Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信嘉zh_TW
dc.contributor.advisorHsin-Chia Luen
dc.contributor.author陳柏辰zh_TW
dc.contributor.authorPo-Chen Chenen
dc.date.accessioned2025-02-19T16:22:00Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-21-
dc.identifier.citationN. Tesla, "System of transmission of electrical energy," U.S. Patent 645,576, Mar. 20, 1900.
B. Strassner and K. Chang, “Microwave power transmission: historical milestones and system components,” Proceedings of the IEEE, vol. 101, no. 6, pp. 1379– 1396, June 2013.
Wireless power transfer [Online]. Available: https//zh.wikipedia.org/zh-tw/%E7%84%A1%E7%B7%9A%E4%BE%9B%E9%9B%BB
V . Iyer, R. Nandakumar, A. Wang, S. B. Fuller, and S. Gollakota,“Living IoT: A Flying Wireless Platform on Live Insects.”, in the 25th Annual International Conference on Mobile Computing and Networking (MobiCom '19), New York, USA, Aug. 2019, pp. 1-15.
N. T. Jafferis, E. F. Helbling, M. Karpelson, and R. J. Wood, “Untethered flight of an insect-sized flapping-wing microscale aerial vehicle,” Nature, vol. 570, no. 7762, pp. 491-495, June. 2019.
T. Ozaki, N. Ohta, T. Jimbo, and K. Hamaguchi, “A wireless radio frequency-powered insect-scale flapping-wing aerial vehicle,” Nature Electronics, vol. 4, no. 11, pp. 845-852, Nov. 2021.
A. Boaventura, D. Belo, R. Fernandes, A. Collado, A. Georgiadis and N. B. Carvalho, "Boosting the efficiency: unconventional waveform design for efficient wireless power transfer," in IEEE Microwave Magazine, vol. 16, no. 3, pp. 87-96, Apr. 2015, doi: 10.1109/MMM.2014.2388332.
Q. D. Nguyen, N. Michishita, Y. Yamada and K. Nakatani, “electrical characteristics of a very small normal mode helical antenna mounted on a wheel in the TPMS application”, 2009 IEEE Antennas and Propagation Society International Symposium, North Charleston, SC, USA, June. 2009, pp.1-4.
Ezzeldin A. Soliman, IEEE, Mai O. Sallam, Walter De Raedt, and Guy A. E. Vandenbosch, “Miniaturized RFID tag antenna operating at 915 MHz” in IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1068-1071, Aug. 2012, doi: 10.1109/LAWP.2012.2215951.
Kyocera AVX, “M620720.868-915MHz Embedded Ceramic Antennas”. [Online]. Available:https://datasheets.kyocera-avx.com/ethertronics/AVX-E_M620720.pdf
Hsin-Chia Lu, Ling-Zhu Lu, Yu-Heng Cai and Ching-Ya Tseng, "Time-switching symmetric transmitter array to increase sweet region for far-field wireless power transmission under receiver rotation and location variation," in IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 2, pp. 881-897, Feb. 2023, doi: 10.1109/TMTT.2022.3200406.
Mouser electronic. MA4E2200B1-287T. [Online]. Available: https://www.mouser.com/datasheet/2/249/maom_s_a0010058477_1-274425.pdf
Constantine A. Balanis,“Antenna theory analysis and design”, 3rd Edition, John Wiley & Sons Inc., Hoboken, New Jersey, pp. 566-570, Apr. 2005.
Z. Chen and Z. Shen, "Planar helical antenna of circular polarization," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 10, pp. 4315-4323, Oct. 2015, doi: 10.1109/TAP.2015.2463746.
L. J. Chu. Physical limitations of omni-directional antennas. Journal of Applied Physics, vol. 19, pp. 1163-1175, Dec. 1948.
Theoretical maximum gain and bandwidth of an antenna [Online]. Available: https://www.giangrandi.org/electronics/anttool/gain.shtml
M. O. Sallam, A. Badawi and E. A. Soliman, “Design of an implantable miniaturized meander line antenna for biomedical telemetry”, European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, June 2016, pp. 1-4.
HP 8648C Synthesized RF Signal Generator. Accessed: Oct. 12, 2023. [Online]. Available: https://www.electronicsdatasheets.com/manufacturers/agilent/parts
MTI Wireless Edge. MT-26001/N/A. 902-928 MHz 9dBi Subscriber Antennas. Accessed: Oct.12, 2023. [Online]. Available: https://www.winncom.com/pdf/MTI_MT_262001NA/MTI_MT_262001NA.pdf
蘇品云, “應用二位元相位偏移調變技術於發射天線陣列中實現位置變異下穩定接收之無線功率傳輸系統,” 臺灣大學電信工程學研究所碩士學位論文, Oct. 2023.
WIFI-Link Technologies. WLP-2450-08. 2400-2483 MHz 8dBi Panel Antennas. [Online]. Available: https://wifi-link.com.tw/images/upload/8_download_79.pdf
G. Wu, J. Ouyang, B. Chen, L. Jin and R. Long, "A small flexible anti-metal RFID tag antenna," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Kaohsiung, Taiwan, July 2016, pp. 289-290, doi: 10.1109/APCAP.2016.7843209.
K. A. Kam, V. Kumar, C. K. Lardner, I. Mollicone, D. Dumitriu and I. Kymissis, "A fully integrable 915MHz implantable antenna system for long-range telemetry in rodents," 2023 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Leuven, Belgium, Nov. 2023, pp. 55-57, doi: 10.1109/IMBioC56839.2023.10305092.
H. Kimouche and H. Zemmour, " A compact fractal dipole antenna for 915 MHz and 2.4 GHz RFID tag applications," Progress In Electromagnetics Research Letters, vol. 26, pp.105-114, Aug. 2011
A. Ennajih, J. Zbitou, A. Errkik, A. Tajmouati, L. El Abdellaoui and M. Latrach, "A novel design of passive UHF RFID tag antenna mounted on paper," 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, Morocco, May 2017, pp. 1-6, doi: 10.1109/WITS.2017.7934631.
A. M. A. Salama and K. M. Quboa, "A new fractal loop antenna for passive UHF RFID tags applications," 2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications, Damascus, Syria, Apr. 2008, pp. 1-6, doi: 10.1109/ICTTA.2008.4530141.
R. A. Ramirez, T. P. Ketterl and T. M. Weller, "Broadband circular polarized antenna for 915MHz RFID systems using miniaturized bow-tie loop elements," 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, Apr. 2015, pp. 1-3, doi: 10.1109/WAMICON.2015.7120396.
L. Yuan, J. Liu and W. Tang, "A novel miniaturization quasi Yagi-Uda antenna," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), Suzhou, China, Aug. 2017, pp. 1-2.
Y. Xiao and Q. Liu, "A compact omnidirectional circularly polarized antenna," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Sinpitchore, Dec. 2021, pp. 947-948, doi: 10.1109/APS/URSI47566.2021.9704573.
Xin Hu and Qiaoli Zhang, "Compact slot antenna for 2.4GHz RFID tags," 2009 3rd European Conference on Antennas and Propagation, Berlin, Mar. 2009, pp. 2796-2798.
Mi Jung Kim, Choon Sik Cho and Jaeheung Kim, "A dual band printed dipole antenna with spiral structure for WLAN application," in IEEE Microwave and Wireless Components Letters, vol. 15, no. 12, pp. 910-912, Dec. 2005, doi: 10.1109/LMWC.2005.859947.
H. Kanaya, Y. Nagata, R. K. Pokharel, K. Yoshida and H. Matsukuma, "Development of electrically small antenna with impedance matching circuit for 2.4GHz band sensor node," 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, July 2010, pp. 1-4, doi: 10.1109/APS.2010.5562040.
W. Zhang, C. She and Y. He, "Design of a frequency-reconfigurable multipolarization antenna for wireless communication," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, June 2016, pp. 1511-1512, doi: 10.1109/APS.2016.7696462.
M. Y. Mat Zain, M. T. Ali, A. N. H. Hussin and B. Baharom, "2.4GHz patch Antenna on Bio-Composite Substrate Using Quarter Wave Transmission Line," 2018 International Symposium on Antennas and Propagation (ISAP), Busan, Korea, Oct. 2018, pp. 1-2.
S. Sarkar, A. Banerjee and B. Gupta, "A balanced feed triple frequency patch loaded printed dipole antenna for WiMAX/WLAN applications," 2018 IEEE International RF and Microwave Conference (RFM), Penang, Malaysia, Dec. 2018, pp. 123-126, doi: 10.1109/RFM.2018.8846522.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96526-
dc.description.abstract本論文主要研究於無線功率傳輸系統中接收天線微小化設計。為解決目前無線功率傳輸系統當中之接收天線尺寸偏大,不合適使用於生物體如蜜蜂身上的困難。本論文主要提出兩種天線微小化設計方式。
首先提出915MHz天線微小化的方式為利用FR4雙層版製作螺旋天線,這一設計採用的是接地共平面波導饋入。此螺旋天線共設計兩款,具有相似的架構,差異的目的是希望有兩款不同的匹配電路。螺旋天線尺寸分別為10×25mm及10×26mm,以高頻3D結構電磁場模擬軟體Ansys HFSS (high frequency structure simulator)模擬天線本身特性,對線圈數、線圈間距以及螺旋線圈截面積進行參數優化,第一款天線實際量測最大增益為-7.19dBi,第二款則為-7.06dBi,並且有保持著偶極天線的場型,量測上垂直於螺旋天線的平面上有等值大小的增益。
第二種則為2.4GHz天線微小化設計,方式是採用蜿蜒線式天線,基板是使用RO4003雙層板,尺寸為10×15mm,蜿蜒線式天線設計方式則是採用微帶線饋入,利用耦合的方式,並且利用末端折線次數的優化,達成天線面積縮小,實際量測最大增益為-4.45dBi,並且也保持著偶極天線的場型,垂直於螺旋天線的平面上有等大小的增益。
因為天線皆是經過微小化設計,天線本身無法完成匹配,考量到微小化天線對匹配的敏感性,以及兼顧面積尺寸下,使用SMD電感及電容元件作外部匹配,均可達-10dB以下匹配。在915MHz及2.4GHz接收天線也有配合整流電路進行量測,以比較其與單獨天線2D場型量測之間的差異。
zh_TW
dc.description.abstractThis thesis focuses on the miniaturized design of receiving antennas in wireless power transfer (WPT) systems. The study aims to address the issue of large receiving antenna sizes in current WPT systems, which are unsuitable for applications on biological entities such as bees. Two miniaturization approaches for antenna design are proposed in this thesis.
The first approach targets the miniaturization of a 915 MHz antenna by utilizing a spiral antenna fabricated on a dual-layer FR4 substrate with a grounded coplanar waveguide (GCPW) feeding structure. Two variants of the 915 MHz spiral antenna are designed, featuring similar architectures but differing in their matching circuits. The spiral antenna dimensions are 10×25 mm and 10×26 mm, respectively. Two antenna are simulated using the high-frequency 3D electromagnetic field simulation software Ansys HFSS (High-Frequency Structure Simulator). Key parameters, including the number of turns, spacing between turns, and cross-sectional area of the spiral, were optimized. The measured maximum gain of the first antenna is -7.19 dBi, and the second antenna achieves -7.06 dBi. while maintaining a dipole-like radiation pattern, with uniform gain observed in the plane perpendicular to the spiral antenna.
The second approach involves the miniaturization of a 2.4 GHz antenna using a meandered-line design. This antenna was fabricated on a dual-layer RO4003 substrate with dimensions of 10×15 mm. The meandered-line antenna design employed a microstrip feed and coupling mechanism, with further size reduction achieved by optimizing the number of bends at the end sections. The measured maximum gain was -4.45 dBi, also maintaining a dipole-like radiation pattern with uniform gain in the plane perpendicular to the antenna.
Due to the miniaturized nature of both antennas, good intrinsic impedance matching could not be achieved. Considering the sensitivity of miniaturized antennas to matching and the need to balance size and performance, external matching circuits using SMD components are implemented. Both antennas can achieve better than 10dB return loss. Measurements were conducted on both the 915 MHz and 2.4 GHz receiving antennas integrated with rectifier circuits, and the results were compared with those obtained from standalone antenna 2D radiation pattern measurements.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:22:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:22:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 iv
圖次 vi
表次 xi
Chapter 1 緒論 1
1.1 研究背景 1
1.2 研究動機與應用情境 4
1.2.1 無線供電 4
1.2.2 生物飛行器 5
1.2.3 無人機 5
1.3 文獻回顧 7
1.4 論文貢獻 11
1.5 論文章節介紹 12
Chapter 2 無線功率傳輸系統簡介 14
2.1 接收功率估計 14
2.2 功率整流元件 15
2.3 PCB製程 19
Chapter 3 應用於915MHz頻帶接收天線微小化設計 22
3.1 螺旋天線簡介 22
3.2 平面式螺旋天線文獻參考 30
3.3 單一螺旋天線模擬結果及特性比較 31
Chapter 4 應用於2.4GHz頻帶微小化接收天線設計 46
4.1 微小化蜿蜒線天線介紹 46
4.2 單一蜿蜒線天線模擬結果及特性比較 47
Chapter 5 量測結果 56
5.1 量測系統架構 56
5.1.1 發射天線與訊號源 56
5.1.2 功率整流元件簡介 58
5.2 單一接收天線量測分析 66
5.2.1 915MHz螺旋天線匹配與量測 66
5.2.2 2.4GHz蜿蜒線天線匹配與量測 71
5.3 天線場型量測 73
5.3.1 915MHz天線量測結果 75
5.3.2 2.4GHz天線量測結果 77
5.4 天線結合整流電路後的接收場型 79
5.4.1 915MHz頻段 79
5.4.2 2.4GHz頻段 81
Chapter 6 結論與未來展望 84
6.1 結論 84
6.2 未來展望 86
參考文獻 88
-
dc.language.isozh_TW-
dc.subject無線功率傳輸zh_TW
dc.subject螺旋天線zh_TW
dc.subject蜿蜒線式天線zh_TW
dc.subject天線微小化設計zh_TW
dc.subjecthelical antennaen
dc.subjectmeander line antennaen
dc.subjectwireless power transferen
dc.subjectantenna miniaturizationen
dc.title利用915MHz螺旋天線以及2.4GHz蜿蜒線天線實現無線功率傳輸系統接收天線之微小化zh_TW
dc.titleUsing 915MHz Helix Antenna and 2.4GHz Meander-line Antenna for Miniaturization of Receiving Antennas in Wireless Power Transmission Systemen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳晏笙;馬自莊;謝松年zh_TW
dc.contributor.oralexamcommitteeYen-Sheng Chen;Tzyh-Ghuang Ma;Sung-Nien Hsiehen
dc.subject.keyword螺旋天線,蜿蜒線式天線,天線微小化設計,無線功率傳輸,zh_TW
dc.subject.keywordhelical antenna,meander line antenna,antenna miniaturization,wireless power transfer,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202500234-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-22-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-02-20-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf23.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved