請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96510完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝志豪 | zh_TW |
| dc.contributor.advisor | Chih-hao Hsieh | en |
| dc.contributor.author | 吳承泰 | zh_TW |
| dc.contributor.author | Cheng-Tai Wu | en |
| dc.date.accessioned | 2025-02-19T16:17:46Z | - |
| dc.date.available | 2025-02-20 | - |
| dc.date.copyright | 2025-02-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-22 | - |
| dc.identifier.citation | Bassler, B. L., Gibbons, P. J., Yu, C., & Roseman, S. (1991). Chitin utilization by marine bacteria. Chemotaxis to chitin oligosaccharides by Vibrio furnissii. J Biol Chem, 266(36), 24268-24275. https://www.ncbi.nlm.nih.gov/pubmed/1761532
Bell, W., & Mitchell, R. (1972). Chemotactic and Growth Responses of Marine Bacteria to Algal Extracellular Products. Biological Bulletin, 143(2), 265-&. https://doi.org/10.2307/1540052 Borer, B., Zhang, I. H., Baker, A. E., O'Toole, G. A., & Babbin, A. R. (2023). Porous marine snow differentially benefits chemotactic, motile, and nonmotile bacteria. Pnas Nexus, 2(2). https://doi.org/10.1093/pnasnexus/pgac311 Brumley, D. R., Carrara, F., Hein, A. M., Hagstrom, G. I., Levin, S. A., & Stocker, R. (2020). Cutting Through the Noise: Bacterial Chemotaxis in Marine Microenvironments. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00527 Brumley, D. R., Carrara, F., Hein, A. M., Yawata, Y., Levin, S. A., & Stocker, R. (2019). Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proceedings of the National Academy of Sciences of the United States of America, 116(22), 10792-10797. https://doi.org/10.1073/pnas.1816621116 Buesseler, K. O., & Boyd, P. W. (2009). Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnology and Oceanography, 54(4), 1210-1232. https://doi.org/10.4319/lo.2009.54.4.1210 Cadotte, M. W., Mai, D. V., Jantz, S., Collins, M. D., Keele, M., & Drake, J. A. (2006). On testing the competition-colonization trade-off in a multispecies assemblage. American Naturalist, 168(5), 704-709. https://doi.org/10.1086/508296 Carr, N., Davis, C. E., Blackbird, S., Daniels, L. R., Preece, C., Woodward, M., & Mahaffey, C. (2019). Seasonal and spatial variability in the optical characterstics of DOM in a temperate shelf sea. Progress in Oceanography, 177. https://doi.org/10.1016/j.pocean.2018.02.025 Chauhan, A., & Williams, H. N. (2006). Response of Bdellovibrio and Like Organisms (BALOs) to the Migration of Naturally Occurring Bacteria to Chemoattractants. Current Microbiology, 53(6), 516-522. https://doi.org/10.1007/s00284-006-0292-2 Clerc, E. E., Raina, J. B., Keegstra, J. M., Landry, Z., Pontrelli, S., Alcolombri, U., Lambert, B. S., Anelli, V., Vincent, F., Masdeu-Navarro, M., Sichert, A., De Schaetzen, F., Sauer, U., Simó, R., Hehemann, J. H., Vardi, A., Seymour, J. R., & Stocker, R. (2023). Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-43143-z Colin, R., Ni, B., Laganenka, L., & Sourjik, V. (2021). Multiple functions of flagellar motility and chemotaxis in bacterial physiology. Fems Microbiology Reviews, 45(6). https://doi.org/10.1093/femsre/fuab038 Cram, J. A., Chow, C. E. T., Sachdeva, R., Needham, D. M., Parada, A. E., Steele, J. A., & Fuhrman, J. A. (2015). Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. Isme Journal, 9(3), 563-580. https://doi.org/10.1038/ismej.2014.153 Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F., & Cordero, O. X. (2016). Microbial interactions lead to rapid micro-scale successions on model marine particles. Nature Communications, 7. https://doi.org/10.1038/ncomms11965 Ebrahimi, A., Schwartzman, J., & Cordero, O. X. (2019). Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 116(46), 23309-23316. https://doi.org/10.1073/pnas.1908512116 Enke, T. N., Datta, M. S., Schwartzman, J., Cermak, N., Schmitz, D., Barrere, J., Pascual-García, A., & Cordero, O. X. (2019). Modular Assembly of Polysaccharide-Degrading Marine Microbial Communities. Current Biology, 29(9), 1528-+. https://doi.org/10.1016/j.cub.2019.03.047 Glibert, P. M., Magnien, R., Lomas, M. W., Alexander, J., Fan, C. L., Haramoto, E., Trice, M., & Kana, T. M. (2001). Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: Comparison of 1997, 1998, and 1999 events. Estuaries, 24(6a), 875-883. https://doi.org/10.2307/1353178 Gough, R., Holliman, P. J., Cooke, G. M., & Freeman, C. (2015). Characterisation of algogenic organic matter during an algal bloom and its implications for trihalomethane formation. Sustainability of Water Quality and Ecology, 6, 11-19. https://doi.org/10.1016/j.swaqe.2014.12.008 Grossart, H. P., Levold, F., Allgaier, M., Simon, M., & Brinkhoff, T. (2005). Marine diatom species harbour distinct bacterial communities. Environmental Microbiology, 7(6), 860-873. https://doi.org/10.1111/j.1462-2920.2005.00759.x Grossart, H. P., Riemann, L., & Azam, F. (2001). Bacterial motility in the sea and its ecological implications. Aquatic Microbial Ecology, 25(3), 247-258. https://doi.org/10.3354/ame025247 Han, Y., Jiao, N. Z., Zhang, Y., Zhang, F., He, C., Liang, X. J., Cai, R. H., Shi, Q., & Tang, K. (2021). Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms. Microbiome, 9(1). https://doi.org/10.1186/s40168-021-01022-z Hein, A. M., Brumley, D. R., Carrara, F., Stocker, R., & Levin, S. A. (2016). Physical limits on bacterial navigation in dynamic environments (vol 13, 20150844, 2016). Journal of the Royal Society Interface, 13(121). https://doi.org/10.1098/rsif.2016.0586 Honjo, S., Eglinton, T. I., Taylor, C. D., Ulmer, K. M., Sievert, S. M., Bracher, A., German, C. R., Edgcomb, V., Francois, R., Iglesias-Rodriguez, M. D., Van Mooy, B., & Repeta, D. J. (2014). UNDERSTANDING THE ROLE OF THE BIOLOGICAL PUMP IN THE GLOBAL CARBON CYCLE An Imperative for Ocean Science. Oceanography, 27(3), 10-16. https://doi.org/10.5670/oceanog.2014.78 Jaffé, R., McKnight, D., Maie, N., Cory, R., McDowell, W. H., & Campbell, J. L. (2008). Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. Journal of Geophysical Research-Biogeosciences, 113(G4). https://doi.org/10.1029/2008jg000683 Keegstra, J. M., Carrara, F., & Stocker, R. (2022). The ecological roles of bacterial chemotaxis. Nature Reviews Microbiology, 20(8), 491-504. https://doi.org/10.1038/s41579-022-00709-w Keyhani, N. O., & Roseman, S. (1999). Physiological aspects of chitin catabolism in marine bacteria. Biochimica Et Biophysica Acta-General Subjects, 1473(1), 108-122. https://doi.org/10.1016/S0304-4165(99)00172-5 Kiorboe, T., Grossart, H. P., Ploug, H., & Tang, K. (2002). Mechanisms and rates of bacterial colonization of sinking aggregates. Applied and Environmental Microbiology, 68(8), 3996-4006. https://doi.org/10.1128/Aem.68.8.3996-4006.2002 Lambert, B. S., Fernandez, V. I., & Stocker, R. (2019). Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnology and Oceanography Letters, 4(5), 113-118. https://doi.org/10.1002/lol2.10113 Lapoussière, A., Michel, C., Starr, M., Gosselin, M., & Poulin, M. (2011). Role of free-living and particle-attached bacteria in the recycling and export of organic material in the Hudson Bay system. Journal of Marine Systems, 88(3), 434-445. https://doi.org/10.1016/j.jmarsys.2010.12.003 Larsen, M. H., Blackburn, N., Larsen, J. L., & Olsen, J. E. (2004). Influences of temperature, salinity and starvation on the motility and chemotactic response of Vibrio anguillarum. Microbiology-Sgm, 150, 1283-1290. https://doi.org/10.1099/mic.0.26379-0 Long, R. A., & Azam, F. (2001). Antagonistic interactions among marine pelagic bacteria. Applied and Environmental Microbiology, 67(11), 4975-4983. https://doi.org/10.1128/Aem.67.11.4975-4983.2001 Mesibov, R., Ordal, G. W., & Adler, J. (1973). The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. Weber law and related phenomena. J Gen Physiol, 62(2), 203-223. https://doi.org/10.1085/jgp.62.2.203 Mitchell, J. G., Pearson, L., & Dillon, S. (1996). Clustering of marine bacteria in seawater enrichments. Applied and Environmental Microbiology, 62(10), 3716-3721. https://doi.org/10.1128/Aem.62.10.3716-3721.1996 Olmos, E., Loubiere, K., Martin, C., Delaplace, G., & Marc, A. (2015). Critical agitation for microcarrier suspension in orbital shaken bioreactors: Experimental study and dimensional analysis. Chemical Engineering Science, 122, 545-554. https://doi.org/10.1016/j.ces.2014.08.063 Poulicek, M., & Jeuniaux, C. (1991). Chitin Biodegradation in Marine Environments - an Experimental Approach. Biochemical Systematics and Ecology, 19(5), 385-394. https://doi.org/10.1016/0305-1978(91)90055-5 Raina, J. B., Fernandez, V., Lambert, B., Stocker, R., & Seymour, J. R. (2019). The role of microbial motility and chemotaxis in symbiosis. Nature Reviews Microbiology, 17(5), 284-294. https://doi.org/10.1038/s41579-019-0182-9 Raina, J. B., Giardina, M., Brumley, D. R., Clode, P. L., Pernice, M., Guagliardo, P., Bougoure, J., Mendis, H., Smriga, S., Sonnenschein, E. C., Ullrich, M. S., Stocker, R., & Seymour, J. R. (2023). Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria. Nature Microbiology, 8(3). https://doi.org/10.1038/s41564-023-01327-9 Raina, J. B., Lambert, B. S., Parks, D. H., Rinke, C., Siboni, N., Bramucci, A., Ostrowski, M., Signal, B., Lutz, A., Mendis, H., Rubino, F., Fernandez, V. I., Stocker, R., Hugenholtz, P., Tyson, G. W., & Seymour, J. R. (2022). Chemotaxis shapes the microscale organization of the ocean's microbiome. Nature, 605(7908), 132-+. https://doi.org/10.1038/s41586-022-04614-3 Riquelme, C. E., & Ishida, Y. (1988). Chemotaxis of Bacteria to Extracellular Products of Marine Bloom Algae. Journal of General and Applied Microbiology, 34(5), 417-423. https://doi.org/10.2323/jgam.34.417 Russell, S. L. (2019). Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. Fems Microbiology Letters, 366(3). https://doi.org/10.1093/femsle/fnz013 Seymour, J. R., Ahmed, T., Durham, W. M., & Stocker, R. (2010). Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquatic Microbial Ecology, 59(2), 161-168. https://doi.org/10.3354/ame01400 Seymour, J. R., Simó, R., Ahmed, T., & Stocker, R. (2010). Chemoattraction to Dimethylsulfoniopropionate Throughout the Marine Microbial Food Web. Science, 329(5989), 342-345. https://doi.org/10.1126/science.1188418 Showalter, G. M., & Deming, J. W. (2018). Low-temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium 34H. Environmental Microbiology Reports, 10(1), 92-101. https://doi.org/10.1111/1758-2229.12610 Souza, C. P., Almeida, B. C., Colwell, R. R., & Rivera, I. N. G. (2011). The Importance of Chitin in the Marine Environment. Marine Biotechnology, 13(5), 823-830. https://doi.org/10.1007/s10126-011-9388-1 Stocker, R., & Seymour, J. R. (2012). Ecology and Physics of Bacterial Chemotaxis in the Ocean. Microbiology and Molecular Biology Reviews, 76(4), 792-812. https://doi.org/10.1128/Mmbr.00029-12 Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E., & Polz, M. F. (2008). Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4209-4214. https://doi.org/10.1073/pnas.0709765105 Tout, J., Jeffries, T. C., Petrou, K., Tyson, G. W., Webster, N. S., Garren, M., Stocker, R., Ralph, P. J., & Seymour, J. R. (2015). Chemotaxis by natural populations of coral reef bacteria. Isme Journal, 9(8), 1764-1777. https://doi.org/10.1038/ismej.2014.261 Wang, S. H., Wang, W. W., Chen, J. Y., Zhang, B., Zhao, L., & Jiang, X. (2020). Characteristics of Dissolved Organic Matter and Its Role in Lake Eutrophication at the Early Stage of Algal Blooms-A Case Study of Lake Taihu, China. Water, 12(8). https://doi.org/10.3390/w12082278 Yam, E. M., & Tang, K. W. (2007). Effects of starvation on aggregate colonization and motility of marine bacteria. Aquatic Microbial Ecology, 48(3), 207-215. https://doi.org/10.3354/ame048207 Yawata, Y., Cordero, O. X., Menolascina, F., Hehemann, J. H., Polz, M. F., & Stocker, R. (2014). Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5622-5627. https://doi.org/10.1073/pnas.1318943111 Zobell, C. E., & Rittenberg, S. C. (1938). The occurrence and characteristics of chitinoclastic bacteria in the sea. Journal of Bacteriology, 35(3), 275-287. https://doi.org/10.1128/Jb.35.3.275-287.1938 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96510 | - |
| dc.description.abstract | 海洋細菌的化學趨向性在全球生物地球化學循環以及海洋生態系統的運作中扮演了關鍵角色,因此,深入探討影響其作用的相關因子具有重要意義。過去的研究表明,海洋中普遍存在的有機化合物可能干擾細菌的化學趨向性。然而,目前尚無研究探討海水中溶解有機質(DOM)濃度對海洋細菌化學趨向性的具體影響。本研究設計了一種方法,用於檢測海洋細菌在不同海水條件下化學趨向性強度的變化。我們首先將沿岸海水中的天然細菌群集與無菌的人工有機顆粒(幾丁質顆粒)共同培養,以獲得具化學趨向性的顆粒附著型海洋細菌。接著,分離這些培養後的有機顆粒,並將其置於含有新鮮人工幾丁質顆粒的海水中,設置不同的DOM濃度條件。新加入的幾丁質顆粒作為細菌的化學趨向目標。我們透過比較浮游於海水中與附著於新幾丁質顆粒上的細菌數量比例,量化細菌的相對化學趨向性強度。此外,為了區分那些不作為細菌化學趨向性目標的海水溶解有機質,我們將其定義為「非目標溶解有機質」(nt-DOM)。本研究測試了天然沿岸海水中的細菌群集在不同濃度nt-DOM條件下化學趨向性的變化。結果顯示,海水中的nt-DOM會顯著降低細菌群集的化學趨向性,且nt-DOM濃度與細菌化學趨向性之間呈現穩定的負相關。這種負相關性在不同海水來源的實驗中均有表現。我們的研究結果表明,海水中的非目標溶解有機質會干擾細菌群集的化學趨向性強度,從而可能改變生物地球化學循環的動態過程。 | zh_TW |
| dc.description.abstract | The chemotaxis of planktonic bacteria plays a crucial role in determining how efficiently these organisms can approach particles in marine environments, thereby facilitating the decomposition of particulate organic matter. This process significantly influences marine microbial food webs and biogeochemical cycles. Understanding the factors that shape bacterial chemotaxis is therefore critical. Previous studies have demonstrated that ubiquitous organic molecules can interfere with bacterial chemosensory mechanisms. However, no research has specifically investigated how dissolved organic matter (DOM) in seawater impacts bacterial chemotaxis, despite the potential for environmental DOM to disrupt this process. In this study, we developed a methodology to evaluate changes in the chemotactic strength of bacterial assemblages under varying concentrations of DOM. To establish particle-attached bacteria with chemotactic capabilities, we incubated a natural bacterial assemblage, collected from a coastal environment, with organic particles (artificial chitin magnetic beads, or CMBs) suspended in seawater. The CMBs with attached bacteria were then isolated and incubated in seawater containing fresh synthetic chitin particles under different DOM concentrations. Using the synthetic particles as chemotactic targets, we quantified the ratio of attached (on the particles) to suspended (in seawater) bacterial abundance as an indicator of relative chemotactic strength. To clarify that the DOM in bulk seawater is not the target of bacterial chemotaxis, we introduced the term “non-target DOM” (nt-DOM). We investigated the chemotactic strength of naturally derived bacterial assemblages across seawater with varying nt-DOM concentrations. Our results reveal a robust negative relationship between chemotactic strength and nt-DOM concentration, regardless of the seawater source. This finding suggests that the nt-DOM concentration in bulk seawater interferes with bacterial chemotaxis, potentially altering biogeochemical fluxes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:17:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-19T16:17:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgment i
Abstract ii 中文摘要 iv Content v List of Figures vii List of Tables viii Introduction 1 Materials and Methods 5 Enrichment experiment to establish the enriched chitin targeting chemotactic bacteria assemblages 5 Estimating the logistic growth function for the enrichment experiment 6 Preparation of seawater with different nt-DOM concentrations 7 Measurements of nt-DOM concentrations 7 Chemotaxis assay 9 A.S. ratio: the indicator for bacteria chemotaxis strength 10 Critical suspension agitation rate 12 Fluorescent microscopy for quantifying bacteria abundance 13 i. Bacteria coverage rate quantification 14 ii. Suspended bacteria abundance quantification 14 iii. Particle-attached bacteria abundance quantification 14 Statistical analyses 15 Results 17 Chemotaxis strength of bacteria assemblage is negatively correlated with nt-DOM concentration 17 The negative correlation of Chemotaxis strength and nt-DOM is robust to different seawater sources 17 Discussion 19 Appendix. The practicability of chitin targeting chemotactic bacteria enrichment 37 References 41 | - |
| dc.language.iso | en | - |
| dc.subject | 異營性微生物 | zh_TW |
| dc.subject | 幾丁質微粒 | zh_TW |
| dc.subject | 顆粒相關微生物 | zh_TW |
| dc.subject | 顆粒性有機質 | zh_TW |
| dc.subject | 溶解有機質 | zh_TW |
| dc.subject | 化學趨向性 | zh_TW |
| dc.subject | particle-associated bacteria | en |
| dc.subject | dissolved organic matter | en |
| dc.subject | heterotrophic bacteria | en |
| dc.subject | chemotaxis | en |
| dc.subject | particulate organic matter | en |
| dc.subject | chitin particles | en |
| dc.title | 環境非目標溶解有機物濃度對海洋細菌化學趨向性之影響 | zh_TW |
| dc.title | Effects of environmental non-target DOM concentrations on marine bacteria chemotaxis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 孫珍理;葉怡君;張峰勳;張俊偉 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Li Sun;Yi-Chun Yeh;Feng-Hsun Chang;Chun-Wei Chang | en |
| dc.subject.keyword | 化學趨向性,異營性微生物,溶解有機質,顆粒性有機質,顆粒相關微生物,幾丁質微粒, | zh_TW |
| dc.subject.keyword | chemotaxis,heterotrophic bacteria,dissolved organic matter,particulate organic matter,particle-associated bacteria,chitin particles, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202500277 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-23 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2025-02-20 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 2.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
