請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96511
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳士元 | zh_TW |
dc.contributor.advisor | Shih-Yuan Chen | en |
dc.contributor.author | 毛冠勛 | zh_TW |
dc.contributor.author | Kuan-Hsun Mao | en |
dc.date.accessioned | 2025-02-19T16:18:02Z | - |
dc.date.available | 2025-02-20 | - |
dc.date.copyright | 2025-02-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-12 | - |
dc.identifier.citation | [1] R. Jeanty and S.-Y. Chen, “A Broadband Bidirectional Circularly Polarized Phase-Inverter-Based Periodic Leaky-Wave Antenna with Same Handedness,” IEEE Access, vol. 11, pp. 106760-106771, 2023.
[2] A. Pourghorban Saghati, M. M. Mirsalehi, and M. H. Neshati, “A HMSIW Circularly Polarized Leaky-Wave Antenna with Backward, Broadside, and Forward Radiation,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 451-454, 2014. [3] Y.-L. Lyu, F.-Y. Meng, G.-H. Yang, D. Erni, Q. Wu, and K. Wu, “Periodic SIW Leaky-Wave Antenna with Large Circularly Polarized Beam Scanning Range,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2493-2496, 2017. [4] M. M. Sabahi, A. A. Heidari, and M. Movahhedi, “A Compact CRLH Circularly Polarized Leaky-Wave Antenna Based on Substrate-Integrated Waveguide,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4407-4414, Sep. 2018. [5] S. Wang, Z. Li, B. Wei, S. Liu, and J. Wang, “A Ka-Band Circularly Polarized Fixed-Frequency Beam-Scanning Leaky-Wave Antenna Based on Groove Gap Waveguide with Consistent High Gains,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 4, pp. 1959-1969, Apr. 2021. [6] S. Wang, Z. Li, and J. Wang, “A Quad-Polarization Reconfigurable Fixed-Frequency Beam-Scanning Leaky-Wave Antenna Based on the Holographic Method for Millimeter-Wave Application,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 1, pp. 723-733, Jan. 2023. [7] S. Li, Z. Li, Z. Xiong, S. Wang, Y. Li, and J. Wang, “A Hexa-Polarization Reconfigurable Fixed-Frequency Beam-Scanning Leaky-Wave Antenna for Millimeter-Wave Application,” IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 7, pp. 2185-2189, July 2024. [8] J.-H. Fu et al., “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 760-763, 2017. [9] A. Suntives and S. V. Hum, “A Fixed-Frequency Beam-Steerable Half-Mode Substrate Integrated Waveguide Leaky-Wave Antenna,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2540-2544, May 2012. [10] D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 2, pp. 68-70, Feb. 2001. [11] W. Hong et al., “Half Mode Substrate Integrated Waveguide: A New Guided Wave Structure for Microwave and Millimeter Wave Application,” 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, China, 2006, pp. 219-219. [12] D. R. Jackson, C. Caloz, and T. Itoh, “Leaky-Wave Antennas,” Proceedings of the IEEE, vol. 100, no. 7, pp. 2194-2206, July 2012. [13] C. A. Balanis, Antenna Theory: Analysis and Design. 3rd ed. Hoboken, NJ: Wiley, 2005. [14] J. Liu, D. R. Jackson, Y. Li, C. Zhang, and Y. Long, “Investigations of SIW Leaky-Wave Antenna for Endfire-Radiation with Narrow Beam and Sidelobe Suppression,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 9, pp. 4489-4497, Sep. 2014. [15] Y. Hou, Y. Li, Z. Zhang, and Z. Feng, “High-Gain Leaky-Wave Endfire Antenna Based on Hansen–Woodyard Condition,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 10, pp. 2155-2159, Oct. 2019. [16] Y. Geng, J. Wang, Z. Li, Y. Li, M. Chen, and Z. Zhang, “Dual-Beam and Tri-Band SIW Leaky-Wave Antenna with Wide Beam Scanning Range Including Broadside Direction,” IEEE Access, vol. 7, pp. 176361-176368, 2019. [17] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ: Wiley, 2012. [18] Y. Geng, J. Wang, Y. Li, Z. Li, M. Chen, and Z. Zhang, “Radiation Pattern-Reconfigurable Leaky-Wave Antenna for Fixed-Frequency Beam Steering Based on Substrate-Integrated Waveguide,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 2, pp. 387-391, Feb. 2019. [19] D. K. Karmokar, K. P. Esselle, and S. G. Hay, “Fixed-Frequency Beam Steering of Microstrip Leaky-Wave Antennas Using Binary Switches,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2146-2154, June 2016. [20] D. René-Loxq, O. Lafond, M. Himdi, L. Roy, and F. Ghaffar, “Reconfigurable Half-Mode SIW Antenna Using Uniaxial Field Programmable Microwave Substrate Structure,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 11, pp. 11103-11108, Nov. 2022. [21] J. Xu, W. Hong, H. Tang, Z. Kuai, and K. Wu, “Half-Mode Substrate Integrated Waveguide (HMSIW) Leaky-Wave Antenna for Millimeter-Wave Applications,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 85-88, 2008. [22] D. Yang and S. Nam, “Frequency Reconfigurable Beam Scanning Squarely Modulated Reactance Surface Antenna with Period and Surface Reactance Control,” IEEE Access, vol. 11, pp. 72552-72561, 2023. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96511 | - |
dc.description.abstract | 在本論文中,我們提出了一款基於半模態基板集成波導結構的新型圓極化漏波天線。該天線結合了週期性擺放的寬的橫向開槽和一條縱向延伸的狹縫,其單元結構並使用兩個集總電容,透過選擇適當的電容值可實現從後向(-42°)、邊側(0°)到前向(35°)的頻率掃描波束,同時模擬結果顯示其主波束方向之軸比均保持在3 dB以下。
此外,吾人發現,透過調整電容值,可以改變波導結構中的傳播常數,顯示此天線可藉由改變電容值來實現固定頻率的圓極化波束掃描。基於此原理,將電容替換為變容二極體,並將偏壓電路整合到原天線結構中;經過適當設計,包括射頻與直流訊號隔離元件等,可將主波束方向之軸比維持在3 dB以下。該天線在維持頻率相依波束掃描特性的同時,透過對變容二極體施加反向電壓,亦可在固定頻率下實現圓極化波束掃描。 該天線由14個單元結構組成,並經過製作與測試,實測結果與模擬結果高度一致。樣品天線實現了從-30°到32°的固定頻率圓極化波束掃描範圍,主波束方向之軸比皆小於3 dB,且在所有波束方向的操作條件下|S11|均低於-10 dB。樣品天線在邊側方向達到10.4 dBic的峰值增益,測得的效率為 65%,並在波束掃描過程中保持小於2.6 dB的增益變化。其緊湊的尺寸和穩定的性能使其適用於需要固定頻率圓極化波束掃描的雷達系統。 | zh_TW |
dc.description.abstract | In this thesis, a novel circularly polarized (CP) leaky-wave antenna (LWA) based on a half-mode substrate-integrated waveguide (HMSIW) structure is proposed. The unit cell of the proposed antenna, incorporating a transverse wide slot and a longitudinal slit, integrates two lumped capacitors with capacitances selected to enable frequency CP beam scanning from backward (-42°) to forward (35°), including broadside (0°), while maintaining an axial ratio (AR) below 3 dB, as confirmed by simulation results.
Additionally, we found that by adjusting the capacitance values, the propagation constant within the guided structure could be modified, indicating that the antenna can achieve fixed-frequency CP beam scanning through capacitance variation. Based on this principle, the capacitors were replaced by varactor diodes, and a biasing circuit was integrated into the original LWA structure. With an appropriate design that includes RF and DC signal isolation components, the AR was maintained below 3 dB. The designed antenna, while supporting frequency beam scanning, can also achieve CP beam scanning at a fixed frequency by applying a proper reverse bias voltage to the varactors. The proposed antenna, consisting of 14 unit cells, was designed, fabricated, and tested, with measured results closely matching the simulations. The antenna achieved a fixed-frequency CP beam scanning range from -30° to 32°, including broadside, with an AR below 3 dB and |S11| below -10 dB across all beam directions. The prototype achieved a peak gain of 10.4 dBic and a measured efficiency of 65% at broadside, with gain variation of less than 2.6 dB during beam scanning. Its compact size and stable performance make it suitable for radar systems requiring CP beam scanning at fixed frequencies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:18:02Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-19T16:18:02Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution 2 1.3 Overview 3 Chapter 2 Background Theories 4 2.1 SIW and HMSIW 4 2.2 Leaky-wave antenna 6 2.2.1 Periodic Structure and Unit Cell 9 2.3 Fixed-Frequency Beam-scanning Leaky-Wave Antenna 12 2.4 Composite Right/Left-handed (CRLH) Transmission Line 14 Chapter 3 Proposed Frequency Beam-Scanning Leaky-Wave Antenna with Circular Polarization 19 3.1 Unit Cell of CP Frequency Beam-Scanning LWA 19 3.2 Frequency Beam-Scanning Leaky-Wave Antenna with Circular Polarization 48 3.3 Unit Cell Verification 56 3.3.1 Forward Radiation @ 10GHz 56 3.3.2 Backward Radiation @ 10GHz 61 3.4 Leaky-Wave Antenna Verification 68 Chapter 4 Proposed Fixed Frequency Beam-Scanning Leaky-Wave Antenna with Circular polarization 75 4.1 Proposed Unit Cell 75 4.1.1 DC Bias Routing Design on Unit Cell and Antenna 82 4.2 Fixed-Frequency Beam-Scanning Leaky-Wave Antenna 84 Chapter 5 Conclusion 95 REFERENCE 97 | - |
dc.language.iso | en | - |
dc.title | 基於半模態基板集成波導之頻率相依與固定頻率之波束掃描圓極化漏波天線 | zh_TW |
dc.title | Frequency-Dependent and Fixed-Frequency Beam-Scanning Circularly Polarized Leaky-Wave Antenna Based on Half-Mode Substrate Integrated Waveguide | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林坤佑;歐陽良昱;簡羅斌 | zh_TW |
dc.contributor.oralexamcommittee | Kun-You Lin;Liang-Yu Ou Yang;Robin Jeanty | en |
dc.subject.keyword | 圓極化,固定頻率波束掃描,漏波天線, | zh_TW |
dc.subject.keyword | circular polarization,fixed-frequency beam scanning,leaky-wave antennas, | en |
dc.relation.page | 99 | - |
dc.identifier.doi | 10.6342/NTU202404716 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-12-13 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 7.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。