Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9652
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊照彥
dc.contributor.authorJen-Chieh Hsuen
dc.contributor.author徐仁杰zh_TW
dc.date.accessioned2021-05-20T20:33:38Z-
dc.date.available2009-08-04
dc.date.available2021-05-20T20:33:38Z-
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation[1] Bai, C. & Lavine, A. S., (1993) “Thermal Boundary Conditions of Hyperbolic Heat Conduction”, ASME Heat Transfer Division, 253, pp. 37-44.
[2] Capinski, W. S. & Maris, H. J., (1996) “Thermal conductivity of GaAs/AlAs superlattices”, Physica B, 219, pp. 699-701.
[3] Chen, G., (1997) “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures”, ASME Journal of Heat Transfer, 119, pp. 220-229.
[4] Chen, G., (1998) “Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices”, Physical Review B, 57, pp. 14958-14973.
[5] Chen, G., (2000) “Phonon Heat Conduction in Nanostructure”, International Journal of Thermal Sciences, 39, pp. 471-480.
[6] Chen, G., (2001) “Ballistic-Diffusive Heat-Conduction Equation”, Physical Review Letters, 86, pp. 2297-2300.
[7] Chen, G., (2005) Nanoscale Energy Transport and Conversion, Oxford University Press.
[8] Chen, G., Tien, C. L., Wu, X. & Smith, J. S., (1994) “Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures”, ASME Journal of Heat Transfer, 116, pp. 325-331.
[9] Chen, G. & Neagu, M., (2001) “Thermal Conductivity and Heat Transfer in Superlattices”, Applied Physics Letters, 71, pp. 2761-2763.
[10] Dames, C. & Chen, G., (2004) “Theoretical Phonon Thermal Conductivity of Si/Ge Superlattice Nanowire”, Journal of Applied Physics, 95, pp. 682-692.
[11] Flik, M. I., (1990) “Size Effect on Thermal Conductivity of High-Tc Thin-Film Superconductors”, ASME Journal of Heat Transfer, 112, pp. 872-880.
[12] Hyldgaard, P. & Mahan, G. D., (1997) “Phonon superlattice transport”, Physical Review B, 56, pp. 10754-10757.
[13] Jeng, Ming-Shan, Yang, R., Song, D. & Chen,G., (2008)“Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation1”, Journal of Heat Transfer, 130 , pp. 042410-1
[14] Joshi, A. A. & Majumdar, A., (1993) “Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films”, Journal of Applied Physics, 74, pp. 31-38.
[15] Kittel, C., (1986) Introduction to Solid State Physics, Wiley, New York.
[16] Little, W. A., (1959) “The Transport of Heat Between Dissimilar Solids at Low Temperature”, Canadian Journal of Physics, 37, pp. 334-349.
[17] Majumdar, A., (1993) “Microscale Heat Conduction in Dielectric Thin Film”, ASME Journal of Heat Transfer, 115, pp. 7-16.
[18] Modest, M. F., (1993) Radiative Heat Transfer, McGraw-Hill, Inc.
[19] Murthy, J. Y. & Mathur, S. R., (2002) “Computation of Sub-Micro Thermal Transport Using an Unstructured Finite Volume Method”, ASME Journal of Heat Transfer, 124, pp. 1176-1181..
[20] Narumanchi, S. V. J., Murthy, J. Y. & Amon, C. H., (2004) “Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization”, ASME Journal of Heat Transfer, 126, pp. 946-955.
[21] Narumanchi, S. V. J., Murthy, J. Y. & Amon, C. H., (2006) “Boltzmann Transport Equation-Based Thermal modeling Approach for Hotspots in Microelectronics”, Heat Mass Transfer, 42, pp. 478-491.
[22] Phelan, P. E., (1998) “Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors”, ASME Journal of Heat Transfer, 120, pp. 37-43.
[23] Prasher, R. S. & Phelan, P. E., (2001) “A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance”, ASME Journal of Heat Transfer, 123, pp. 105-112.
[24] Siegel, R. & Howell, J. R., (1982) Thermal Radiation Heat Transfer, 2nd edition, Hemisphere, New York.
[25] Simkin, M. V. & Mahan, G. D., (2000) “Minimum Thermal Conductivity of Superlattices”, Physical Review Letters, 84, pp. 927-930.
[26] Srinivasan, S., Miller, R. S. & Marotta, E., (2004) “Parallel Computation of the Boltzamnn Transport Equation for Microscale Heat Transfer in Multilayered Thin Films”, Numerical Heat Transfer, Part B, 46, pp. 31-58.
[27] Swartz, E. T., (1987) “Solid-Solid Thermal Boundary Resistance”Ph.D. thesis, Coronell University.
[28] Swartz, E. T. & Pohl, R. O., (1989) “Thermal Boundary Resistance”, Reviews of Modern Physics, 61, pp. 605-668.
[29] Tian, W. & Yang, R., (2007) “Thermal Conductivity Modeling of Compacted Nanowire Composites”, Journal of Applied Physics, 101, pp. 054320.
[30] Tian, W. & Yang, R., (2007)“Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites”, Applied Physics Letters, 90, pp.263105.
[31] Tien, C. L., Armaly, B. F. & Jagannathan, P. S., (1969) “Thermal Conductivity of Metallic Films and Wires at Cryogenic Temperature”, Proc. 8th Thermal Conductivity Conference, New York, pp.13-19
[32] Yang, R. & Chen, G., (2004) “Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites”, Physical Review B, 69, pp. 195316.
[33] Yang, R., Chen, G. & Dresselhaus, M. S., (2004) “Thermal Conductivity of Simple and Tubular Nanowire Composites in the longitudinal Direction”, Physical Review B, 72, pp.125418.
[34] Yang, R., Chen, G., Laroche, M. & Taur, Y., (2005) “Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation”, ASME Journal of Heat Transfer,127, pp. 298-306.
[35] Zeng, T. & Chen, G., (2001) “Phonon Heat Conduction in thin Film:Impacts of Thermal Boundary Resistance and Internal Heat Generation”,ASME Journal of Heat Transfer ,123, pp. 340-347.
[36] 劉靜,微米 / 奈米尺度熱傳學,北京,科學出版社,2001
[37] 謝澤揚,聲子熱傳輸與理想量子氣體動力學之高解析算則,國立臺灣大學工學院應用力學所博士論文,台北,2007
[38] 林義傑,應用高解析算則及修正分離座標法之微觀薄膜熱傳分析,國立臺灣大學工學院應用力學所碩士論文,台北,2007
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9652-
dc.description.abstract在巨觀尺度下,熱傳遵守傅立葉熱傳方程式。若尺度縮小到微奈米等級時,傅立葉熱傳方程式在分析模擬上會高估實際的物理量產生熱傳率。所以在微尺度下探討分析真實熱傳導,傅立葉熱傳方程已不適用。半導體或絕緣體材料中,熱是由熱載子(電子、聲子和光子)來傳遞的。在本文中,主要探討聲子在複合材料內的熱傳遞。
聲子輻射熱傳方程式為非線性且含有積分微分的多變數方程式,要直接求解並不容易,若將碰撞項用鬆弛時間近似成BGK方程式 (Bhatnagar-Gross-Krook Equation)來簡化,在數學上會較易處理,本文在方向上使用離散座標法(Discrete Ordinate Method)將方向餘弦離散化,在空間上使用迎風算則( Upwind Scheme)來分析問題。
奈米複合材料在超晶格(superlattice)中,被觀察到有類似熱導率減少及熱電效率增加的現象,這提供了奈米尺度效應在熱電材料中可增加益處的方向。奈米複合材料排列可分成兩種類型,一種為材料以奈米線的樣式嵌入在另一個主要的基質材料,稱為線型(nanowire),另一種為像棋盤式的緊密混合兩種不同類型的奈米線,稱為緊密型(nanocompacted)。以相同的化學計量下,緊密型混合奈米線的複合材料,因為材料沒有連續相,熱傳導係數會低於將奈米線嵌入一主要基材的類型。
本文利用聲子輻射熱傳方程配分離座標法探討一維界面密度問題,以及二維線型(wire)及緊密型(compacted)的超晶格界面密度的比較,以及在不同溫度下,兩種類型的熱傳導率分佈情況。
最後再與先前論文中利用直接蒙地卡羅(DSMC)模擬的結果做誤差比較,以探討缺失。
zh_TW
dc.description.abstractThe equation of phonon radiative transfer (EPRT) is a nonlinear, integral, differential equation with many variables. It is difficult for us to solve the equation directly. If we simplify the relaxation time of collision term by Bhatnagar- -Gross-Krook Equation. The equation will become easily to cope with. In this paper, we deal with phase space where the discrete ordinate method is used for angular discretization; and using upwind scheme the deal with spatial discretization.
Nanocomposites in superlattices are observed that may realize a similar thermal conductivity reduction and thermoelectric efficiency enhancements. So it provides us a way to increase the benefits of the nanoscale effects to thermoelectric materials in bulk form. If there are two species of nanocomposites, one is a material in the form of nanowires embedded in another host matrix material; the other is a discrete mixture of two different kinds of nanowires that are compacted. At the same stoichiometry, a nanocomposite in the form of discrete mixtures of nanowires does not have a continuous phase of material, so its thermal conductivity is lower than composites with nanowires embedded in a host material.
In this paper, using EPRT with the discrete ordinate method to investigate simulation about the density of interface of one dimension superlattice, nanocomposites of nanowires embedded in another host matrix material, and nanocomposites of compacted silicon and germanium nanowire mixtures nanocompacted.
Results show that the thermal conductivity of composites in the form of compacted silicon and germanium nanowire mixtures is lower than the composites with silicon nanowires embedded in a germanium matrix at the same atomic composition and characteristic size of the nanowires.
Finally, we will take our data to compare with the other study which simulation by Direct Monte Carlo Method.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:33:38Z (GMT). No. of bitstreams: 1
ntu-97-R95543053-1.pdf: 1330204 bytes, checksum: 088bd368cc42322b189707eae83d67ec (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝.......................................................Ⅰ
中文摘要...................................................Ⅱ
英文摘要...................................................Ⅲ
目錄.......................................................Ⅳ
附表目錄...................................................VI
附圖目錄...................................................Ⅶ
符號說明...................................................X
第一章 緒論...............................................1
1.1 引言..................................................1
1.2 微觀熱傳導............................................1
1.3 文獻回顧..............................................4
1.4 研究內容..............................................7
第二章 聲子輻射熱傳理論.................................11
2.1 Liouville方程式........................................11
2.2 Boltzmann方程式......................................13
2.3 鬆弛時間.............................................13
2.3.1 缺陷散射........................................14
2.3.2 三聲子過程( Three Phonon Process ) ..................15
2.3.3 等效鬆弛時間....................................16
2.3.4 灰體鬆弛時間....................................16
2.4 聲子輻射熱傳方程式...................................17
2.5 邊界條件.............................................19
2.6 界面熱阻.............................................21
2.6.1 聲異理論模式( AMM ) ............................22
2.6.2 散異理論模式( DMM ) ............................23
2.6.3 散射聲異理論模式( SMAMM )......................24
2.7 射線效應( Ray Effect )..................................25
2.8 假散射( False Scattering )................................26
第三章 數值方法..........................................31
3.1 方向離散............................................31
3.1.1 離散座標法( Discrete Ordinate Method )..............31
3.2 空間離散.............................................32
3.2.1 迎風算則........................................32
3.2.2 雙曲線型守恆律算則..............................34
3.3 時間離散.............................................35
3.3.1 Euler Method.....................................35
3.3.2 隱式算則( Implicit Scheme ).........................35
3.4 無因次化.............................................37
第四章 數值模擬結果與討論...............................40
4.1 薄膜超晶格結構.......................................40
4.2 線型超晶格結構.......................................42
4.3 緊密型超晶格結構.....................................44
第五章 結論與建議........................................72
參考文獻..................................................74
dc.language.isozh-TW
dc.title使用聲子波茲曼方程對緊密型奈米尺度複合物之熱傳模擬zh_TW
dc.titleThermal Conductivity Modeling of Compacted Nanocomposites Using Phonon Boltzmann Model Equationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王興華,洪榮泰,謝澤揚
dc.subject.keyword微觀熱傳,聲子輻射傳輸方程式,離散座標法,zh_TW
dc.subject.keywordEquation of Phonon Radiative Transport,Discrete Ordinate Method,nanowire,nanocompacted,en
dc.relation.page76
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf1.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved