Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96535
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃定洧zh_TW
dc.contributor.advisorDing-Wei Huangen
dc.contributor.author黃頎zh_TW
dc.contributor.authorChi Huangen
dc.date.accessioned2025-02-19T16:24:24Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-02-03-
dc.identifier.citationR. Soref, “Silicon-based optoelectronics,” Proceedings of the IEEE, vol. 81, no. 12, pp. 1687–1706, Dec. 1993, doi: 10.1109/5.248958.
K. Okamoto, “Planar Optical Waveguides, Coupled Mode Theory,” in Fundamentals of Optical Waveguides. Academic Press, 2006, ch. 2,4. ISBN 978-0-12-525096-2, doi: 10.1016/B978-0-12-525096-2.X5000-4.
R. Halir et al., “Waveguide sub-wavelength structures: a review of principles and applications,” Laser & Photonics Reviews, vol. 9, no. 1, pp. 25–49, Sep. 2014, doi: https://doi.org/10.1002/lpor.201400083.
L. Inc., “MODE – Finite Difference Eigenmode (FDE) solver introduction.” [Online]. Available: https://optics.ansys.com/hc/en-us/articles/360034917233-MODE-Finite-Difference-Eigenmode-FDE-solver-introduction (Accessed Apr. 2024).
L. Inc., “Finite Difference Time Domain (FDTD) solver introduction.” [Online]. Available: https://optics.ansys.com/hc/en-us/articles/360034914633-Finite-Difference-Time-Domain-FDTD-solver-introduction (Accessed Apr. 2024).
L. Inc., “MODE - 2.5D varFDTD solver introduction.” [Online]. Available: https://optics.ansys.com/hc/en-us/articles/360034917213-MODE-2-5D-varFDTD-solver-introduction (Accessed Apr. 2024).
Z. Lu et al., “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express, vol. 23, no. 3, pp. 3795–3808, Feb.2015, doi: 10.1364/OE.23.003795.
Y. Wang et al., “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–8, Jun. 2016, doi: 10.1109/JPHOT.2016.2574335.
C. Ye and D. Dai, “Ultra-compact broadband 2 × 2 3 db power splitter using a subwavelength-grating-assisted asymmetric directional coupler,” Journal of Lightwave Technology, vol. 38, no. 8, pp. 2370–2375, Apr. 2020, doi: 10.1109/JLT.2020.2973663.
H. Yun et al., “Broadband 2 × 2 adiabatic 3 db coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett., vol. 41, no. 13, pp. 3041–3044, Jul. 2016, doi: 10.1364/OL.41.003041.
H. Subbaraman et al., “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express, vol. 23, no. 3, pp. 2487–2511, Feb. 2015, doi: 10.1364/OE.23.002487.
N. Margalit et al., “Perspective on the future of silicon photonics and electronics,” Applied Physics Letters, vol. 118, no. 22, p. 220501, May. 2021, doi: 10.1063/5.0050117.
K.-i. Sato, “Design and performance of large port count optical switches for intra data centre application,” in 2020 22nd International Conference on Transparent Optical Networks (ICTON), 2020, pp. 1–4, doi: 10.1109/ICTON51198.2020.9203276.
P. Kaushik et al., “Fibre optic communication in 21st century,” in 2020 International Conference on Intelligent Engineering and Management (ICIEM), 2020, pp. 125–129, doi: 10.1109/ICIEM48762.2020.9160141.
C. Kachris and I. Tomkos, “Optical interconnection networks for data centers,” in 2013 17th International Conference on Optical Networking Design and Modeling (ONDM), 2013, pp. 19–22.
M. Shahbaz et al., “Breakthrough in silicon photonics technology in telecommunications, biosensing, and gas sensing,” Micromachines, vol. 14, no. 8, Aug. 2023, doi: 10.3390/mi14081637.
K. Yamada et al., “High-performance silicon photonics technology for telecommunications applications,” Science and Technology of Advanced Materials, vol. 15, no. 2, p. 024603, Apr. 2014, doi: 10.1088/1468-6996/15/2/024603.
B. Jalali and S. Fathpour, “Silicon photonics,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4600–4615, Dec 2006, doi: 10.1109/JLT.2006.885782.
B. Weiss et al., “Optical waveguides in simox structures,” IEEE Photonics Technology Letters, vol. 3, no. 1, pp. 19–21, Jan. 1991, doi: 10.1109/68.68035.
S. Cristoloveanu, “Introduction to silicon on insulator materials and devices,” Microelectronic Engineering, vol. 39, no. 1, pp. 145–154, Dec. 1997, proceedings of the First Session ”Low-Power, Low-Voltage Integrated Circuits: Technology and Design”. doi: https://doi.org/10.1016/S0167-9317(97)00172-X.
B. W. C. L. e. a. Shekhar, S., “Roadmapping the next generation of silicon photonics,”Nature Communications, vol. 15, no. 751, Jan. 2024, doi: https://doi.org/10.1038/s41467-024-44750-0.
K. Petersen, “Silicon as a mechanical material,” Proceedings of the IEEE, vol. 70, no. 5, pp. 420–457, 1982, doi: 10.1109/PROC.1982.12331.
R. Soref, “The past, present, and future of silicon photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1678–1687, 2006,doi: 10.1109/JSTQE.2006.883151.
T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol., vol. 23, no. 9, p. 2719, Sep. 2005.
C. W. Tee et al., “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 1, pp. 108–116, Feb. 2006, doi: 10.1109/JSTQE.2005.862947.
T. Chu et al., “Compact 1 × n thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express, vol. 13, no. 25, pp. 10 109–10 114, Dec. 2005, doi: 10.1364/OPEX.13.010109.
D. J. Thomson et al., “Low Loss MMI Couplers for High Performance MZI Modulators,” IEEE Photonics Technology Letters, vol. 22, no. 20, pp. 1485–1487, Oct. 2010, doi: 10.1109/LPT.2010.2063018.
Z. Y. Ciou et al., “Beyond 60-gbit/s modulation of impedance mismatched silicon mzi modulator,” in 2021 IEEE 17th International Conference on Group IV Photonics (GFP), 2021, pp. 1–2, doi: 10.1109/GFP51802.2021.9673846.
G. F. R. Chen et al., “On-chip 1 by 8 coarse wavelength division multiplexer and multi-wavelength source on ultra-silicon-rich nitride,” Opt. Express, vol. 27, no. 16, pp. 23 549–23 557, Aug. 2019, doi: 10.1364/OE.27.023549.
K.-F. Chung et al., “Ultra-low crosstalk and fabrication-tolerant silicon-nitride o-band (de)multiplexer using bragg grating-assisted contra-directional coupler,” IEEE Photonics Journal, vol. 15, no. 1, pp. 1–9, Sep. 2023, doi: 10.1109/JPHOT.2022.3209169.
C. V. Poulton et al., “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett., vol. 42, no. 20, pp. 4091–4094, Oct. 2017, doi: 10.1364/OL.42.004091.
C.-W. Chow et al., “Actively controllable beam steering optical wireless communication (owc) using integrated optical phased array (opa),” Journal of Lightwave Technology, vol. 41, no. 4, pp. 1122–1128, Feb. 2023, doi: 10.1109/JLT.2022.3206843.
Q. Deng et al., “Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference,” Opt. Lett., vol. 39, no. 19, pp. 5590–5593, Oct. 2014, doi: 10.1364/OL.39.005590.
S.-Y. Tseng et al., “Variable splitting ratio 2×2 mmi couplers using multimode waveguide holograms,” Opt. Express, vol. 15, no. 14, pp. 9015–9021, Jul. 2007, doi: 10.1364/OE.15.009015.
G. F. R. Chen et al., “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Nature Scientific Reports, vol. 7, p. 7246, Aug. 2017, doi: 10.1038/s41598-017-07618-6.
X. Liu et al., “Particle swarm optimized compact, low loss 3-db power splitter enabled by silicon columns in silicon-on-insulator,” Photonics, vol. 10, no. 4, Apr. 2023, doi: 10.3390/photonics10040419.
Y. Zhang et al., “A compact and low loss y-junction for submicron silicon waveguide,” Opt. Express, vol. 21, no. 1, pp. 1310–1316, Jan. 2013, doi: 10.1364/OE.21.001310.
J. Wang et al., “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric y-junction,” Opt. Express, vol. 22, no. 11, pp. 13 565–13 571, Jun. 2014, doi: 10.1364/OE.22.013565.
L. Xu et al., “Compact high-performance adiabatic 3-db coupler enabled by subwavelength grating slot in the silicon-on-insulator platform,” Opt. Express, vol. 26, no. 23, pp. 29 873–29 885, Nov. 2018, doi: 10.1364/OE.26.029873.
H. Yun et al., “Ultra-broadband 2 × 2 adiabatic 3 db coupler using subwavelength-grating-assisted silicon-on-insulator strip waveguides,” Opt. Lett., vol. 43, no. 8, pp. 1935–1938, Apr. 2018, doi: 10.1364/OL.43.001935.
H. Nikbakht et al., “Asymmetric, non-uniform 3-db directional coupler with 300-nm bandwidth and a small footprint,” Opt. Lett., vol. 48, no. 2, pp. 207–210, Jan. 2023, doi: 10.1364/OL.476537.
H. Xie et al., “Ultra-compact subwavelength-grating-assisted polarization-independent directional coupler,” IEEE Photonics Technology Letters, vol. 31, no. 18, pp. 1538–1541, Sep. 2019, doi: 10.1109/LPT.2019.2937890.
L. Liu et al., “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett., vol. 41, no. 7, pp. 1648–1651, Apr. 2016, doi: 10.1364/OL.41.001648.
Y. Chen and J. Xiao, “Compact silicon-based polarization-independent directional coupler using subwavelength gratings,” Appl. Opt., vol. 58, no. 27, pp. 7430–7435, Sep. 2019, doi: 10.1364/AO.58.007430.
H. Xu and Y. Shi, “Ultra-compact polarization-independent directional couplers utilizing a subwavelength structure,” Opt. Lett., vol. 42, no. 24, pp. 5202–5205, Dec. 2017, doi: 10.1364/OL.42.005202.
S. L. Chuang, “Basic Semiconductor Electronics, Optical Waveguide Theory, Coupled-Mode Theory ,” in Physics of Photonic Devices, 2nd ed. Wiley Publishing, 2009, ch. 2,7,8. ISBN 978-0-470-29319-5 doi: 10.5555/1507539.
D. Cheng, “Time-Varying Fields and Maxwell’s Equations, Plane Electromagnetic Wave,” in Field and Wave Electromagnetics, ser. Addison-Wesley series in electrical engineering. Addison-Wesley, 1989, ch. 7,8. ISBN 9780201528206
A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. 9, no. 9, pp. 919–933, 1973, doi: 10.1109/JQE.1973.1077767.
W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A, vol. 11, no. 3, pp. 963–983, Mar. 1994, doi: 10.1364/JOSAA.11.000963.
J. H. S. H. A. A. D. R. S. Pavel Cheben, Robert Halir, “Subwavelength integrated photonics,” Nature, vol. 560, pp. 565–572, Aug. 2018, doi: https://doi.org/10.1038/s41586-018-0421-7.
H. X. Y. T. Y. S. D. D. Chenlei Li, Ming Zhang, “Subwavelength silicon photonics for on-chip mode-manipulation,” PhotoniX, vol. 2, no. 11, Jul. 2021, doi: https://doi.org/10.1186/s43074-021-00032-2.
N. Kazanskiy et al., “Silicon photonic devices realized on refractive index engineered subwavelength grating waveguides-a review,” Optics Laser Technology, vol. 138, p. 106863, Jan. 2021, doi: https://doi.org/10.1016/j.optlastec.2020.106863.
S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP, vol. 2, no. 3, pp. 466–475, May. 1956. [Online]. Available: http://www.jetp.ras.ru/cgi-bin/dn/e_002_03_0466.pdf
R. Kashyap, “Theory of Fiber Bragg Gratings,” in Fiber Bragg Gratings, 2nd ed., R. Kashyap, Ed. Academic Press, 2010, ch. 4, pp. 119–187. ISBN 978-0-12-372579-0 doi: 10.1016/B978-0-12-372579-0.00004-1.
K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, May. 1966, doi: 10.1109/TAP.1966.1138693.
A. Taflove et al., “Computational electromagnetics: the finite-difference time-domain method,” The Electrical Engineering Handbook, vol. 3, pp. 629–670, 2005.
J. V. Roey et al., “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am., vol. 71, no. 7, pp. 803–810, Jul. 1981, doi: 10.1364/JOSA.71.000803.
T. P. F. Dominic F.G. Gallagher, “Eigenmode expansion methods for simulation of optical propagation in photonics - pros and cons,” SPIE, vol. 4987, 2003. [Online]. Available: https://www.photond.com/
I. O. Hammer, M., “Effective index approximations of photonic crystal slabs: a 2-to-1-d assessment,” Opt Quant Electron, vol. 41, no. 4, Dec. 2009, doi: 10.1007/s11082-009-9349-3.
J. Pond et al., “Design and optimization of photolithography friendly photonic components,” in Smart Photonic and Optoelectronic Integrated Circuits XVIII, S. He et al., Eds., vol. 9751, International Society for Optics and Photonics. SPIE, Mar. 2016, p. 97510V, doi: 10.1117/12.2211968.
W. Bogaerts et al., “Silicon microring resonators,” Laser & Photonics Reviews, vol. 6, no. 1, pp. 47–73, Sep. 2012, doi: https://doi.org/10.1002/lpor.201100017.
R. Halir et al., “Colorless directional coupler with dispersion engineered subwavelength structure,” Opt. Express, vol. 20, no. 12, pp. 13 470–13 477, Jun. 2012, doi: 10.1364/OE.20.013470.
P.-H. Fu et al., “Broadband optical waveguide couplers with arbitrary coupling ratios designed using a genetic algorithm,” Opt. Express, vol. 24, no. 26, pp. 30 547–30 561, Dec. 2016, doi: 10.1364/OE.24.030547.
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, Nov. 1995, pp. 1942–1948 vol.4, doi: 10.1109/ICNN.1995.488968.
J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397–407, Feb. 2004, doi: 10.1109/TAP.2004.823969.
L. Leng et al., “Ultra-broadband, fabrication tolerant optical coupler for arbitrary splitting ratio using particle swarm optimization algorithm,” IEEE Photonics Journal, vol. 12, no. 5, pp. 1–12, Oct. 2020, doi: 10.1109/JPHOT.2020.3029059.
Xing, Yufei and Dong, Jiaxing and Khan, Umar and Bogaerts, Wim, “Capturing the effects of spatial process variations in silicon photonic circuits,” ACS PHOTONICS, vol. 10, no. 4, pp. 928–944, 2023. [Online]. Available: http://doi.org/10.1021/acsphotonics.2c01194
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96535-
dc.description.abstract矽光子積體迴路是目前正在蓬勃發展的一個技術,而在矽光子晶片中會使用大量的分光器作為其中作為訊號分配的元件,為了因應未來在分波多工的系統架構中同時會有多個波長在傳輸訊號經過這類分光元件,因此擁有寬頻和小尺寸的設計變得不可或缺。過去定向耦合器是最常被廣泛應用的,然而它卻對波長相依性非常敏感。本篇論文為了要改善波長相依性的問題,採用次波長光柵結構結合定向耦合器來做優化設計以解決此問題。
本論文所探討的次波長光柵結構結合定向耦合器之寬頻分光器,在設計階段先透過能帶結構的方法找到波長相依性較低的結構參數,再以二維等效時域有限差分法模擬矽波導與次波長光柵結構所設計之分光器的初估效能,以及使用三維時域有限差分法分析頻譜響應並進行驗證,最後利用參數掃描優化元件的結構參數。
本論文以極緊湊型寬頻 3-dB 分光器作為設計標的,其優化後元件之耦合長度為 3.9 μm,在中心波長為 1550 nm 的條件下,輸出波導穿透率在 3 ± 0.5 dB 的範圍內有 100 nm 的頻寬,且過量損耗皆小於 0.212 dB。所設計的優化元件在製程容忍度方面,包括傳播方向上光波導的寬度誤差 (450 ± 10 nm)、次波長光柵週期誤差 (200 ± 10 nm) 和高度誤差 (220 ± 5 nm) 對元件特性造成的影響也進行完整的探討。此元件在製程所造成的誤差範圍內,輸出波導穿透率在 3 ± 0.7 dB 的範圍內有 100 nm 的頻寬,且過量損耗皆低於 0.32 dB。相比於其他文獻,本研究所設計的元件有最短的耦合長度和極低的過量損耗,並在極緊湊的分光器尺寸仍然維持寬頻的效果。
zh_TW
dc.description.abstractThe field of silicon photonic integrated circuits is currently undergoing rapid development. Within silicon photonic chips, a large number of power splitters are utilized as signal branching components. To accommodate future system architectures using wavelength division multiplexing (WDM), where multiple signals at different wavelengths are transmitted through such power-splitting devices, designs with broadband and compact sizes are becoming essential. In the past, directional couplers were the most commonly used, but they are highly sensitive to wavelength. To address this issue, this thesis employs subwavelength grating structure in a directional coupler to optimize the design and mitigate the wavelength dependence problem.
For the design of the braodband power splitter, which consists of directional couplers combined with the subwavelength grating structure in this thesis, a band structure method was used to identify proper structural parameters with low wavelength dependence at first. Then, two-dimensional equivalent finite-difference time-domain (FDTD) simulations of silicon waveguides and the subwavelength grating structure are used to evaluate the approximate performance of the power splitter, while three-dimension FDTD analysis is applied to examine the frequency response and validate the design. Finally, sweep of parameters is conducted to optimize the structural parameters of the device.
The target of this thesis is an ultra-compact broadband 3-dB power splitter. After optimization, the coupling length of the device is 3.9 μm, with a center wavelength of 1550 nm. The bandwidth of the transmitted signals at both output waveguides within 3 ± 0.5 dB is 100 nm, and the excess loss is less than 0.212 dB. In this thesis, the device’s fabrication tolerances, including errors in waveguide width (450 ± 10 nm), period of the subwavelength grating (200 ± 10 nm) and height (220 ± 5 nm) along the propagation direction, are also evaluated. Within the range of fabrication errors, the bandwidth of the transmitted signals at both output waveguides within 3 ± 0.7 dB is 100 nm, and the excess loss is lower than 0.32 dB. Compared to other studies, the splitter designed in this thesis has the shortest coupling length and the lowest excess loss while maintaining broadband performance in an ultra-compact size.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:24:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:24:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
目次 vi
圖次 ix
表次 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 4
第二章 背景理論與數值方法 5
2.1 背景理論 5
2.1.1 馬克斯威爾方程式(Maxwell's Equations) 5
2.1.2 波動方程式(Wave Equations) 7
2.1.3 光波導原理 8
2.1.3.1 平板波導 8
2.1.3.2 矩形波導 10
2.1.4 耦合模態理論(Coupled Mode Theory, CMT) 13
2.1.5 次波長光柵設計原理 16
2.2 數值方法 19
2.2.1 有限差分特徵模態(Finite Difference Eigenmode, FDE)求解法 19
2.2.2 時域有限差分法(Finite-Difference Time-Domain, FDTD) 20
2.2.3 2.5維變分時域有限差分法(2.5D Variational Finite-Difference Time-Domain, varFDTD) 22
第三章 文獻回顧 25
3.1 利用非對稱定向耦合器設計之3-dB分光器 25
3.2 利用次波長光柵波導與對稱定向耦合器設計之3-dB分光器 27
3.3 利用次波長光柵波導與非對稱定向耦合器設計之3-dB分光器 29
3.4 利用次波長光柵波導與非對稱漸變式耦合器設計之3-dB分光器 31
第四章 極小尺寸寬頻之TE極化分光器的優化設計 34
4.1 元件結構與設計原理 34
4.1.1 第一階段:將兩平行波導的間隙填入次波長光柵 37
4.1.2 第二階段:將兩平行波導與彎曲波導的間隙和複合波導上下兩側填入次波長光柵 44
4.1.3 第三階段:將複合波導上下兩側之次波長光柵以三次方的樣條內插法設計 53
4.2 利用參數掃描優化元件結構 56
4.3 製程容忍度分析 61
4.4 與近年文獻中3-dB分光器之比較 64
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 66
參考文獻 67
-
dc.language.isozh_TW-
dc.subject積體光路zh_TW
dc.subject定向耦合器zh_TW
dc.subject分光器zh_TW
dc.subject次波長光柵zh_TW
dc.subject緊湊zh_TW
dc.subject寬頻zh_TW
dc.subject矽光子學zh_TW
dc.subjectBroadbanden
dc.subjectSilicon Photonicsen
dc.subjectIntegrated Photonic Circuitsen
dc.subjectDirectional Couplersen
dc.subjectPower Splitteren
dc.subjectSubwavelength Gratingen
dc.subjectCompacten
dc.title具有次波長光柵結構之緊湊型寬頻分光器的優化設計zh_TW
dc.titleOptimal Design of Compact Broadband Power Splitter with Subwavelength Gratingen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張書維;蕭惠心zh_TW
dc.contributor.oralexamcommitteeShu-Wei Chang;Hui-Hsin Hsiaoen
dc.subject.keyword矽光子學,積體光路,定向耦合器,分光器,次波長光柵,緊湊,寬頻,zh_TW
dc.subject.keywordSilicon Photonics,Integrated Photonic Circuits,Directional Couplers,Power Splitter,Subwavelength Grating,Compact,Broadband,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202500268-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-04-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2030-02-03-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2030-02-03
8.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved