Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96527
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉zh_TW
dc.contributor.advisorHuei Wangen
dc.contributor.author馬恩zh_TW
dc.contributor.authorEN MAen
dc.date.accessioned2025-02-19T16:22:17Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2024-
dc.date.submitted2025-02-06-
dc.identifier.citation[1] "U band." https://en.wikipedia.org/wiki/U_band (accessed.
[2] "What is the U Band?" https://www.everythingrf.com/community/what-is-the-u-band (accessed.
[3] chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.etsi.org/deliver/etsi_ts/138100_138199/13810102/15.02.00_60/ts_13810102v150200p.pdf (accessed.
[4] E. T.-e. RF. "5G FR2 Frequency Bands." everything RF. https://www.everythingrf.com/community/5g-fr2-frequency-bands (accessed.
[5] Y.-T. Chou, C.-C. Chiong, and H. Wang, "A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process," in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016: IEEE, pp. 1-3.
[6] R. Limacher et al., "Broadband low-noise amplifiers for K-and Q-bands using 0.2/spl mu/m InP HEMT MMIC technology," in IEEE Compound Semiconductor Integrated Circuit Symposium, 2004., 2004: IEEE, pp. 305-308.
[7] A. Mustapha and A. Shabra, "A 60–90GHz stagger-tuned low-noise amplifier with 1.2 dBm OP1dB in 65nm CMOS," in 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2017: IEEE, pp. 26-29.
[8] V. Bhagavatula, M. Taghivand, and J. Rudell, "A compact 24–54 GHz CMOS band-pass distributed amplifier for high fractional bandwidth signal amplification," in 2014 IEEE Radio Frequency Integrated Circuits Symposium, 2014: IEEE, pp. 71-74.
[9] S. Kong, H. D. Lee, M.-S. Lee, and B. Park, "A V-band current-reused LNA with a double-transformer-coupling technique," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 942-944, 2016.
[10] "ngVLA Performance Estimates." https://ngvla.nrao.edu/page/performance (accessed.
[11] "Active Electronically Scanned Array (AESA) Radars." https://www.northropgrumman.com/what-we-do/air/active-electronically-scanned-array-aesa-radars (accessed.
[12] B.-K. Ko, D.-B. Cheon, S.-W. Kim, J.-S. Ko, J.-K. Kim, and B.-H. Park, "A nightmare for CDMA RF receiver: The cross modulation," in AP-ASIC'99. First IEEE Asia Pacific Conference on ASICs (Cat. No. 99EX360), 1999: IEEE, pp. 400-402.
[13] B. Kim, I. Nam, and K. Lee, "Single-ended differential RF circuit topologies utilizing complementary MOS devices," JSTS: Journal of Semiconductor Technology and Science, vol. 2, no. 1, pp. 7-18, 2002.
[14] V. Aparin, G. Brown, and L. E. Larson, "Linearization of CMOS LNA's via optimum gate biasing," in 2004 IEEE international symposium on circuits and systems (IEEE Cat. No. 04CH37512), 2004, vol. 4: IEEE, pp. IV-748.
[15] T.-S. Kim and B.-S. Kim, "Post-linearization of cascode CMOS low noise amplifier using folded PMOS IMD sinker," IEEE microwave and wireless components letters, vol. 16, no. 4, pp. 182-184, 2006.
[16] Y.-L. Yeh and H.-Y. Chang, "Linearity enhancement of CMOS device using a modified third-order transconductance cancellation technique for microwave amplifier," in 2011 IEEE MTT-S International Microwave Symposium, 2011: IEEE, pp. 1-4.
[17] Y.-H. Kuo, J.-H. Tsai, W.-H. Chou, and T.-W. Huang, "A 24-GHz 3.8-dB NF low-noise amplifier with built-in linearizer," in 2010 Asia-Pacific Microwave Conference, 2010: IEEE, pp. 1505-1508.
[18] C.-A. Hsieh, Y.-H. Lin, Y.-H. Hsiao, and H. Wang, "A 60 GHz low noise amplifier with built-in linearizer," in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2013: IEEE, pp. 1-3.
[19] J.-H. Kim, J.-T. Son, J.-T. Lim, H.-W. Choi, and C.-Y. Kim, "Ultralow Noise Figure and Broadband CMOS LNA With Three-Winding Transformer and Large Transistor," IEEE Transactions on Microwave Theory and Techniques, 2024.
[20] J.-H. Kim et al., "High-performance broadband CMOS low-noise amplifier with a three-winding transformer for broadband matching," in 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2023: IEEE, pp. 125-128.
[21] I. Haroun, J. Wight, C. Plett, and A. Fathy, "Multi-band 700MHz/2.4 GHz/60GHz RF front-end for radio-over-fiber base stations," in 2010 IEEE Radio and Wireless Symposium (RWS), 2010: IEEE, pp. 629-632.
[22] T. Yao et al., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, 2007.
[23] H.-C. Yeh, Z.-Y. Liao, and H. Wang, "Analysis and design of millimeter-wave low-power CMOS LNA with transformer-multicascode topology," IEEE Transactions on Microwave Theory and techniques, vol. 59, no. 12, pp. 3441-3454, 2011.
[24] W.-T. Li et al., "Parasitic-insensitive linearization methods for 60-GHz 90-nm CMOS LNAs," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2512-2523, 2012.
[25] Y.-T. Chang, T.-Y. Lin, and H.-C. Lu, "A low power wideband V-band LNA using double-transformer-coupling technique and T-type matching in 90nm CMOS," in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019: IEEE, pp. 224-227.
[26] H.-C. Yeh, C.-C. Chiong, S. Aloui, and H. Wang, "Analysis and design of millimeter-wave low-voltage CMOS cascode LNA with magnetic coupled technique," IEEE transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4066-4079, 2012.
[27] K. Hadipour, A. Ghilioni, A. Mazzanti, M. Bassi, and F. Svelto, "A 40GHz to 67GHz bandwidth 23dB gain 5.8 dB maximum NF mm-Wave LNA in 28nm CMOS," in 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2015: IEEE, pp. 327-330.
[28] K. Moez and M. Elmasry, "A 10dB 44GHz loss-compensated CMOS distributed amplifier," in 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 2007: IEEE, pp. 548-621.
[29] C.-M. Hsu, Y. Wang, and H. Wang, "A 14-91 GHz Distributed Amplifier in 65-nm CMOS," in 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020: IEEE, pp. 1009-1011.
[30] C.-Y. Hsiao, T.-Y. Su, and S. S. Hsu, "CMOS distributed amplifiers using gate–drain transformer feedback technique," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 2901-2910, 2013.
[31] J.-C. Chien, T.-Y. Chen, and L.-H. Lu, "A 9.5-dB 50-GHz Matrix Distributed Amplifier in 0.18-/spl mu/m CMOS," in 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers., 2006: IEEE, pp. 146-147.
[32] T.-Y. Chiu, Y. Wang, and H. Wang, "A 3.7–43.7-GHz low-power consumption variable gain distributed amplifier in 90-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 31, no. 2, pp. 169-172, 2020.
[33] T.-Y. Huang, Y.-H. Lin, J.-H. Cheng, J.-C. Kao, T.-W. Huang, and H. Wang, "A high-gain low-noise distributed amplifier with low DC power in 0.18-µm CMOS for vital sign detection radar," in 2015 IEEE MTT-S international microwave symposium, 2015: IEEE, pp. 1-3.
[34] L. Gao and G. M. Rebeiz, "A 22–44-GHz phased-array receive beamformer in 45-nm CMOS SOI for 5G applications with 3–3.6-dB NF," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 11, pp. 4765-4774, 2020.
[35] A. Jahanian and P. Heydari, "A CMOS distributed amplifier with distributed active input balun using GBW and linearity enhancing techniques," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1331-1341, 2012.
[36] W.-H. Tsai, Y. Wang, and H. Wang, "A Switchless Bidirectional Distributed Amplifier with 2-dB Gain Variation in One Decade Frequency Range in 90-nm CMOS Process," in 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2022: IEEE, pp. 71-73.
[37] K. Fang and J. F. Buckwalter, "Efficient linear millimeter-wave distributed transceivers in CMOS SOI," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 1, pp. 295-307, 2018.
[38] T. Wu, C. Zhao, H. Liu, Y. Wu, Y. Yu, and K. Kang, "A 20~ 43 GHz VGA with 21.5 dB gain tuning range and low phase variation for 5G communications in 65-nm CMOS," in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019: IEEE, pp. 71-74.
[39] M. Campovecchio, R. Hilal, B. Le Bras, M. Lajugie, and J. Obregon, "Large signal design criteria of distributed power amplifiers applied to a 2-18 GHz GaAs chip yielding high power density performances," in Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits, 1994: IEEE, pp. 197-202.
[40] H. Park et al., "A 6–18 GHz GaN distributed power amplifier using reactive matching technique and simplified bias network," in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017: IEEE, pp. 394-397.
[41] J. Gassmann, P. Watson, L. Kehias, and G. Henry, "Wideband, high-efficiency GaN power amplifiers utilizing a non-uniform distributed topology," in 2007 IEEE/MTT-S International Microwave Symposium, 2007: IEEE, pp. 615-618.
[42] C. Campbell et al., "A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology," IEEE Journal of Solid-state circuits, vol. 44, no. 10, pp. 2640-2647, 2009.
[43] C. Duperrier, M. Campovecchio, L. Roussel, M. Lajugie, and R. Quéré, "New design method of uniform and nonuniform distributed power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2494-2500, 2001.
[44] M. Campovecchio, B. Le Bras, R. Hilal, M. Lajugie, and J. Obregon, "Large signal design method of distributed power amplifiers applied to a 2–18‐GHz GaAs chip exhibiting high power density performances," International Journal of Microwave and Millimeter‐Wave Computer‐Aided Engineering: Co‐sponsored by the Center for Advanced Manufacturing and Packaging of Microwave, Optical, and Digital Electronics (CAMPmode) at the University of Colorado at Boulder, vol. 6, no. 4, pp. 259-269, 1996.
[45] G. Mouginot et al., "Three stage 6–18 GHz high gain and high power amplifier based on GaN technology," in 2010 IEEE MTT-S International Microwave Symposium, 2010: IEEE, pp. 1392-1395.
[46] R. Santhakumar et al., "Two-stage high-gain high-power distributed amplifier using dual-gate GaN HEMTs," IEEE transactions on microwave theory and techniques, vol. 59, no. 8, pp. 2059-2063, 2011.
[47] Ç. Ballı, A. Değirmenci, A. Aktuğ, and A. Atalar, "Wideband distributed choke inductor for distributed power amplifiers," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 5, pp. 539-542, 2023.
[48] Y. Niida et al., "X-Ku wide-bandwidth GaN HEMT MMIC amplifier with small deviation of output power and PAE," in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2014: IEEE, pp. 1-4.
[49] E. Ersoy, S. Chevtchenko, P. Kurpas, and W. Heinrich, "A compact GaN-MMIC non-uniform distributed power amplifier for 2 to 12 GHz," in GeMiC 2014; German Microwave Conference, 2014: VDE, pp. 1-3.
[50] 6-18GHz 12W GaN PA MMIC ICP1240.
[51] E. Ma, C.-C. Chiong, Y.-S. Wang, and H. Wang, "A 6-58 GHz Low Power Consumption Distributed Amplifier with Multi-drive Inter-stack Coupling in 90-nm CMOS Process," in 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2024: IEEE, pp. 1-2.
[52] M. T. Reiha and J. R. Long, "A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 µm CMOS " IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1023-1033, 2007.
[53] H. Chen, H. Zhu, L. Wu, W. Che, and Q. Xue, "A wideband CMOS LNA using transformer-based input matching and pole-tuning technique," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 7, pp. 3335-3347, 2021.
[54] M.-H. Tsai, S. S. Hsu, F.-L. Hsueh, C.-P. Jou, and T.-J. Yeh, "A 17.5–26 GHz low-noise amplifier with over 8 kV ESD protection in 65 nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 22, no. 9, pp. 483-485, 2012.
[55] M. I. Natarajan et al., "RFCMOS ESD protection and reliability," in Proceedings of the 12th International Symposium on the Physical and Failure Analysis of Integrated Circuits, 2005. IPFA 2005., 2005: IEEE, pp. 59-66.
[56] Y.-T. Chang and H.-C. Lu, "A V-Band Low-Power Digital Variable-gain Low-noise Amplifier using Current-reused Technique with Stable Matching and Maintained OP1dB," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4404-4417, 2019.
[57] M. Huang, J.-H. Tsai, and T.-W. Huang, "A 917-µW Q-band transformer-feedback current-reused LNA using 90-nm CMOS technology," in 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012: IEEE, pp. 1-3.
[58] C.-Y. Cha and S.-G. Lee, "A 5.2 GHz LNA in 0.35 µm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance," in Proceedings of the 28th European Solid-State Circuits Conference, 2002: IEEE, pp. 339-342.
[59] S. Ganesan, E. Sánchez-Sinencio, and J. Silva-Martinez, "A highly linear low-noise amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4079-4085, 2006.
[60] J.-J. Kuo, Z.-M. Tsai, K.-Y. Lin, and H. Wang, "Design and analysis of novel linearization technique of cascode cell in a 60-GHz CMOS demodulator," IEEE transactions on microwave theory and techniques, vol. 59, no. 2, pp. 456-465, 2010.
[61] M. L. Edwards and J. H. Sinsky, "A new criterion for linear 2-port stability using a single geometrically derived parameter," IEEE Transactions on microwave theory and techniques, vol. 40, no. 12, pp. 2303-2311, 1992.
[62] N. Deferm, "CMOS Front Ends for Millimeter Wave Wireless Communication Systems (RF-CMOS geïntegreerde schakelingen voor millimetergolf draadloze communicatie)," 2014.
[63] E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, "Distributed amplification," Proceedings of the IRE, vol. 36, no. 8, pp. 956-969, 1948.
[64] M.-D. Tsai, K.-L. Deng, H. Wang, C.-H. Chen, C.-S. Chang, and J. G. Chern, "A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier," IEEE Microwave and Wireless Components Letters, vol. 14, no. 12, pp. 554-556, 2004.
[65] A. Arbabian and A. M. Niknejad, "A broadband distributed amplifier with internal feedback providing 660GHz GBW in 90nm CMOS," in 2008 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, 2008: IEEE, pp. 196-606.
[66] D. M. Pozar, Microwave Engineering. New York: Wiley, 1998.
[67] L.-H. Lu, T.-Y. Chen, and Y.-J. Lin, "A 32-GHz non-uniform distributed amplifier in 0.18-μm CMOS," IEEE microwave and wireless components letters, vol. 15, no. 11, pp. 745-747, 2005.
[68] M.-D. Tsai, H. Wang, J.-F. Kuan, and C.-S. Chang, "A 70GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology," in ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., 2005: IEEE, pp. 402-606.
[69] C.-W. Wu, T.-Y. Huang, Y.-H. Hsiao, Y.-C. Wu, and H. Wang, "A compact and low DC power distributed amplifier with cascaded gain stages using signal-reused technique in 0.18-pm CMOS," in 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 2017: IEEE, pp. 175-178.
[70] S.-H. Chen et al., "A monolithic DC-70-GHz broadband distributed amplifier using 90-nm CMOS process," in 2013 European Microwave Conference, 2013: IEEE, pp. 1511-1514.
[71] H.-L. Huang, M.-F. Chou, W. Wuen, K.-A. Wen, and C.-Y. Chang, "A low power CMOS distributed amplifier," in The 2005 IEEE Annual Conference Wireless and Micrwave Technology, 2005., 2005: IEEE, pp. 47-50.
[72] X. Guan and C. Nguyen, "Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 8, pp. 3278-3283, 2006.
[73] A. Kopa and A. B. Apsel, "Alternative m-derived termination for distributed amplifiers," in 2009 IEEE MTT-S International Microwave Symposium Digest, 2009: IEEE, pp. 921-924.
[74] J.-C. Kao, P. Chen, P.-C. Huang, and H. Wang, "A Novel Distributed Amplifier With High Gain, Low Noise, and High Output Power in 0.18-µm CMOS Technology," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1533-1542, 2013.
[75] H. T. Friis, "Noise figures of radio receivers," Proceedings of the IRE, vol. 32, no. 7, pp. 419-422, 1944.
[76] B. Razavi, "Design of analog cmos integrated circuits, 2001," New York, NY: McGraw-Hill, vol. 587, no. 589, pp. 83-90, 2017.
[77] Y.-S. Lai, J.-W. Yei, Z.-H. Fu, and K.-Y. Lin, "A CMOS Low Noise Amplifier with Gm-boosting Technique for Multi-band 5G Systems," in 2023 Asia-Pacific Microwave Conference (APMC), 2023: IEEE, pp. 351-353.
[78] 邱煥凱, 電機工程, 林貴城, and 電機工程, ADS 應用於射頻功率放大器設計與模擬. 國立清華大學出版社, 2014.
[79] C. Jun-Chau and L. Liang-Hung, "40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18µm CMOS " in IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2007.
[80] Y. A. Cengel and A. J. Ghajar, "Heat and Mass Transfer (in SI Units)," ed: Mcgraw-Hill Education-Europe, London, 2014.
[81] M. R. Duffy, G. Lasser, M. Olavsbråten, E. Berry, and Z. Popović, "Efficient multisignal 2–4-GHz power amplifier with power tracking," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5652-5663, 2018.
[82] Y. Yuan, Y. Fan, Z. Chen, Z. Yang, and H. Lin, "Ku‐band pre‐matched broadband GaN power amplifier with over 30 W power," Electronics Letters, vol. 52, no. 10, pp. 872-874, 2016.
[83] J. Delprato et al., "Pulsed gate bias control of GaN HEMTs to improve pulse‐to‐pulse stability in radar applications," Electronics Letters, vol. 51, no. 13, pp. 1023-1025, 2015.
[84] H.-J. Kim, W.-J. Cho, J.-H. Kwon, and J.-W. Lee, "An X-Band 100 W GaN HEMT power amplifier using a hybrid switching method for fast pulse switching," Progress In Electromagnetics Research B, vol. 78, pp. 1-14, 2017.
[85] N. Miyazawa, M. Nishihara, K. Usami, M. Aojima, and T. Yamamoto, "S-band 600W and X-band 200W high-power GaN HEMTs for radar transmitters," SEI Technical Review, vol. 84, p. 146, 2017.
[86] E. Torres-Rios and C. Saavedra, "A new compact nonlinear model improvement methodology for GaN-HEMT," in 2014 IEEE 5th Latin American Symposium on Circuits and Systems, 2014: IEEE, pp. 1-4.
[87] Q. Lin et al., "A 2–20-GHz 10-W high-efficiency GaN power amplifier using reactive matching technique," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3148-3158, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96527-
dc.description.abstract此論文由三個主要部分組成。第一部分介紹了以90-nm CMOS製程設計的40-56 GHz寬頻低雜訊放大器(LNA)及其線性化技術的設計和測量結果。第二部分描述了為X波段非均勻分佈功率放大器(NDPA),該放大器是使用0.25-μm GaN HEMT製程製造的。第三部分則討論了作為天文接收器寬帶中頻前級放大器的低功耗分佈放大器的設計和測量,其製程同樣為90-nm CMOS。
第一部分集中於使用兩級電流重用和一級共源極配置的寬帶低雜訊放大器(LNA),工作在40-56 GHz頻率範圍內,並在90-nm CMOS技術中採用了分佈式微分疊加(Distributed -DS)線性化技術。此外此電路也採用三繞組反饋變壓器的輸入匹配設計,能夠提供低雜訊指數(NF)、最佳化的輸入匹配和在寬頻帶內顯著的增益。該LNA在46 GHz時達到最高小訊號增益21.3 dB,3-dB帶寬範圍為40到56 GHz,48 GHz時最低NF為4.8 dB,整個頻段的平均NF為5.7 dB,且功耗僅為19.4 mW。當線性化器啟動時,LNA的輸入三階截斷點 (IIP3)為0 dBm。
第二部分介紹了針對X波段設計的功率放大器(PA),該放大器是使用0.25-μm GaN HEMT工藝製造的,旨在通過一級非均勻分佈放大器架構實現10W的輸出功率。設計中包含了一個專門的冷卻模組,有效管理熱量散失。該PA在6-12 GHz頻率範圍內展示了超過10.5 dB的小訊號增益,晶片面積為12 mm²,在9 GHz時達到23.4%的峰值功率轉換效率(PAE),飽和輸出功率超過38 dBm。本研究強調了非均勻分佈放大器(NDPA)在提高寬帶GaN基功率放大器的輸出功率和PAE方面的優勢。
最後一部分介紹了一個操作頻率範圍為6-58 GHz的分佈放大器(DA),在8 GHz時達到小信號峰值增益18.5 dB。該設計具有兩級傳統分佈放大器(CDA),提供低雜訊指數和高輸出功率等優勢。DA運行效率高,消耗的直流功率僅為36.2 mW,晶片尺寸為0.85 mm²。其支持的帶寬可達52 GHz,增益變化在操作範圍內保持在3-dB以內。
zh_TW
dc.description.abstractThis thesis consists of three main parts. The first part presents the design and measurement results of 40-56 GHz broadband LNA with linearizer technique, fabricated in a 90-nm CMOS process. The second part discusses the design and measurement of a low-power distributed amplifier as wideband IF preamplifier for astronomical receivers, fabricated in a 90-nm CMOS process. The third part describes the design and measurement results of X-band non-uniform distributed power amplifier (NDPA) for high power-level system application, fabricated in 0.25-μm GaN HEMT process.
The first part focuses on a broad band low-noise amplifier (LNA) by using two-stage current-reused and one-stage common source operating in the 40-56 GHz frequency range, utilizing the derivative superposition (DS) linearization technique in 90-nm CMOS technology. It also features an input matching design with a three-winding feedback transformer that provides low noise figure (NF), optimized input matching, and significant gain across a wide bandwidth. The LNA achieves a peak small signal gain of 21.3 dB at 46 GHz, with a 3-dB bandwidth from 40 to 56 GHz, a minimum NF of 4.8 dB at 48 GHz, and an average NF of 5.7 dB across the band, all while consuming only 19.4 mW of power. When the linearizer is active, the LNA exhibits an IIP3 of 0 dBm.
The second part presents introduces This work presents a distributed amplifier (DA) operating in the 6-58 GHz frequency range, achieving a small signal peak gain of 18.5 dB at 8 GHz. The design features two stages of conventional distributed amplifiers (CDA), providing advantages like a low noise figure and high output power. The DA is efficient, consuming only 36.2 mW of DC power and having a compact chip size of 0.85 mm², including pads. It supports a bandwidth of up to 52 GHz, with gain variations maintained within 3-dB across the operating range.
The last part presents This work presents a power amplifier (PA) designed for the X-band, fabricated using a 0.25-µm GaN HEMT process, aimed at achieving 10W output power through a one-stage non-uniform distributed amplifier architecture. The design includes a specialized cooling module to effectively manage heat dissipation. The PA demonstrates a small-signal gain exceeding 10.5 dB across the 6-12 GHz frequency range, with a die size of 12 mm², achieving a peak power-added efficiency (PAE) of 23.4% at 9 GHz and saturated output power exceeding 38 dBm. This research emphasizes the advantages of non-uniform distributed amplifiers (NDPA) in enhancing both output power and PAE in wideband GaN-based power amplifiers.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:22:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:22:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xviii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.1.1 U-band of broadband Low Noise Amplifier in CMOS process 1
1.1.2 Wideband IF Preamplifiers for advancing Astronomical Receivers 2
1.1.3 Wideband GaN Power Amplifiers for high Power-Level Applications 3
1.2 Literature Surveys 4
1.2.1 Linearizer LNA with Three-Winding Transformer in CMOS process 4
1.2.2 Distributed Amplifier in CMOS Process 7
1.2.3 X/Ku band Nonuniform Distributed Power amplifier in GaN HEMT 9
1.3 Contributions 12
1.3.1 Design of broadband Low Noise Amplifier with linearizer technique 12
1.3.2 Wideband Distributed Amplifier in CMOS Process 13
1.3.3 X-band Non-Uniform Distributed Power Amplifier in GaN HEMT 13
1.4 Thesis Organization 14
Chapter 2 Design of U-band Low Noise Amplifier with linearizer technique in 90-nm CMOS Process 16
2.1 Introduction 16
2.2 The Design of Low Noise Amplifier 18
2.2.1 Biasing point and Device selection 18
2.2.2 Input stage design featuring with Three-Winding Transformer 24
2.2.3 Current-Reused Technique 33
2.2.4 Linearizer Analysis 36
2.3 Circuit Schematic and Simulation 43
2.4 Measurement Results 50
2.5 Summary 55
Chapter 3 A 6-58 GHz Low Power Consumption Distributed Amplifier with Multi-drive Inter-stack Coupling in 90-nm CMOS Process 57
3.1 Introduction 57
3.2 Distributed Amplifiers Architecture Classification 59
3.2.1 Conventional Distributed Amplifier [67] 59
3.2.2 Cascaded Single-Stage DA [65] 62
3.2.3 Cascaded Multi-Stage DA [69] 63
3.2.4 Matrix DA [34] 65
3.2.5 DA with Cascaded Gain Stages [70] 67
3.2.6 DA with Internal Feedback [66] 68
3.3 Techniques for Enhancing Distributed Amplifier Performance 70
3.3.1 Design of Unit Gain Cells 70
3.3.2 M-Derived [73] 72
3.3.3 Inter-stage Termination Removal Method [74] 74
3.3.4 Gate-Drain Transformer Feedback Technique [33] 75
3.4 Design and Analysis of the Proposed Distributed Amplifier 76
3.4.1 Comparison of DA Structural Designs 76
3.4.2 Device Size and Biasing Selection 78
3.4.3 Distributed Gain Cell Selection 81
3.4.4 Multi-drive Inter-stack Coupling [32] 84
3.4.5 Variable Termination Resistor 90
3.5 Circuit Schematic and Simulation Results 95
3.6 Experimental Results 100
3.7 Discussion 104
3.8 Summary 108
Chapter 4 Design of X-Band Nonuniform Distributed Power Amplifier in 0.25-μm GaN HEMT 110
4.1 Introduction 110
4.2 Circuit Design 112
4.2.1 Device Technology 112
4.2.2 Bias selection 112
4.2.3 Size selection 114
4.2.4 The popwer load line of each transistor (M1~M8) 119
4.2.5 Optimum Power Load-Line [44, 80] 119
4.2.6 Capacitive Division Technique [81] 121
4.3 Simulation Results 123
4.3.1 Small-Signal Results 123
4.3.2 Large-Signal Results 125
4.4 Thermal Dissipation Technique 129
4.4.1 Thermal Issues in the Chip Design 129
4.4.2 Heat Radiation 130
4.4.3 Heat Conduction 130
4.4.4 Heat Convection 132
4.4.5 Thermal Dissipation Path Modeling 133
4.4.6 Copper Metal for Thermal Dissipation 134
4.5 Experimental Results 137
4.5.1 Small-Signal Measurement Results 138
4.5.2 Large-Signal Measurement Results 139
4.6 Discussion 145
4.7 Summary 148
Chapter 5 Conclusions 150
REFERENCES 152
-
dc.language.isoen-
dc.subjectCMOSzh_TW
dc.subject寬帶中頻前級放大器zh_TW
dc.subject散熱技巧zh_TW
dc.subject非均勻分佈放大器zh_TW
dc.subjectGaN HEMTzh_TW
dc.subject導數疊加(DS)zh_TW
dc.subject三繞組變壓器zh_TW
dc.subject低噪聲放大器zh_TW
dc.subject多驅動堆疊耦合zh_TW
dc.subject分佈放大器zh_TW
dc.subjectCMOSen
dc.subjectthree winding transformeren
dc.subjectderivative superposition (DS)en
dc.subjectGaN HEMTen
dc.subjectNon-uniform distributed amplifieren
dc.subjectthermal dissipationen
dc.subjectwideband IF preamplifieren
dc.subjectlow noise amplifieren
dc.subjectmulti-drive inter-stack couplingen
dc.subjectdistributed amplifieren
dc.titleU頻段線性化低雜訊放大器、天文接收機分佈式放大器及X頻段氮化鎵功率放大器之研究zh_TW
dc.titleResearch of U-Band Linearizer Low-Noise Amplifier, Distributed Amplifier for Astronomical Receiver and X-band GaN Power Amplifieren
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃天偉;林坤佑;章朝盛;王雲杉zh_TW
dc.contributor.oralexamcommitteeTian-Wei Huang;Kun-You Lin;Chau-Ching Chiong;Yunshan Wangen
dc.subject.keywordCMOS,分佈放大器,多驅動堆疊耦合,低噪聲放大器,三繞組變壓器,導數疊加(DS),GaN HEMT,非均勻分佈放大器,散熱技巧,寬帶中頻前級放大器,zh_TW
dc.subject.keywordCMOS,distributed amplifier,multi-drive inter-stack coupling,low noise amplifier,three winding transformer,derivative superposition (DS),GaN HEMT,Non-uniform distributed amplifier,thermal dissipation,wideband IF preamplifier,en
dc.relation.page157-
dc.identifier.doi10.6342/NTU202500460-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-02-20-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved