請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96497完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志軒 | zh_TW |
| dc.contributor.advisor | Chih-Hsuan Chen | en |
| dc.contributor.author | 江繼光 | zh_TW |
| dc.contributor.author | Ji-Kuang Jiang | en |
| dc.date.accessioned | 2025-02-19T16:14:19Z | - |
| dc.date.available | 2025-02-20 | - |
| dc.date.copyright | 2025-02-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-24 | - |
| dc.identifier.citation | [1] Otsuka, K. and C.M. Wayman, Shape memory materials. 1999: Cambridge university press.
[2] Kajiwara, S., Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Materials Science and Engineering: A, 1999. 273: p. 67-88. [3] Otsuka, H., et al., Effects of alloying additions on Fe-Mn-Si shape memory alloys. ISIJ international, 1990. 30(8): p. 674-679. [4] Sato, A. and T. Mori, Development of a shape memory alloy Fe Mn Si. Materials Science and Engineering: A, 1991. 146(1-2): p. 197-204. [5] Chung, C. and C. Lam, Cu-based shape memory alloys with enhanced thermal stability and mechanical properties. Materials Science and Engineering: A, 1999. 273: p. 622-624. [6] Moghaddam, A.O., M. Ketabchi, and R. Bahrami, Kinetic grain growth, shape memory and corrosion behavior of two Cu-based shape memory alloys after thermomechanical treatment. Transactions of nonferrous metals society of China, 2013. 23(10): p. 2896-2904. [7] Planes, A., et al., Martensitic transformation of Cu-based shape-memory alloys: Elastic anisotropy and entropy change. Physical Review B, 1992. 45(14): p. 7633. [8] Matsunaga, T., et al., High strength Ti–Ni-based shape memory thin films. Materials Science and Engineering: A, 1999. 273: p. 745-748. [9] Cai, W., X. Meng, and L. Zhao, Recent development of TiNi-based shape memory alloys. Current Opinion in Solid State and Materials Science, 2005. 9(6): p. 296-302. [10] Prokoshkin, S., et al., Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti–Ni based shape memory alloys. Acta Materialia, 2005. 53(9): p. 2703-2714. [11] Otsuka, K. and X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in materials science, 2005. 50(5): p. 511-678. [12] Rondelli, G., Corrosion resistance tests on NiTi shape memory alloy. Biomaterials, 1996. 17(20): p. 2003-2008. [13] Es-Souni, M., M. Es-Souni, and H. Fischer-Brandies, On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility. Biomaterials, 2002. 23(14): p. 2887-2894. [14] Bucsek, A.N., et al., Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shape Memory and Superelasticity, 2016. 2: p. 62-79. [15] Hsieh, S., et al., A study of TiNiCr ternary shape memory alloys. Journal of alloys and compounds, 2010. 494(1-2): p. 155-160. [16] Hsieh, S. and S. Wu, A study on ternary Ti-rich TiNiZr shape memory alloys. Materials characterization, 1998. 41(4): p. 151-162. [17] Chen, S., et al., Electrical discharge machining of TiNiCr and TiNiZr ternary shape memory alloys. Materials Science and Engineering: A, 2007. 445: p. 486-492. [18] Lin, H., et al., A study of TiNiV ternary shape memory alloys. Journal of alloys and compounds, 1999. 284(1-2): p. 213-217. [19] Lo, Y., S. Wu, and C. Wayman, Transformation heat as a function of ternary Pd additions in Ti50Ni50− zPdz alloys with x: 20∼ 50 at.%. Scripta Metallurgica et Materialia, 1990. 24(8): p. 1571-1576. [20] Wu, S. and C. Wayman, Martensitic transformations and the shape memory effect in Ti50Ni10Au40 and Ti50Au50 alloys. Metallography, 1987. 20(3): p. 359-376. [21] Potapov, P., et al., Effect of Hf on the structure of Ni-Ti martensitic alloys. Materials Letters, 1997. 32(4): p. 247-250. [22] Frenzel, J., et al., On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Materialia, 2015. 90: p. 213-231. [23] Mulder, J.H., Investigation of high temperature shape memory alloys from the Ni-Ti-Zr and Ni-Ti-Hf systems. Ph. D. Thesis, University Twente, 1995. [24] Firstov, G., J. Van Humbeeck, and Y.N. Koval, High-temperature shape memory alloys: some recent developments. Materials Science and Engineering: A, 2004. 378(1-2): p. 2-10. [25] Furuya, Y., et al., Thermoelastic phase transformation of melt-spun Ti50Ni50− xCux (x= 0–20 at.%) ribbons. Materials Science and Engineering: A, 1991. 147(1): p. L7-L11. [26] Cui, J. and X. Ren, Elinvar effect in Co-doped TiNi strain glass alloys. Applied Physics Letters, 2014. 105(6). [27] Zhou, Y., et al., Strain glass in doped Ti50 (Ni50− xDx)(D= Co, Cr, Mn) alloys: Implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Materialia, 2010. 58(16): p. 5433-5442. [28] Dang, P., et al., Nanostructured Ti–Ni–Co Alloys Showing Shape‐Memory Actuation of Large Work Output at Low Temperature. Advanced Engineering Materials, 2024. 26(4): p. 2301438. [29] Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 2004. 6(5): p. 299-303. [30] Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta materialia, 2017. 122: p. 448-511. [31] Li, W., et al., Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021. 118: p. 100777. [32] Zhang, Y., et al., Microstructures and properties of high-entropy alloys. Progress in materials science, 2014. 61: p. 1-93. [33] Firstov, G., et al., High entropy shape memory alloys. Materials Today: Proceedings, 2015. 2: p. S499-S503. [34] Nakata, Y., T. Tadaki, and K.i. Shimizu, Atom location of the third element in Ti–Ni–X shape memory alloys determined by the electron channelling enhanced microanalysis. Materials Transactions, JIM, 1991. 32(7): p. 580-586. [35] Bozzolo, G., R.D. Noebe, and H.O. Mosca, Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf. Journal of alloys and compounds, 2005. 389(1-2): p. 80-94. [36] Yamamoto, S., et al., Ab Initio Prediction of Atomic Location of Third Elements in B2-Type TiNi. Materials transactions, 2018. 59(3): p. 353-358. [37] Chen, C.-H. and Y.-J. Chen, Shape memory characteristics of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy. Scripta Materialia, 2019. 162: p. 185-189. [38] Rehman, I.U., S. Li, and T.-H. Nam, Transformation behavior and superelasticity of TiZrHfNiCoCu multi-component high-temperature shape memory alloys. Journal of Alloys and Compounds, 2021. 884: p. 161108. [39] Lee, H.-C., Y.-J. Chen, and C.-H. Chen, Effect of solution treatment on the shape memory functions of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy. Entropy, 2019. 21(10): p. 1027. [40] Rehman, I.U., et al., Microstructures, transformation temperatures and superelastic properties of the rapidly solidified (TiZrHf) 50Ni25Co10Cu15 HESMAs. Intermetallics, 2024. 169: p. 108274. [41] Yaacoub, J., et al., Superelasticity of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy. Scripta Materialia, 2020. 186: p. 43-47. [42] 張至善, Ti35-xZr15HfxNi35-yCoyCu15 (x= 5, 10, 15; y= 5, 10) 擬二元高熵形狀記憶合金之麻田散體相變態行為與機械性質之研究. 國立臺灣大學機械工程學系學位論文, 2021. 2021: p. 1-143. [43] Chang, Y.-T., et al., Phase formations and microstructures of Ti20Zr15Hf15Ni35Cu15 high-entropy shape memory alloy under different aging conditions. Materials Today Advances, 2022. 14: p. 100223. [44] 王喜來, 時效處理對 Ti20Zr15Hf15Ni35-xCoxCu15 (x= 0, 5, 10) 高熵形狀記憶合金之顯微結構與相變態的影響. 2023. [45] Wang, Y., et al., Evolution of the relaxation spectrum during the strain glass transition of Ti48. 5Ni51. 5 alloy. Acta materialia, 2010. 58(14): p. 4723-4729. [46] Wang, D., et al., Strain glass in Fe-doped Ti–Ni. Acta materialia, 2010. 58(18): p. 6206-6215. [47] Wang, Y., X. Ren, and K. Otsuka, Shape memory effect and superelasticity in a strain glass alloy. Physical review letters, 2006. 97(22): p. 225703. [48] Song, C., et al., Strain glass-induced switch from transformation plasticity to reversible superelasticity in Ti-Zr-Ni-Cu alloys. Materials Research Letters, 2023. 11(11): p. 925-932. [49] Kong, L., et al., Microstructure, superelasticity and elastocaloric behavior of Ti-18Zr-11 Nb-3Sn strain glass alloys by thermomechanical treatment. Journal of Alloys and Compounds, 2022. 905: p. 164237. [50] Lu, N.-H. and C.-H. Chen, Improving the functional stability of TiNi-based shape memory alloy by multi-principal element design. Materials Science and Engineering: A, 2023. 872: p. 144999. [51] Chen, C.-H., et al., Strain glass and stress-induced martensitic transformation characteristics of Ti40Zr10Ni40Co5Cu5 multi-principal element alloy. Scripta Materialia, 2020. 186: p. 127-131. [52] He, Q., et al., A highly distorted ultraelastic chemically complex Elinvar alloy. Nature, 2022. 602(7896): p. 251-257. [53] Chen, C.-H. and Y.-J. Chen, Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy. Scripta Materialia, 2019. 162: p. 185-189. [54] Tsai, W.-Y., Effects of Co content on the Microstructure and Functional Properties of aged Ti20Zr15Hf15(NiCoCu)50 High Entropy Shape Memory Alloys. master thesis, 2024. [55] Greninger, A.B. and V.G. Mooradian, Strain transformation in metastable beta copper-zinc and beta copper-Ti alloys. Aime Trans, 1938. 128: p. 337-369. [56] Chang, L.C. and T. Read, Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase. Jom, 1951. 3: p. 47-52. [57] Buehler, W.J., J.V. Gilfrich, and R. Wiley, Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of applied physics, 1963. 34(5): p. 1475-1477. [58] Schetky, L.M., Shape-memory alloys. Scientific American, 1979. 241(5): p. 74-83. [59] Sutou, Y., et al., Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Materials Science and Engineering: A, 2004. 378(1-2): p. 278-282. [60] Zarinejad, M. and Y. Liu, Dependence of transformation temperatures of NiTi‐based shape‐memory alloys on the number and concentration of valence electrons. Advanced Functional Materials, 2008. 18(18): p. 2789-2794. [61] Ren, X. and K. Otsuka. Why does the martensitic transformation temperature strongly depend on composition? in Materials science forum. 2000. [62] Zhou, Y., et al., High temperature strain glass transition in defect doped Ti–Pd martensitic alloys. physica status solidi (b), 2014. 251(10): p. 2027-2033. [63] Ma, J., I. Karaman, and R.D. Noebe, High temperature shape memory alloys. International Materials Reviews, 2010. 55(5): p. 257-315. [64] Cheng, G., et al., Grain size effect on deformation mechanisms of nanocrystalline bcc metals. Materials Research Letters, 2013. 1(1): p. 26-31. [65] Sarma, V.S., et al., Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals. Materials Science and Engineering: A, 2010. 527(29-30): p. 7624-7630. [66] 李芝媛 and 吳錫侃, 淺談形狀記憶合金. 1995, 科儀新知. [67] 陳志軒. 形狀記憶合金. 國立台灣大學機械系電子報 2022; Available from: http://www.me.ntu.edu.tw/epaper/20220630/News_Photo_Content_n_44360_s_108948.html. [68] Miyazaki, S., K. Otsuka, and Y. Suzuki, Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy. Scripta Metallurgica, 1981. 15(3): p. 287-292. [69] Miyazaki, S., et al., Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys. Le Journal de Physique Colloques, 1982. 43(C4): p. C4-255-C4-260. [70] Miyazaki, S., et al., Lüders-like deformation observed in the transformation pseudoelasticity of a Ti Ni alloy. Scripta Metallurgica, 1981. 15(8): p. 853-856. [71] Miyazaki, S., et al., Texture of Ti–Ni rolled thin plates and sputter-deposited thin films. International Journal of Plasticity, 2000. 16(10-11): p. 1135-1154. [72] Kim, J., Y. Liu, and S. Miyazaki, Ageing-induced two-stage R-phase transformation in Ti–50.9 at.% Ni. Acta Materialia, 2004. 52(2): p. 487-499. [73] Liu, Y., J.I. Kim, and S. Miyazaki, Thermodynamic analysis of ageing-induced multiple-stage transformation behaviour of NiTi. Philosophical Magazine, 2004. 84(20): p. 2083-2102. [74] Kim, J. and S. Miyazaki, Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9 at.% Ni alloy. Acta Materialia, 2005. 53(17): p. 4545-4554. [75] Takei, F., et al., Stress-induced martensitic transformation in a Ti-Ni single crystal. Scripta metallurgica, 1983. 17(8): p. 987-992. [76] Miyazaki, S. and C. Wayman, The R-phase transition and associated shape memory mechanism in Ti-Ni single crystals. Acta metallurgica, 1988. 36(1): p. 181-192. [77] Miyazaki, S., S. Kimura, and K. Otsuka, Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti-50· 5 at.% Ni single crystals. Philosophical Magazine A, 1988. 57(3): p. 467-478. [78] Miyazaki, S., Y. Igo, and K. Otsuka, Effect of thermal cycling on the transformation temperatures of Ti Ni alloys. Acta metallurgica, 1986. 34(10): p. 2045-2051. [79] Miyazaki, S., et al., Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metallurgical transactions A, 1986. 17: p. 115-120. [80] Wasilewski, R., 55-Nitinol-the Alloy with a Memory: Its Physical Metallurgy, Properties and Applications; a Report. 1972: NASA. [81] Nishida, M., et al., Electron microscopy studies of twin morphologies in B19′ martensite in the Ti-Ni shape memory alloy. Acta metallurgica et materialia, 1995. 43(3): p. 1219-1227. [82] Knowles, K. and D. Smith, The crystallography of the martensitic transformation in equiatomic nickel-titanium. Acta Metallurgica, 1981. 29(1): p. 101-110. [83] Matsumoto, O., et al., Crystallography of martensitic transformation in Ti Ni single crystals. Acta Metallurgica, 1987. 35(8): p. 2137-2144. [84] Piorunek, D., et al., Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys. Intermetallics, 2020. 122: p. 106792. [85] Parlinski, K. and M. Parlinska-Wojtan, Lattice dynamics of NiTi austenite, martensite, and R phase. Physical Review B, 2002. 66(6): p. 064307. [86] Miyazaki, S. and K. Otsuka, Deformation and transition behavior associated with the R-phase in Ti-Ni alloys. Metallurgical Transactions A, 1986. 17: p. 53-63. [87] Hsieh, S. and S. Wu, A study on the nickel-rich ternary Ti–Ni–Al shape memory alloys. Journal of materials science, 1997. 32(4): p. 989-996. [88] Kishi, Y., Z. Yajima, and K.i. Shimizu, Relation between tensile deformation behavior and microstructure in a Ti-Ni-Co shape memory alloy. Materials Transactions, 2002. 43(5): p. 834-839. [89] Krishnan, M. and J. Singh, A novel B19′ martensite in nickel titanium shape memory alloys. Acta materialia, 2000. 48(6): p. 1325-1344. [90] Matsuda, M., et al., Transmission electron microscopy of antiphase boundary-like structure of B19′ martensite in Ti–Ni shape memory alloy. Acta materialia, 2011. 59(1): p. 133-140. [91] Matsuda, M., T. Hara, and M. Nishida, Crystallography and morphology of antiphase boundary-like structure induced by martensitic transformation in Ti-Pd shape memory alloy. Materials transactions, 2008. 49(3): p. 461-465. [92] Donkersloot, H. and J. Van Vucht, Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition. Journal of the Less Common Metals, 1970. 20(2): p. 83-91. [93] Saburi, T., Y. Watanabe, and S. Nenno, Morphological characteristics of the orthorhombic martensite in a shape memory Ti–Ni–Cu alloy. ISIJ international, 1989. 29(5): p. 405-411. [94] Nagarajan, R., K. Aoki, and K. Chattopadhyay, Microstructural development in rapidly solidified Ti Ni alloys. Materials Science and Engineering: A, 1994. 179: p. 198-204. [95] Ko, W.-S., B. Grabowski, and J. Neugebauer, Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Physical Review B, 2015. 92(13): p. 134107. [96] Duerig, T., A. Pelton, and C. Trepanier, Nitinol-PART I Mechanism and Behaviour. SMST e-Elastic newsletter, ASM International, 2011. [97] Hosoda, H., et al., Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions. Intermetallics, 1998. 6(4): p. 291-301. [98] Zha, Y., et al., Phase transformation behavior and superelasticity of nanocrystalline Ti50Ni50− xCox shape memory alloys. Journal of Alloys and Compounds, 2024. 975: p. 172997. [99] Eckelmeyer, K.H., The effect of alloying on the shape memory phenomenon in nitinol. Scripta Metallurgica, 1976. 10(8): p. 667-672. [100] Donkersloot, H.C. and J.H.N. Van Vucht, Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition. Journal of The Less-Common Metals, 1970. 20(2): p. 83-91. [101] Karaca, H., et al., NiTiHf-based shape memory alloys. Materials Science and Technology, 2014. 30(13): p. 1530-1544. [102] Mercier, O. and K.N. Melton, The substitution of Cu for Ni in NiTi shape memory alloys. Metallurgical Transactions A, 1979. 10: p. 387-389. [103] Nam, T.H., T. Saburi, and K.i. Shimizu, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys. Materials Transactions, JIM, 1990. 31(11): p. 959-967. [104] Grossmann, C., et al., Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metallurgical and Materials Transactions A, 2009. 40: p. 2530-2544. [105] Yeh, J.-W., Alloy design strategies and future trends in high-entropy alloys. Jom, 2013. 65: p. 1759-1771. [106] Tsai, M.-H. and J.-W. Yeh, High-entropy alloys: a critical review. Materials Research Letters, 2014. 2(3): p. 107-123. [107] Tunes, M.A., et al., Investigating sluggish diffusion in a concentrated solid solution alloy using ion irradiation with in situ TEM. Intermetallics, 2019. 110: p. 106461. [108] Tsai, K.-Y., M.-H. Tsai, and J.-W. Yeh, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897. [109] Wang, X., W. Guo, and Y. Fu, High-entropy alloys: emerging materials for advanced functional applications. Journal of Materials Chemistry A, 2021. 9(2): p. 663-701. [110] Yeh, J.-W., Physical metallurgy of high-entropy alloys. Jom, 2015. 67(10): p. 2254-2261. [111] LaRosa, C.R., et al., Solid solution strengthening theories of high-entropy alloys. Materials Characterization, 2019. 151: p. 310-317. [112] He, Q. and Y. Yang, On lattice distortion in high entropy alloys. Frontiers in Materials, 2018. 5: p. 42. [113] Ranganathan, S., Alloyed pleasures: Multimetallic cocktails. Current science, 2003. 85(5): p. 1404-1406. [114] Peltier, L., et al., Damping behavior in a wide temperature range of FeMn-like high entropy shape memory alloys. Shape Memory and Superelasticity, 2022. 8(4): p. 335-348. [115] Firstov, G., et al., Directions for high-temperature shape memory alloys’ improvement: straight way to high-entropy materials? Shape memory and Superelasticity, 2015. 1: p. 400-407. [116] Li, S., et al., Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy. Materials Research Letters, 2019. 7(12): p. 482-489. [117] Li, S., et al., A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery. Materials Research Letters, 2021. 9(6): p. 263-269. [118] Canadinc, D., et al., Ultra-high temperature multi-component shape memory alloys. Scripta Materialia, 2019. 158: p. 83-87. [119] Wang, L., et al., Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation. Scripta Materialia, 2019. 162: p. 112-117. [120] Gao, J., P. Castany, and T. Gloriant, Synthesis and characterization of a new TiZrHfNbTaSn high-entropy alloy exhibiting superelastic behavior. Scripta Materialia, 2021. 198: p. 113824. [121] Evirgen, A., et al., Microstructural characterization and shape memory characteristics of the Ni50. 3Ti34. 7Hf15 shape memory alloy. Acta Materialia, 2015. 83: p. 48-60. [122] Prasher, M., et al., Tuning the thermal cyclic stability of martensitic transformation in Ni50. 3Ti29. 7Hf20 high temperature shape memory alloy. Materials Research Bulletin, 2021. 133: p. 111056. [123] Resnina, N., et al., The influence of the chemical composition of the Ti-Hf-Zr-Ni-Cu-Co shape memory alloys on the structure and the martensitic transformations. Journal of Alloys and Compounds, 2023. 968: p. 172040. [124] Shugo, Y., S. Hanada, and T. Honma, Effect of oxygen content on the martensite transformation and determination of defect structure in TiNi alloys. Bull. Res. Inst. Miner. Dressing Metall., 1985. 41(1): p. 23-34. [125] Frenzel, J., et al., Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, 2010. 58(9): p. 3444-3458. [126] Lavernia, E.J. and T.S. Srivatsan, The rapid solidification processing of materials: science, principles, technology, advances, and applications. Journal of Materials Science, 2010. 45: p. 287-325. [127] Busch, J., et al., Shape‐memory properties in Ni‐Ti sputter‐deposited film. Journal of applied physics, 1990. 68(12): p. 6224-6228. [128] Morgiel, J., et al., Microstructure and martensite transformation in aged Ti-25Ni-25Cu shape memory melt spun ribbons. Journal of materials science, 2002. 37: p. 5319-5325. [129] Chang, S., S. Wu, and H. Kimura, Martensitic transformation of annealed Ti50Ni25Cu25 melt-spun ribbons. Materials Science and Engineering: A, 2008. 476(1-2): p. 316-321. [130] El-Bagoury, N., Microstructure and martensitic transformation and mechanical properties of cast Ni rich NiTiCo shape memory alloys. Materials Science and Technology, 2014. 30(14): p. 1795-1800. [131] Kartha, S., et al., Spin-glass nature of tweed precursors in martensitic transformations. Physical review letters, 1991. 67(25): p. 3630. [132] Kartha, S., et al., Disorder-driven pretransitional tweed pattern in martensitic transformations. Physical Review B, 1995. 52(2): p. 803. [133] Semenovskaya, S. and A. Khachaturyan, Coherent structural transformations in random crystalline systems. Acta materialia, 1997. 45(10): p. 4367-4384. [134] Sarkar, S., X. Ren, and K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system Ti 50-x Ni 50+ x. Physical review letters, 2005. 95(20): p. 205702. [135] Ren, X., et al., Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass. Philosophical Magazine, 2010. 90(1-4): p. 141-157. [136] Zhang, Z., et al., Phase diagram of Ti 50− x Ni 50+ x: Crossover from martensite to strain glass. Physical Review B—Condensed Matter and Materials Physics, 2010. 81(22): p. 224102. [137] Ren, X., Strain glass and strain glass transition, in Disorder and strain-induced complexity in functional materials. 2011, Springer. p. 201-225. [138] Liu, C., Y. Ji, and X. Ren, Strain glass and novel properties. Shape Memory and Superelasticity, 2019. 5: p. 299-312. [139] Ren, S., et al., Strain glass by aging in Ti–Pd–Fe shape memory alloys. Scripta Materialia, 2020. 177: p. 11-16. [140] Ji, Y., et al., Heterogeneities and strain glass behavior: role of nanoscale precipitates in low-temperature-aged Ti 48.7 Ni 51.3 alloys. Physical Review B—Condensed Matter and Materials Physics, 2013. 87(10): p. 104110. [141] Liang, Q., et al., Novel B19′ strain glass with large recoverable strain. Physical Review Materials, 2017. 1(3): p. 033608. [142] Zhang, J., et al., Dislocation induced strain glass in Ti50Ni45Fe5 alloy. Acta Materialia, 2016. 120: p. 130-137. [143] Zhang, K., et al., Observing strain glass transition in Ti33Nb15Zr25Hf25O2 high entropy alloy with Elinvar effect. Journal of Materials Science & Technology, 2024. 168: p. 16-23. [144] Ye, Y., et al., Effect of interstitial oxygen and nitrogen on incipient plasticity of NbTiZrHf high-entropy alloys. Acta Materialia, 2020. 199: p. 413-424. [145] Guillaume, C.E., The anomaly of the nickel-steels. Proceedings of the Physical Society of London, 1919. 32(1): p. 374. [146] Wang, H., et al., Lattice distortion enabling enhanced strength and plasticity in high entropy intermetallic alloy. Nature Communications, 2024. 15(1): p. 6782. [147] FIRSTOV, G., et al., DEVELOPMENT OF HIGH-ENTROPY SHAPE-MEMORY ALLOYS: STRUCTURE AND PROPERTIES. Uspehi Fiziki Metallov, 2023. 24(4). [148] Chen, C.-H., Y.-J. Chen, and J.-J. Shen, Microstructure and mechanical properties of (TiZrHf) 50 (NiCoCu) 50 high entropy alloys. Metals and Materials International, 2020. 26: p. 617-629. [149] Zhao, G., et al., Nanoprecipitates enhanced the yield strength and output work of (TiHfZr) 50 (NiCu) 50 high-entropy shape memory alloys. Journal of Alloys and Compounds, 2023. 965: p. 171504. [150] Evirgen, A., et al., Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Materialia, 2016. 121: p. 374-383. [151] Karakoc, O., et al., Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys. Acta Materialia, 2018. 153: p. 156-168. [152] Baradari, S., et al., Martensitic phase transformation and shape memory properties of the as-cast NiCuTiHf and NiCuTiHfZr alloys. Journal of Alloys and Compounds, 2021. 888: p. 161534. [153] Baradari, S., et al., Cyclic Stability of Ni44. 8Cu5Ti45. 2Hf5 and Zr‐Substituted Ni44. 8Cu5Ti40. 2Hf5Zr5 Medium‐Entropy Shape Memory Alloys. Advanced Engineering Materials, 2022. 24(10): p. 2200106. [154] Zhong, M., et al., Comparative early stage high temperature oxidation of equimolar NiTi and high entropy Ti16Hf17Zr17Ni16Cu17Co17 shape memory alloy. Materials Today Communications, 2023. 37: p. 107594. [155] Shuitcev, A., et al., Stress-assisted atomic diffusion in NiTiHf shape memory alloys. Intermetallics, 2024. 164: p. 108091. [156] Ohtaka, O., et al., Phase relations and volume changes of hafnia under high pressure and high temperature. Journal of the American Ceramic Society, 2001. 84(6): p. 1369-1373. [157] Tang, J., et al., Solid-Solution Nanoparticles: Use of a Nonhydrolytic Sol− Gel Synthesis To Prepare HfO2 and Hf x Zr1-x O2 Nanocrystals. Chemistry of materials, 2004. 16(7): p. 1336-1342. [158] Andrievskaya, E., et al., Phase equilibria in the HfO 2-ZrO 2-CeO 2 system at 1250 C. Inorganic materials, 2006. 42: p. 1352-1359. [159] Santamarta, R., et al., TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Materialia, 2013. 61(16): p. 6191-6206. [160] Zhou, Z., J. Cui, and X. Ren, Strain glass state as the boundary of two phase transitions. Scientific Reports, 2015. 5(1): p. 13377. [161] Liang, Q., et al., Two-step strain glass transition in NiTi shape memory alloy with unique properties. Materials Research Letters, 2024. 12(9): p. 678-687. [162] Lai, Y., et al., Strain glass transition in Ti48Ni50Co2 alloy. Materials Letters, 2024. 375: p. 137244. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96497 | - |
| dc.description.abstract | 本研究針對Ti20Zr15Hf15Ni35Co15高熵形狀記憶合金及Ti20Zr15Hf15Ni30Co20高熵應變玻璃合金,探討添加不同Co含量及400°C ~ 700°C時效熱處理對合金的麻田散體相變態行為、顯微結構、形狀記憶效應之研究。實驗結果顯示,添加Co會穩定B2相並抑制析出物生成,時效72小時後XRD均未觀察到析出物峰值,顯示析出效果不明顯。當添加Co超過臨界濃度時,麻田散體相變態被抑制,合金由Co15形狀記憶合金轉變為Co20應變玻璃合金。Co15經過低溫時效(400°C、500°C),生成奈米級析出物,形成應力場抑制麻田散體相變態,對基底造成析出強化效果,進而改善熱循環穩定性;600°C時效後生成(Zr,Hf)7Ni10相,由於基底與析出物為非整合介面(incoherent),未產生析出強化效果;700°C時效後生成沿晶界細小析出物,導致機械性質下降。Co20經過時效處理後,SEM結果皆顯示基底及富Zr、Hf的第二相為主要觀察特徵,由於添加更多的Co,析出的效果較Co15不明顯,且麻田散體相變態被嚴重抑制,推測在應力及降溫作用下僅能誘發R相變態,Co20 ST楊氏模數幾乎不隨溫度改變,展現艾林瓦效應,透過700°C時效熱處理可以提高相變溫度並使相變行為更明顯。形狀記憶實驗顯示,Co15與Co20低溫時效(400℃、500℃)生成之奈米級析出物有助於延遲材料斷裂並增加材料強度,此現象在Co20合金更為明顯;600℃時效熱處理生成的(Zr,Hf)7Ni10以及700℃時效熱處理生成細小沿晶界析出物使基底可相變區域變少,進而導致可回復應變量下降,不過強度仍與固溶狀態相同。Co15合金透過不同條件之時效熱處理,生成析出物不會犧牲太多可回復應變量,且低溫時效有助於增加材料強度;Co20合金析出效果則更不明顯,但是添加過量的Co導致麻田散體相變被嚴重抑制,奈米域會阻礙基底相變,同時透過應力及降溫只能誘發R相變態,導致Co20形狀記憶恢復能力不如Co15,但是時效後材料仍維持高強度(900MPa 以上),顯示Co20需要較大的應力及過冷度誘發相變。本研究結果顯示,透過添加Co及時效熱處理可以控制麻田散體相變態行為與機械性質,有助於調整合金的相變態溫度、相變機制、微觀結構、機械性質等,提供未來設計合金之策略參考。 | zh_TW |
| dc.description.abstract | This study investigates the effects of varying Co content and aging heat treatments at 400°C to 700°C on the martensitic transformation behavior, microstructure, and shape memory effect of Ti20Zr15Hf15Ni35Co15 high-entropy shape memory alloy and Ti20Zr15Hf15Ni30Co20 high-entropy strain glass alloy. The experimental results indicate that the addition of Co stabilizes the B2 phase and suppresses the formation of precipitates, with no precipitate peaks observed in XRD after 72 hours of aging, indicating negligible precipitation effects. When the Co content exceeds a critical concentration, martensitic transformation is inhibited, and the alloy transitions from a Co15 shape memory alloy to a Co20 strain glass alloy. For Co15, low-temperature aging (400°C, 500°C) generates nanoscale precipitates that form stress fields, suppressed martensitic transformation, thus strengthening the matrix via precipitation hardening which enhancing its thermal cycling stability. The (Zr, Hf)7Ni10 phase forms after aging at 600°C, since the matrix and precipitates are incoherent, no precipitation hardening effect is observed. Aging at 700°C produces fine precipitates along grain boundaries, resulting in reduced mechanical properties. For Co20, post-aging treatment, SEM observations revealed that its primary features to be its matrix and a Zr, Hf-rich second phase. Due to the higher Co content, precipitation is less pronounced compared to Co15, and martensitic transformation is significantly suppressed. It is presumed that under stress and cooling, only the R-phase transformation is induced. The Young’s modulus of solution-treated Co20 remains almost constant with temperature, demonstrating an Elinvar effect. Aging at 700°C raises the transformation temperature and enhances transformation behavior. Shape memory effect experiments show that nanoscale precipitates formed during low-temperature aging (400°C, 500°C) for both Co15 and Co20 help delay material fracture and increase strength, with this effect more pronounced in Co20. However, aging at 600°C, which forms (Zr, Hf)7Ni10, and 700°C, which produces fine grain boundary precipitates, reduces the transformable region in the matrix, leading to decreased recoverable strain, although the strength remains comparable to the solution-treated state. For Co15, aging under different conditions produces precipitates without sacrificing recoverable strain significantly, while low-temperature aging increases material strength. In contrast, the precipitation effect in Co20 is less pronounced; the excessive Co addition severely suppresses martensitic transformation, and the nanoscale domains further hinder the matrix transformation. Under stress and cooling, only R-phase transformation is induced, resulting in Co20 exhibiting less shape memory recovery than Co15. However, the alloy retains high strength (above 900 MPa) after aging, indicating that Co20 requires greater stress and undercooling to induce phase transformation. This study demonstrates that Co addition and aging heat treatments can effectively control martensitic transformation behavior and mechanical properties, offering insights for adjusting transformation temperatures, mechanisms, microstructures, and mechanical properties, thereby providing strategic references for future alloy design. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:14:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-19T16:14:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 xv 第一章 前言 1 第二章 文獻回顧 3 2-1 形狀記憶合金簡介 3 2-1-1 形狀記憶效應 4 2-1-2 超彈性 6 2-2 Ti-Ni基形狀記憶合金 8 2-2-1 Ti-Ni基SMA麻田散體相變態 8 2-2-2 Ti-Ni基SMA添加元素之影響 12 2-3 高熵合金 16 2-3-1 高熵效應 16 2-3-2 延遲擴散效應 18 2-3-3 晶格扭曲效應 18 2-3-4 雞尾酒效應 20 2-4 高熵形狀記憶合金 20 2-4-1 時效處理對Ti-Ni基高熵形狀記憶合金影響 21 2-5 減少脆性第二相體積 25 2-6 應變玻璃簡介 27 2-7 應變玻璃的原理 28 2-8 應變玻璃的特性 30 2-9 產生應變玻璃的方式 34 2-10 艾林瓦效應 35 2-11 調整Co含量對合金相變行為與機械性質之影響 37 第三章 實驗方法 38 3-1 合金配置與熔煉 39 3-2 均質化熱處理 41 3-3 固溶與時效熱處理 42 3-4 示差掃描熱分析儀(DSC)量測 44 3-5 掃描示電子顯微鏡(SEM)觀察 46 3-6 場發射電子微探儀(EPMA)量測 47 3-7 X光繞射(XRD)分析 47 3-8 動態機械分析儀(DMA)量測 47 3-8-1 形狀記憶效應 48 3-8-2 儲存模數與Tan δ 49 3-9 穿透式電子顯微鏡(TEM)觀察 50 第四章 結果與討論 52 4-1 相變態溫度探討(DSC) 52 4-1-1 Co15合金固溶處理之相變態溫度 52 4-1-2 Co15合金時效處理之相變態溫度 54 4-1-3 Co15合金熱循環穩定性 61 4-1-4 Co20合金之相變態溫度 67 4-2 晶體結構探討(XRD) 68 4-2-1 Co15合金之晶體結構 68 4-2-2 Co20合金之晶體結構 69 4-3 顯微結構探討(SEM、EDS、EPMA) 71 4-3-1 Co15合金之顯微結構 71 4-3-2 Co20合金之顯微結構 86 4-4 穿透式電子顯微鏡探討(TEM) 103 4-4-1 (Ti,Zr)2Ni相之晶體結構探討 103 4-4-2 Co15低溫時效之TEM 104 4-4-3 Co15合金經過600 ˚C時效之TEM 107 4-4-4 Co20白色第二相之TEM 111 4-4-5 Co20合金經過700 ˚C時效之TEM 114 4-5 機械性質探討(DMA) 115 4-5-1 Co15合金之形狀記憶效應 115 4-5-2 Co20合金之儲存模數與Tan δ探討 121 4-5-3 Co20合金之形狀記憶效應 124 4-6 Co的含量對於TiZrHfNiCo合金系統之影響 130 第五章 結論 132 參考文獻 134 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 時效熱處理 | zh_TW |
| dc.subject | 析出物 | zh_TW |
| dc.subject | 形狀記憶效應 | zh_TW |
| dc.subject | 應變玻璃 | zh_TW |
| dc.subject | 麻田散體相變態 | zh_TW |
| dc.subject | 形狀記憶合金 | zh_TW |
| dc.subject | strain glass | en |
| dc.subject | martensitic transformation | en |
| dc.subject | aging heat treatment | en |
| dc.subject | shape memory alloys | en |
| dc.subject | precipitates | en |
| dc.subject | shape memory effect | en |
| dc.title | 透過添加Co及時效熱處理控制 Ti20Zr15Hf15Ni50-xCox(x=15、20)合金 之相變態行為與機械性質 | zh_TW |
| dc.title | Controlling the Phase Transformation Behavior and Mechanical Properties on Ti20Zr15Hf15Ni50-xCox (x=15, 20) Alloys via Co Addition and Aging Heat Treatment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林新智;陳建彰 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Chih Lin;Jian-Zhang Chen | en |
| dc.subject.keyword | 形狀記憶合金,時效熱處理,麻田散體相變態,應變玻璃,形狀記憶效應,析出物, | zh_TW |
| dc.subject.keyword | shape memory alloys,aging heat treatment,martensitic transformation,strain glass,shape memory effect,precipitates, | en |
| dc.relation.page | 143 | - |
| dc.identifier.doi | 10.6342/NTU202500293 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-01-26 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 21.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
