
1698-1708.
44. Raghuraman, B. and J. Wiencek, Extraction with Emulsion Liquid Membranes in a
Hollow-Fiber Contactor. Aiche Journal, 1993. 39(11): p. 1885-1889.
45. Hu, S.Y.B. and J.M. Wiencek, Emulsion-Liquid-Membrane Extraction of Copper
Using a Hollow-Fiber Contactor. Aiche Journal, 1998. 44(3): p. 570-581.
46. Baes, C.F., R.A. Zingaro and C.F. Coleman, The Extraction of Uranium(Vi) from
Acid Perchlorate Solutions by Di-(2-Ethylhexyl) Phosphoric Acid in
Normal-Hexane. Journal of Physical Chemistry, 1958. 62(2): p. 129-136.
47. Kumar, S. and G.L. Tulasi, Aggregation vs. Breakup of the Organic Phase Complex.
Hydrometallurgy, 2005. 78(1-2): p. 79-91.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9655-
dc.description.abstract具分散反萃取相之支撐式液膜( Supported Liquid Membrane with Strip Distribution)相較於傳統之支撐式液膜,其有機相不易流失,因此穩定性較佳,此外,也具備了操作簡便、反萃取效率高及可高度濃縮待萃物質……等優點。因此,本研究選用具分散反萃取相之支撐式液膜,利用中空纖維模組(hollow fiber module)來回收工業廢液中之銦離子並加以濃縮,以獲得銦之二次資源。在操作過程中,我們觀察到液膜會有不穩定現象,如第三相(第二種有機相)生成所造成的膜結垢現象。本研究將針對此不穩定現象進行評估,並尋求改進,期能使此液膜回收程序更具實用性。
本研究利用具分散反萃取相之支撐式液膜處理含高濃度(約5,000~10,000 ppm)銦離子之進料溶液。我們選用0.6 M 之酸性萃取劑-二(2-乙基己基)磷酸(D2EHPA)及2 vol%之修飾劑十二醇(dodecanol)溶於稀釋劑isopar-L 中作為有機相,並以5 M HCl 為反萃取溶液。在操作過程中,發現銦離子與萃取劑所形成之錯合物會因有機相中銦濃度達飽和而沈澱析出,造成支撐膜結垢及處理效率下降。此沈澱物為第二種有機相,因此又稱為第三相,生成的原因可能是D2EHPA萃取銦離子之速率大於In-D2EHPA 錯合物於支撐膜孔內之擴散速率,而造成錯合物累積於支撐膜內。故我們嘗試降低萃取劑的用量使萃取速率降低,並增加修飾劑dodecanol 的比例以提高錯合物的溶解度,以抑制第三相的生成。實驗結果顯示,當有機相含0.05 M D2EHPA 及10 vol% dodecanol 時,支撐膜的結垢現象有大幅的改善。
zh_TW
dc.description.abstractCompared to the traditional supported liquid membrane process, the supported liquid membrane with strip distribution(SLMSD)has less loss of organic phase during operation and also the advantages of easy operation, high stripping rate, and high concentration ratio of target species. In the present research, indium ion was recovered from industrial wastewater by the process of SLMSD with hollow fiber modules, to get the second resource of indium. During the process of recovery, we observed instability of supported liquid membrane, such as the water transfer caused by the osmotic pressure differences across the membrane and the membrane fouling caused by the third-phase formation. These phenomena affected the efficiency and stability of the recovery process. The main purpose of this research is to evaluate the stability of SLMSD, and to find ways to improve the stability, so as to make this process more practical in industry.
In this research, we recovered indium ion from the feed solution with higher indium concentration (about 5,000~10,000 ppm) by SLMSD. The organic phase contained D2EHPA as extractants, dodecanol as modifiers and isopar-L as diluents, and the strip solution was 5 M HCl aqueous solution. During the operation, we found that the concentration of In-D2EHPA complexes saturated in the organic solution and then deposited on the membrane to cause the membrane fouled and the recovery efficiency decreased. The deposits were the second organic phase, so they were also called the third phase. Because the extraction rate of indium from the feed solution was larger than the diffusion rate of In-D2EHPA complex in the organic phase, so the In-D2EHPA complexes accumulated and finally saturated in the organic phase inside the membrane pores. So we decreased the concentration of D2EHPA to lower the indium extraction rate, at the same time, we increased the concentration of dodecanol to raise the complex solubility in the organic phase. As the experimental result showed, when the organic phase contained 0.05 M D2EHPA and 10 vol% dodecanol in isopar-L, the condition of membrane fouling was inhibited a lot.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:33:48Z (GMT). No. of bitstreams: 1
ntu-97-R95524009-1.pdf: 7543292 bytes, checksum: 0bb4e636982c2e4e78f6cbd84c77a511 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents致謝..................................................... I
摘要....................................................III
Abstract .................................................V
目錄.....................................................VII
圖目錄.................. ................................IX
表目錄..................................................XIII
第一章 緒論...............................................1
第二章 文獻回顧...........................................5
2-1 液液萃取..............................................5
2-1-1 液液萃取的原理......................................5
2-1-2 物理萃取............................................7
2-1-3 化學萃取............................................8
2-1-3-1 稀釋劑............................................8
2-1-3-2 萃取劑...........................................10
2-1-3-3 修飾劑...........................................16
2-1-4 影響萃取平衡的條件.................................17
2-1-4-1 溫度的影響.......................................17
2-1-4-2 萃取劑濃度的影響.................................18
2-1-4-3 pH 值的影響......................................18
2-1-4-4 水相組成的影響...................................18
2-1-4-5 稀釋劑的影響.....................................18
2-1-4-6 修飾劑的影響.....................................19
2-2 液膜分離技術.........................................21
2-2-1 液膜的傳送機制及原理...............................22
2-2-1-1 簡單擴散傳送.....................................22
2-2-1-2 載體輔助傳送.....................................23
2-2-2 液膜之型式........................................ 27
2-2-2-1 非支撐式液膜.................................... 27
2-2-2-2 支撐式液膜...................................... 29
2-2-3 液膜的不穩定性.....................................31
2-2-3-1 膜相微溶於水相.................................. 31
2-2-3-2 劇烈攪拌或流動所引起的剪應力.....................31
2-2-3-3 液膜兩側的操作壓差...............................32
2-2-3-4 膜相或支撐體的性質改變...........................33
2-2-3-5 液膜兩側的滲透壓差...............................33
2-2-3-6 有機相或水相因反應而產生沈澱物.................. 33
2-2-4 液膜不穩定性的改善.................................34
第三章 實驗理論......................................... 39
3-1 萃取平衡............................................ 39
第四章 實驗方法......................................... 41
4-1 設備及儀器.......................................... 41
4-2 實驗藥品............................................ 43
4-3 實驗步驟............................................ 44
4-3-1 具分散反萃取相之支撐式液膜........................ 44
4-3-2 第三相所造成之膜結垢研究.......................... 46
第五章 結果與討論........................................47
5-1 第三相對支撐式液膜穩定性之影響...................... 47
5-1-1 第三相對支撐式液膜金屬離子回收程序之影響.......... 47
5-1-2 支撐式液膜操作條件對第三相生成之影響............. 52
5-1-2-1 溫度對第三相生成之影響.......................... 55
5-1-2-2 進料相組成對第三相生成之影響.................... 58
5-1-2-3 有機相組成對第三相生成之影響.....................64
5-1-2-4 膜材對第三相生成之影響.......................... 72
第六章  結論........................................... 81
參考文獻................................................ 83
dc.language.isozh-TW
dc.title具分散反萃取相支撐式液膜穩定性之評估zh_TW
dc.titleEvaluation of the Stability of Supported Liquid Membrane with Strip Dispersionen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴君義,劉英麟
dc.subject.keyword液膜,第三相,D2EHPA,銦,結垢,zh_TW
dc.subject.keywordLiquid membrane,third phase,D2EHPA,Indium,Fouling,en
dc.relation.page85
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf7.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved