請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96546
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃致展 | zh_TW |
dc.contributor.advisor | Jyh-Jaan Steven Huang | en |
dc.contributor.author | 吳妍希 | zh_TW |
dc.contributor.author | Yen-Hsi Wu | en |
dc.date.accessioned | 2025-02-19T16:27:34Z | - |
dc.date.available | 2025-02-20 | - |
dc.date.copyright | 2025-02-19 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-05 | - |
dc.identifier.citation | Allen, J. (1982). Sedimentary structures, their character and physical basis. Volume 2. Elsevier, Amsterdam.
Alsop, G. I., & Marco, S. (2012). Tsunami and seiche-triggered deformation within offshore sediments. Sedimentary Geology, 261, 90-107. Armitage, P. J., Worden, R. H., Faulkner, D. R., Aplin, A. C., Butcher, A. R., & Iliffe, J. (2010). Diagenetic and sedimentary controls on porosity in Lower Carboniferous fine-grained lithologies, Krechba field, Algeria: A petrological study of a caprock to a carbon capture site. Marine and Petroleum Geology, 27(7), 1395-1410. Ashley, G. M. (1978). Interpretation of polymodal sediments. The Journal of Geology, 86(4), 411-421. Avramidis, P., Nikolaou, K., & Bekiari, V. (2015). Total Organic Carbon and Total Nitrogen in Sediments and Soils: A Comparison of the Wet Oxidation – Titration Method with the Combustion-infrared Method. Agriculture and Agricultural Science Procedia, 4, 425-430. Avşar, U., Jónsson, S., Avşar, Ö., & Schmidt, S. (2016). Earthquake‐induced soft‐sediment deformations and seismically amplified erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey). Journal of Geophysical Research: Solid Earth, 121(6), 4767-4779. Barrett, J. F., & Keat, N. (2004). Artifacts in CT: recognition and avoidance. Radiographics, 24(6), 1679-1691. Behnsen, J. G., Black, K., Houghton, J. E., & Worden, R. H. (2023). A Review of Particle Size Analysis with X-ray CT. Materials (Basel), 16(3). Biguenet, M., Chaumillon, E., Sabatier, P., Paris, R., Vacher, P., & Feuillet, N. (2022). Discriminating between tsunamis and tropical cyclones in the sedimentary record using X-ray tomography. Marine Geology, 450. Boespflug, X., Long, B., & Occhietti, S. (1995). CAT-scan in marine stratigraphy: a quantitative approach. Marine Geology, 122(4), 281-301. Bondevik, S., Svendsen, J. I., & Mangerud, J. A. N. (2008). Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology, 44(6), 1115-1131. Breckenridge, J., Maravelis, A. G., Catuneanu, O., Ruming, K., Holmes, E., & Collins, W. J. (2019). Outcrop analysis and facies model of an Upper Permian tidally influenced fluvio-deltaic system: Northern Sydney Basin, SE Australia. Geological Magazine, 156(10), 1715-1741. Chachlioutaki, K., Iordanopoulou, A., Katsamenis, O. L., Tsitsos, A., Koltsakidis, S., Anastasiadou, P., Andreadis, D., Economou, V., Ritzoulis, C., Tzetzis, D., Bouropoulos, N., Xenikakis, I., & Fatouros, D. (2024). Tailored Sticky Solutions: 3D-Printed Miconazole Buccal Films for Pediatric Oral Candidiasis. AAPS PharmSciTech, 25(7), 190. Chen, J. (2013). Lithofacies classification: from sedimentologic analysis to 3d reservoir modelling. International Petroleum Technology Conference, Beijing, PRC. Chen, W.-S., Sung, S.-H., Wu, L.-Q., Shyu, J. B. H., & Yang, X.-Q. (2004). Coastal plain shoreline changes in Taiwan since the last glacial period. Bulletin of the Department of Anthropology, National Taiwan University, 62, 40–55. (in Chinese) Chen, W.-S. (2016). Introduction to the Geology of Taiwan. Geological Society of the Republic of China, 204 pages. (in Chinese) Chiang, C. S., Yu, H. S., & Chou, Y. W. (2004). Characteristics of the wedge‐top depozone of the southern Taiwan foreland basin system. Basin Research, 16(1), 65-78. Chun, S., & Chough, S. K. (1995). The Cretaceous Uhangri formation, SW Korea: lacustrine margin facies. Sedimentology, 42(2), 293-322. Chyi, S.-J., Shih, Y.-H., Yen, J.-Y., & Chen, J.-H. (2022). The hidden history of paleo-tsunami records in southwestern Taiwan—The Kato Harbor flooding event. Journal of Geographical Sciences, 101, 33–54. (in Chinese) Clifton, H. E., Hunter, R. E., & Phillips, R. L. (1971). Depositional structures and processes in the non-barred high-energy nearshore. Journal of sedimentary research, 41(3), 651-670. Cnudde, V., & Boone, M. N. (2013). High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, 1-17. Cnudde, V., Masschaele, B., Dierick, M., Vlassenbroeck, J., Van Hoorebeke, L., & Jacobs, P. (2006). Recent progress in X-ray CT as a geosciences tool. Applied geochemistry, 21(5), 826-832. Cornard, P. H., Degenhart, G., Tropper, P., Moernaut, J., & Strasser, M. (2023). Application of micro‐CT to resolve textural properties and assess primary sedimentary structures of deep‐marine sandstones. The Depositional Record. Curry, T. S. (1990). Christensen’s Physics of Diagnostic, Radiology. Lippincott Williams & Wilkins. Dalrymple, R. W., Zaitlin, B. A., & Boyd, R. (1992). Estuarine facies models; conceptual basis and stratigraphic implications. Journal of sedimentary research, 62(6), 1130-1146. Deprez, M. (2016). Multiscale micro-CT imaging on sediment cores: Unravelling the paleoflow directions in a megaturbidite (Lake Lucerne, Switzerland) (Unpublished master’s thesis). Ghent University, Belgium. Desjardins, P. R., Buatois, L. A., & Mangano, M. G. (2012). Tidal flats and subtidal sand bodies. Developments in Sedimentology, 64, 529-561. Devries Klein, G. (1971). A sedimentary model for determining paleotidal range. Geological Society of America Bulletin, 82(9), 2585-2592. Dewanckele, J., De Kock, T., Boone, M. A., Cnudde, V., Brabant, L., Boone, M. N., Fronteau, G., Van Hoorebeke, L., & Jacobs, P. (2012). 4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT. Sci Total Environ, 416, 436-448. Dott Jr, R., & Bourgeois, J. (1982). Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin, 93(8), 663-680. Driskill, B., Pickering, J., & Rowe, H. (2018, July). Interpretation of high resolution XRF data from the Bone Spring and Upper Wolfcamp, Delaware Basin, USA. SPE/AAPG/SEG Unconventional Resources Technology Conference (p. D023S047R003), URTeC. Duliu, O. G. (1999). Computer axial tomography in geosciences: an overview. Earth-Science Reviews, 48(4), 265-281. Eltijani, A., Molnar, D., & Geiger, J. (2024). Deciphering quaternary sediment dynamics: a synthesis of X-ray CT imaging and grain size endmember modeling. Journal of Sedimentary Environments, 1-10. Falvard, S., Paris, R., & Trofimovs, J. (2017). X‐ray tomography of tsunami deposits: Towards a new depositional model of tsunami deposits. Sedimentology, 64(2), 453-477. Flemming, B. W. (2011). Siliciclastic back-barrier tidal flats. Principles of tidal sedimentology, 231-267. Frey, R. W., & Basan, P. B. (1985). Coastal salt marshes. Coastal sedimentary environments, 225-301. Gaspar, B., Mrzilkova, J., Hozman, J., Zach, P., Lahutsina, A., Morozova, A., Guarnieri, G., & Riedlova, J. (2022). Micro-Computed Tomography Soft Tissue Biological Specimens Image Data Visualization. Applied Sciences, 12(10), 4918. Geiger, J., Hunyadfalvi, Z., & Bogner, P. (2009). Analysis of small-scale heterogeneity in clastic rocks by using computerized X-ray tomography (CT). Engineering Geology, 103(3-4), 112-118. Godinho, J. R. A., Vogel, H., Plümper, O., Schröer, L., Buyse, F., Cnudde, V., & Moonen, P. (2024). A protocol and graphical user interface to assist new users with the planning of X-ray computed tomography experiments. Tomography of Materials and Structures, 6, 100041. Grases, A., Gracia, V., García-León, M., Lin-Ye, J., & Sierra, J. P. (2020). Coastal flooding and erosion under a changing climate: implications at a low-lying coast (Ebro Delta). Water, 12(2), 346. He, Y., Guo, H., Lan, H., Ling, C., & Fu, M. (2022). The Effect of Single Sandstone Stacking Pattern on the Sandstone Reservoir Physical Properties—A Case Study from the Shanxi Formation in the Daniudi Area, Northeastern Ordos Basin. Energies, 15(13), 4740. Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of paleolimnology, 25, 101-110. Hounsfield, G. N. (1973). Computerized transverse axial scanning (tomography): Part 1. Description of system. The British journal of radiology, 46(552), 1016-1022. Hsiao, N. C., Wu, Y. M., Shin, T. C., Zhao, L., & Teng, T. L. (2009). Development of earthquake early warning system in Taiwan. Geophysical research letters, 36(5). Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., & Ma, K.-W. (2006). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology Journal, 15(5), 903-913. Huang, J.-J. S., Wei, K.-Y., Löwemark, L., Song, S.-R., Chuang, C.-K., Yang, T.-N., Lee, M.-Y., Chen, Y.-B., Horng, C.-S., Chen, K.-H., & Lee, T.-Q. (2019). What caused the cultural hiatus in the Iron-Age Kiwulan Site, northeastern Taiwan? Quaternary International, 514, 186-194. Hussain, M., Liu, S., Ashraf, U., Ali, M., Hussain, W., Ali, N., & Anees, A. (2022). Application of Machine Learning for Lithofacies Prediction and Cluster Analysis Approach to Identify Rock Type. Energies, 15(12), 4501. Johns, R. A., Steude, J. S., Castanier, L. M., & Roberts, P. V. (1993). Nondestructive measurements of fracture aperture in crystalline rock cores using X ray computed tomography. Journal of Geophysical Research: Solid Earth, 98(B2), 1889-1900. Kao, H., Shen, S. S. J., & Ma, K. F. (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc‐Taiwan region. Journal of Geophysical Research: Solid Earth, 103(B4), 7211-7229. Ketcham, R. A., & Carlson, W. D. (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 27(4), 381-400. Kortekaas, S., & Dawson, A. G. (2007). Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sedimentary Geology, 200(3-4), 208-221. Lee, A.-S., Enters, D., Titschack, J., & Zolitschka, B. (2021). Facies characterisation of sediments from the East Frisian Wadden Sea (Germany): new insights from down-core scanning techniques. Netherlands Journal of Geosciences, 100. Li, L., Switzer, A. D., Wang, Y., Weiss, R., Qiu, Q., Chan, C.-H., & Tapponnier, P. (2015). What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast? Geophysical Research Letters, 42(20), 8498-8506. Lin, G.-W. (2010). Relationships between Sediment Delivery, Rock Properties, Runoff, and Earthquake around the Catchments of Taiwan (Doctoral dissertation, National Taiwan University). National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/xn2ur9 (in Chinese) Lo, Y.-C. (2010). The Core Analysis of Quaternary Sediments in the Pingtung Plain, SW Taiwan (Master’s thesis, National Taiwan Normal University), National Digital Library of Theses and Dissertations in Taiwan. (in Chinese) Lu, Y., Wetzler, N., Waldmann, N., Agnon, A., Biasi, G. P., & Marco, S. (2020). A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary. Sci Adv, 6(48). Martini, M., Francus, P., Di Schiavi Trotta, L., Letellier, P., Des Roches, M., & Després, P. (2024). Exploring the application of dual‐energy CT to discriminate sediment facies in a varved sequence. The Depositional Record, 10(1), 231-244. May, S. M., Falvard, S., Norpoth, M., Pint, A., Brill, D., Engel, M., Scheffers, A., Dierick, M., Paris, R., Squire, P., & Brückner, H. (2016). A mid-Holocene candidate tsunami deposit from the NW Cape (Western Australia). Sedimentary Geology, 332, 40-50. Mees, F., Swennen, R., Geet, M. V., & Jacobs, P. (2003). Applications of X-ray computed tomography in the geosciences. Geological Society, London, Special Publications, 215(1), 1-6. Megawati, K., Shaw, F., Sieh, K., Huang, Z., Wu, T.-R., Lin, Y., Tan, S. K., & Pan, T.-C. (2009). Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami. Journal of Asian Earth Sciences, 36(1), 13-20. Mena, A., Francés, G., Pérez-Arlucea, M., Aguiar, P., Barreiro-Vázquez, J. D., Iglesias, A., & Barreiro-Lois, A. (2015). A novel sedimentological method based on CT-scanning: Use for tomographic characterization of the Galicia Interior Basin. Sedimentary Geology, 321, 123-138. Miall, A. D. (2022). Facies Analysis. In Stratigraphy: A Modern Synthesis (pp. 91-174). Michael, G. (2001). X-ray computed tomography. Physics Education, 36(6), 442. Middleton, G. V. (1973). Johannes Walther's law of the correlation of facies. Geological Society of America Bulletin, 84(3), 979-988. Mills, P. C. (1983). Genesis and diagnostic value of soft-sediment deformation structures—a review. Sedimentary Geology, 35(2), 83-104. Molenaar, A., Van Daele, M., Vandorpe, T., Degenhart, G., De Batist, M., Urrutia, R., Pino, M., Strasser, M., & Moernaut, J. (2021). What controls the remobilization and deformation of surficial sediment by seismic shaking? Linking lacustrine slope stratigraphy to great earthquakes in South-Central Chile. Sedimentology, 68(6), 2365-2396. Morales, J. A. (2022). Coastal geology. Springer Nature. Morton, R. A., Gelfenbaum, G., & Jaffe, B. E. (2007). Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology, 200(3-4), 184-207. Olierook, H. K. H., Delle Piane, C., Timms, N. E., Esteban, L., Rezaee, R., Mory, A. J., & Hancock, L. (2014). Facies-based rock properties characterization for CO2 sequestration: GSWA Harvey 1 well, Western Australia. Marine and Petroleum Geology, 50, 83-102. Owen, G., & Moretti, M. (2011). Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, 235(3-4), 141-147. Paris, R., Falvard, S., Chagué, C., Goff, J., Etienne, S., Doumalin, P., & Costa, P. (2020). Sedimentary fabric characterized by X‐ray tomography: A case‐study from tsunami deposits on the Marquesas Islands, French Polynesia. Sedimentology, 67(3), 1207-1229. Poppe, L. J., Eliason, A. H., Fredericks, J. J., Rendigs, R. R., Blackwood, D., & Polloni, C. F. (2013). US Geological Survey Open-File Report 00-358: Chapter L: Grain-Size Analysis of Marine Sediments: Methodology and Data Processing. Reading, H.G., 1996, Sedimentary Environments: Processes, Facies and Stratigraphy, 3nd Edition: Blackwell Science Ltd., Oxford, 688 pp. Reilly, B. T., Stoner, J. S., & Wiest, J. (2017). SedCT: MATLAB™ tools for standardized and quantitative processing of sediment core computed tomography (CT) data collected using a medical CT scanner. Geochemistry, Geophysics, Geosystems, 18(8), 3231-3240. Reineck, H. E., & Wunderlich, F. (1968). Classification and origin of flaser and lenticular bedding. Sedimentology, 11(1‐2), 99-104. Reineck, H.E., & Singh, I.B. (1980). Depositional Sedimentary Environments, 2nd Edition: Springer-Verlag, Berlin, 549 pp. Román‐Sierra, J., Muñoz‐perez, J. j., Navarro‐Pons, M., & Lancaster, N. (2013). Influence of sieving time on the efficiency and accuracy of grain‐size analysis of beach and dune sands. Sedimentology, 60(6), 1484-1497. Rothwell, R. G., & Croudace, I. w. (2015). Twenty Years of XRF Core Scanning Marine Sediments: What Do Geochemical Proxies Tell Us? In Micro-XRF Studies of Sediment Cores (pp. 25-102). Rothwell, R. G., & Rack, F. R. (2006). New techniques in sediment core analysis: an introduction. Geological Society, London, Special Publications, 267(1), 1-29. Sabatier, P., Moernaut, J., Bertrand, S., Van Daele, M., Kremer, K., Chaumillon, E., & Arnaud, F. (2022). A review of event deposits in lake sediments. Quaternary, 5(3), 34. Sheen, S.-W. (2011). Analysis of stream discharge and suspended load in Taiwan. Journal of Agricultural Association of Taiwan, 12(5), 430–456. Siddiqui, S., & Khamees, A. A. (2004). Dual-energy CT-scanning applications in rock characterization. SPE Annual Technical Conference and Exhibition?, Sugawara, D., Minoura, K., & Imamura, F. (2008). Tsunamis and Tsunami Sedimentology. In Tsunamiites (pp. 9-49). Tanaka, A., Nakano, T., & Ikehara, K. (2011). X-ray computerized tomography analysis and density estimation using a sediment core from the Challenger Mound area in the Porcupine Seabight, off Western Ireland. Earth, Planets and Space, 63(2), 103-110. Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952. Thomas, R. G., Smith, D. G., Wood, J. M., Visser, J., Calverley-Range, E. A., & Koster, E. H. (1987). Inclined heterolithic stratification—terminology, description, interpretation and significance. Sedimentary Geology, 53(1-2), 123-179. Tonai, S., Kubo, Y., Tsang, M.-Y., Bowden, S., Ide, K., Hirose, T., Kamiya, N., Yamamoto, Y., Yang, K., Yamada, Y., Morono, Y., Heuer, V. B., & Inagaki, F. (2019). A New Method for Quality Control of Geological Cores by X-Ray Computed Tomography: Application in IODP Expedition 370. Frontiers in Earth Science, 7. Tuttle, M. P., Ruffman, A., Anderson, T., & Jeter, H. (2004). Distinguishing tsunami from storm deposits in eastern North America: the 1929 Grand Banks tsunami versus the 1991 Halloween storm. Seismological Research Letters, 75(1), 117-131. Van Daele, M., Cnudde, V., Duyck, P., Pino, M., Urrutia, R., De Batist, M., & Trofimovs, J. (2014). Multidirectional, synchronously‐triggered seismo‐turbidites and debrites revealed by X‐ray computed tomography (CT). Sedimentology, 61(4), 861-880. Vandorpe, T., Collart, T., Cnudde, V., Lebreiro, S., Hernández-Molina, F. J., Alonso, B., ... & Van Rooij, D. (2019). Quantitative characterisation of contourite deposits using medical CT. Marine Geology, 417, 106003. Visher, G. S. (1965). Use of vertical profile in environmental reconstruction. AAPG Bulletin, 49(1), 41-61. Walker, R. G., & James, N. P. (1992). Facies models-response to sea level change: Geological Association of Canada. Geotext, 1, 409. Wellington, S. L., & Vinegar, H. J. (1987). X-ray computerized tomography. Journal of petroleum technology, 39(08), 885-898. Yan, Y. T., Chua, S., DeCarlo, T. M., Kempf, P., Morgan, K. M., & Switzer, A. D. (2021). Core-CT: A MATLAB application for the quantitative analysis of sediment and coral cores from X-ray computed tomography (CT). Computers & Geosciences, 156. Zonta, R., Cassin, D., Pini, R., & Dominik, J. (2019). Assessment of heavy metal and As contamination in the surface sediments of Po delta lagoons (Italy). Estuarine, Coastal and Shelf Science, 225, 106235. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96546 | - |
dc.description.abstract | 岩相是指具有特定沉積特徵的沉積單元,其沉積構造或是粒徑分佈等特徵對於了解其沉積過程與重建沉積環境至關重要。然而,傳統方法如視覺岩心描述和粒徑分析雖廣泛應用,但往往受限於對內部結構的有限觀察、離散的採樣間隔,以及可能的主觀判斷等因素的影響。X光電腦斷層掃描為一廣泛應用、非破壞性且高解析度的造影技術,可提供三維視覺化和影像定量分析。本研究以台灣西南部大鵬灣地區的兩根岩心為研究對象,旨在評估X光電腦斷層掃描技術在量化沉積特徵和輔助岩相辨識中的應用潛力,同時探討其作為一種標準化分析工具的可行性。方法除了利用影像觀察岩心中肉眼不易辨識如泥幔層等的沉積特徵,並透過影像衍生參數包括關注物質 (ROI) 的比例、型態資訊、平均衰減強度及衰減強度變異係數,以將定性資訊轉化為量化資料。研究結果將上述參數組合且分類出14種以電腦斷層為基礎的岩相,並進一步歸納為三大沉積相—潟湖相、河道相與潮坪相,反映了研究區域沉積環境的整體變化,並對岩相特別是粗顆粒類別的形成機制中提供了額外見解。本研究透過X光電腦斷層影像的定性觀察與量化分析,將微觀結構與宏觀沉積變化結合,提出了一種基於電腦斷層的輔助岩相辨識方法。此外,該方法具備系統性檢視多岩心細節沉積特徵的潛力,能有效應用於事件層的辨識與對比。同時,其在揭示沉積系統演化的能力,也可望為儲集層評估與資源管理策略提供了可靠的參考基礎。 | zh_TW |
dc.description.abstract | Lithofacies, characterized by specific lithological features like grain size and sedimentary structures, are crucial for a detailed understanding of their hydrodynamic processes and reconstructing paleo-environments. However, conventional approaches like visual core description and grain size analysis could face some limitations, including restricted observation of internal structures, discrete sampling intervals, and the susceptibility to observer bias, which may impede the accurate identification of lithofacies. X-ray Computed Tomography (CT), a non-destructive, high-resolution imaging technique, offers a widely applicable approach for three-dimensional visualization and quantitative analysis. This study explores the feasibility of using CT as a supplementary and standardized tool for the characterization of sedimentary features to support lithofacies identification based on two sediment cores from the Dapeng Bay region in southwestern Taiwan. In addition to qualitative ability to reveal imperceptible features such as mud drapes, CT-derived parameters—including ratios of regions of interest (ROI), morphological parameters (Th), mean CT intensity, and the coefficient of variation (CV) of CT intensity—were systematically employed to transform qualitative observations into quantitative data. By integrating these parameters, fourteen CT-based lithofacies were identified, which were further grouped into three CT-derived sedimentary facies—lagoon, channel, and tidal flat. This CT-based classification reflects the general environmental changes in the study area, with additional perspectives on the formation mechanisms of the CT-based lithofacies, especially for the coarse-grained category. By integrating qualitative CT imaging with quantitative parameterization, this study demonstrates CT serves as a complementary tool in lithofacies identification that bridges micro-scale observations and macro-scale variation. The ability of CT to apply consistent standards across spatially extensive cores and detailed sedimentary structures suggests its potential to support the identification and correlation of event deposits characterized by distinct sedimentary features over broad regions. Furthermore, the capability of CT in contributing to elucidating the sedimentary system evolution across spatial and temporal scales, also showing promises in reservoir evaluation and resource management strategies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:27:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-19T16:27:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 I
誌謝 II 中文摘要 III Abstract IV List of Figures IX List of Tables XII 1. Introduction 1 2. Literature review 5 2.1 Fundamental lithofacies and their applications 5 2.2 Conventional lithofacies analyses 8 3. X-ray Computed Tomography 11 3.1 Introduction 11 3.2 Fundamentals of X-ray CT 12 3.2.1 Interaction and attenuation of X-ray with matter 12 3.2.2 Basic Components of CT 13 3.2.3 Reconstruction and artifacts 16 3.3 X-ray CT applications in core research 22 4. Geological background, materials, and methods 24 4.1 Study area 24 4.1.1 Geological background 24 4.1.2 Natural hazard and event deposit 27 4.2 Materials 28 4.3 X-ray CT procedure 31 4.3.1 CT acquisition 32 4.3.2 CT reconstruction and data quality control 34 4.3.3 CT data visualization 39 4.3.4 CT data analysis: ORS Dragonfly software 41 4.4 Grain-size analysis 50 4.5 Lithofacies analysis 52 5. Result 54 5.1 Qualitative visual-lithological description 54 5.1.1 core section CT_00-01 55 5.1.2 core section CT_01-02 57 5.1.3 core section CT_02-03 59 5.1.4 core section CT_03-04 61 5.1.5 core section CT_04-05 63 5.1.6 core section KY_02-03 65 5.1.7 core section KY_03-04 67 5.1.8 core section KY_04-05 69 5.2 Quantitative analysis by CT-derived parameters and grain size 71 5.2.1 core section CT_00-01 72 5.2.2 core section CT_01-02 75 5.2.3 core section CT_02-03 78 5.2.4 core section CT_03-04 81 5.2.5 core section CT_04-05 83 5.2.6 core section KY_02-03 86 5.2.7 core section KY_03-04 89 5.2.8 core section KY_04-05 92 6. Discussion 94 6.1 Evaluation of X-ray CT in sediment cores 94 6.1.1 Feasibility of CT-based qualitative inspection 94 6.1.2 Fundamental controls on CT intensity 98 6.1.3 Representations of CT-derived parameters 105 6.1.4 Relationships between grain size and CT-derived parameters 117 6.1.5 Advantages 124 6.1.6 Limitations 125 6.2 Combination of CT in lithofacies and sedimentary facies analysis 127 6.2.1 CT-based lithofacies identification 127 6.2.2 CT-derived sedimentary facies interpretation 139 6.2.3 Depositional environment 146 6.3 How X-ray CT assists in sedimentary research 150 6.3.1 Usefulness of CT in lithofacies analysis 150 6.3.2 Future perspectives on CT analytical approaches for enhancing lithofacies identification 151 6.3.3 Potential applications of CT-based lithofacies analysis 154 7. Conclusion 156 References 159 Appendix 174 | - |
dc.language.iso | en | - |
dc.title | 以X光電腦斷層掃描進行岩相辨識 | zh_TW |
dc.title | Lithofacies Identification Using X-ray Computed Tomography | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 顏君毅;游能悌;齊士崢;蘇志杰 | zh_TW |
dc.contributor.oralexamcommittee | Jiun-Yee Yen;Neng-Ti Yu;Shyh-Jeng Chyi;Chih-Chieh Su | en |
dc.subject.keyword | X光電腦斷層掃描,岩相辨識,岩心分析,事件層,沉積環境重建, | zh_TW |
dc.subject.keyword | X-ray computed tomography,Lithofacies identification,Core analysis,Event deposit,Reconstruction of sedimentary environment, | en |
dc.relation.page | 176 | - |
dc.identifier.doi | 10.6342/NTU202500442 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-06 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2028-02-07 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 此日期後於網路公開 2028-02-07 | 8.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。