請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96493
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃良得 | zh_TW |
dc.contributor.advisor | Lean-Teik Ng | en |
dc.contributor.author | 任家宜 | zh_TW |
dc.contributor.author | Chia-I Jen | en |
dc.date.accessioned | 2025-02-19T16:13:14Z | - |
dc.date.available | 2025-02-20 | - |
dc.date.copyright | 2025-02-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-01-25 | - |
dc.identifier.citation | Adamska, I. 2023. The possibility of using sulphur shelf fungus (Laetiporus sulphureus) in the food industry and in medicine – a review. Foods 12:1539.
Agraval, H., and Yadav, U.C.S. 2019. MMP-2 and MMP-9 mediate cigarette smoke extract-induced epithelial-mesenchymal transition in airway epithelial cells via EGFR/Akt/GSK3β/β-catenin pathway: amelioration by fisetin. Chemico-Biological Interactions 314:108846. Ahmad, T.B.S. 2015. Methods for quantification and extraction of fucoidan, and quantification of the release of total carbohydrate and fucoidan from the brown algae Laminaria hyperborea. Norwegian University of Science and Technology, Department of Biotechnology, Trondheim, Norway, p. 109. Aksamitiene, E., Kiyatkin, A., and Kholodenko, B.N. 2012. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochemical Society Transactions 40:139-146. Ale, M.T., and Meyer, A.S. 2013. Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Advances 3:8131-8141. Ale, M.T., Mikkelsen, J.D., and Meyer, A.S. 2011. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Marine Drugs 9:2106-2130. Alekseyenko, T.V., Zhanayeva, S.Y., Venediktova, A.A., Zvyagintseva, T.N., Kuznetsova, T.A., Besednova, N.N., and Korolenko, T.A. 2007. Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga. Bulletin of Experimental Biology and Medicine 143:730-732. Alquini, G., Carbonero, E.R., Rosado, F.R., Cosentino, C., and Iacomini, M. 2004. Polysaccharides from the fruit bodies of the basidiomycete Laetiporus sulphureus (Bull.: Fr.) Murr. FEMS Microbiology Letters 230:47-52. Anastyuk, S.D., Imbs, T.I., Dmitrenok, P.S., and Zvyagintseva, T.N. 2014. Rapid mass spectrometric analysis of a novel fucoidan, extracted from the brown alga Coccophora langsdorfii. Scientific World Journal 2014:972450. Anastyuk, S.D., Shevchenko, N.M., Ermakova, S.P., Vishchuk, O.S., Nazarenko, E.L., Dmitrenok, P.S., and Zvyagintseva, T.N. 2012. Anticancer activity in vitro of a fucoidan from the brown alga Fucus evanescens and its low-molecular fragments, structurally characterized by tandem mass-spectrometry. Carbohydrate Polymers 87:186-194. Atashrazm, F., Lowenthal, R.M., Woods, G.M., Holloway, A.F., and Dickinson, J.L. 2015. Fucoidan and cancer: a multifunctional molecule with anti-tumor potential. Marine Drugs 13:2327-2346. Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., Kolahian, S., Javaheri, T., and Zare, P. 2020. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling 18:1-19. Bamodu, O.A., Kuo, K.T., Wang, C.H., Huang, W.C., Wu, A.T.H., Tsai, J.T., Lee, K.Y., Yeh, C.T., and Wang, L.S. 2019. Astragalus polysaccharides (PG2) enhances the M1 polarization of macrophages, functional maturation of dendritic cells, and T cell-mediated anticancer immune responses in patients with lung cancer. Nutrients 11:2264. Bao, J., Huang, B., Zou, L., Chen, S., Zhang, C., Zhang, Y., Chen, M., Wan, J.B., Su, H., and Wang, Y. 2015. Hormetic effect of berberine attenuates the anticancer activity of chemotherapeutic agents. PloS One 10:e0139298. Bauvois, B. 2012. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer 1825:29-36. Bedini, E., Laezza, A., Parrilli, M., and Iadonisi, A. 2017. A review of chemical methods for the selective sulfation and desulfation of polysaccharides. Carbohydrate Polymers 174:1224-1239. Bhuyan, P.P., Nayak, R., Patra, S., Abdulabbas, H.S., Jena, M., and Pradhan, B. 2023. Seaweed-derived sulfated polysaccharides; the new age chemopreventives: a comprehensive review. Cancers 15:715. Biswas, D.K., Martin, K.J., McAlister, C., Cruz, A.P., Graner, E., Dai, S.C., and Pardee, A.B. 2003. Apoptosis caused by chemotherapeutic inhibition of nuclear factor-κB activation. Cancer Research 63:290-295. Biswas, D.K., Shi, Q., Baily, S., Strickland, I., Ghosh, S., Pardee, A.B., and Iglehart, J.D. 2004. NF-κB activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proceedings of the National Academy of Sciences 101:10137-10142. Blumenkrantz, N., and Asboe-Hansen, G. 1973. New method for quantitative determination of uronic acids. Analytical Biochemistry 54:484-489. Bohn, J.A., and BeMiller, J.N. 1995. (1→3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydrate Polymers 28:3-14. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254. Calabrese, E.J. 2013. Hormetic mechanisms. Critical Reviews in Toxicology 43:580-606. Chan, G.C.F., Chan, W.K., and Sze, D.M.Y. 2009. The effects of β-glucan on human immune and cancer cells. Journal of Hematology and Oncology 2:25. Chang, C.W., Lur, H.S., Lu, M.K., and Cheng, J.J. 2013. Sulfated polysaccharides of Armillariella mellea and their anti-inflammatory activities via NF-κB suppression. Food Research International 54:239-245. Chen, C.F., Su, C.H., Lai, M.N., and Ng, L.T. 2018. Differences in water soluble non-digestible polysaccharides and anti-inflammatory activities of fruiting bodies from two cultivated Xylaria nigripes strains. International Journal of Biological Macromolecules 116:728-734. Chen, H., Zhang, M., and Xie, B. 2004. Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties. Journal of Agricultural and Food Chemistry 52:3333-3336. Chen, S., Saeed, A.F.U.H., Liu, Q., Jiang, Q., Xu, H., Xiao, G.G., Rao, L., and Duo, Y. 2023. Macrophages in immunoregulation and therapeutics. Signal Transduction and Targeted Therapy 8:207. Chen, X., Liu, Y., Gao, Y., Shou, S., and Chai, Y. 2021. The roles of macrophage polarization in the host immune response to sepsis. International Immunopharmacology 96:107791. Chen, X., Zhang, T., Su, W., Dou, Z., Zhao, D., Jin, X., Lei, H., Wang, J., Xie, X., and Cheng, B. 2022. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death & Disease 13:974. Chen, X.C., Wei, X.T., Guan, J.H., Shu, H., and Chen, D. 2017. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism. Oncotarget 8:65969-65982. Chen, Y., Liu, Y., Sarker, M.M.R., Yan, X., Yang, C., Zhao, L., Lv, X., Liu, B., and Zhao, C. 2018. Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydrate Polymers 198:452-461. Cheng, J., Song, J., Liu, Y., Lu, N., Wang, Y., Hu, C., He, L., Wei, H., Lv, G., Yang, S., and Zhang, Z. 2020. Conformational properties and biological activities of α-D-mannan from Sanghuangporus sanghuang in liquid culture. International Journal of Biological Macromolecules 164:3568-3579. Cheng, J.J., Chang, C.C., Chao, C.H., and Lu, M.K. 2012. Characterization of fungal sulfated polysaccharides and their synergistic anticancer effects with doxorubicin. Carbohydrate Polymers 90:134-139. Cheng, J.J., Chao, C.H., Chang, P.C., and Lu, M.K. 2016. Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocolloids 53:37-45. Cheng, J.J., Chao, C.H., and Lu, M.K. 2018. Large-scale preparation of sulfated polysaccharides with anti-angionenic and anti-inflammatory properties from Antrodia cinnamomia. International Journal of Biological Macromolecules 113:1198-1205. Chou, T.C., and Talalay, P. 1984. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation 22:27-55. Chow, L.W.C., Lo, C.S.Y., Loo, W.T.Y., Hu, X.C., and Sham, J.S.T. 2003. Polysaccharide peptide mediates apoptosis by up-regulating p21 gene and down-regulating cyclin D1 gene. American Journal of Chinese Medicine 31:1-9. Collins, L., Zhu, T., Guo, J., Xiao, Z.J., and Chen, C.Y. 2006. Phellinus linteus sensitises apoptosis induced by doxorubicin in prostate cancer. British Journal of Cancer 95:282-288. Corso, C.R., Mulinari Turin de Oliveira, N., Moura Cordeiro, L., Sauruk da Silva, K., da Silva Soczek, S.H., Frota Rossato, V., Fernandes, E.S., and Maria-Ferreira, D. 2021. Polysaccharides with antitumor effect in breast cancer: a systematic review of non-clinical studies. Nutrients 13:2008. Corso, G., Figueiredo, J., De Angelis, S.P., Corso, F., Girardi, A., Pereira, J., Seruca, R., Bonanni, B., Carneiro, P., and Pravettoni, G. 2020. E‐cadherin deregulation in breast cancer. Journal of Cellular and Molecular Medicine 24:5930-5936. Costa, L.S., Fidelis, G.P., Cordeiro, S.L., Oliveira, R.M., Sabry, D.A., Câmara, R.B.G., Nobre, L.T.D.B., Costa, M.S.S.P., Almeida-Lima, J., Farias, E.H.C., Leite, E.L., and Rocha, H.A.O. 2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine and Pharmacotherapy 64:21-28. Cui, J., and Chisti, Y. 2003. Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology Advances 21:109-122. da Silva Milhorini, S., Smiderle, F.R., Biscaia, S.M.P., Rosado, F.R., Trindade, E.S., and Iacomini, M. 2018. Fucogalactan from the giant mushroom Macrocybe titans inhibits melanoma cells migration. Carbohydrate Polymers 190:50-56. Dasari, S., and Tchounwou, P.B. 2014. Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology 740:364-378. Datta, H.K., Das, D., Koschella, A., Das, T., Heinze, T., Biswas, S., and Chaudhuri, S. 2019. Structural elucidation of a heteropolysaccharide from the wild mushroom Marasmiellus palmivorus and its immune-assisted anticancer activity. Carbohydrate Polymers 211:272-280. de Azevedo, T.C.G., Bezerra, M.E.B., Santos, M.d.G.d.L., Souza, L.A., Marques, C.T., Benevides, N.M.B., and Leite, E.L. 2009. Heparinoids algal and their anticoagulant, hemorrhagic activities and platelet aggregation. Biomedicine and Pharmacotherapy 63:477-483. de la Cruz-Merino, L., Barco-Sánchez, A., Henao Carrasco, F., Nogales Fernández, E., Vallejo Benítez, A., Brugal Molina, J., Martínez Peinado, A., Grueso López, A., Ruiz Borrego, M., and Codes Manuel de Villena, M. 2013. New insights into the role of the immune microenvironment in breast carcinoma. Clinical and Developmental Immunology 2013:785317. De Laurentiis, M., Cianniello, D., Caputo, R., Stanzione, B., Arpino, G., Cinieri, S., Lorusso, V., and De Placido, S. 2010. Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treatment Reviews 36:S80-S86. Demleitner, S., Kraus, J., and Franz, G. 1992. Synthesis and antitumour activity of sulfoalkyl derivatives of curdlan and lichenan. Carbohydrate Research 226:247-252. Ding, J., Jia, W., Cui, Y., Jin, J., Zhang, Y., Xu, L., and Liu, Y. 2020. Anti-angiogenic effect of a chemically sulfated polysaccharide from Phellinus ribis by inhibiting VEGF/VEGFR pathway. International Journal of Biological Macromolecules 154:72-81. Du, B., Lin, C., Bian, Z., and Xu, B. 2015. An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science and Technology 41:49-59. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28:350-356. Duc Thinh, P., Menshova, R.V., Ermakova, S.P., Anastyuk, S.D., Ly, B.M., and Zvyagintseva, T.N. 2013. Structural characteristics and anticancer activity of fucoidan from the brown alga Sargassum mcclurei. Marine Drugs 11:1456-1476. Eid, J.I., and Das, B. 2020. Molecular insights and cell cycle assessment upon exposure to Chaga (Inonotus obliquus) mushroom polysaccharides in zebrafish (Danio rerio). Scientific Reports 10:7406. El Enshasy, H.A., and Hatti-Kaul, R. 2013. Mushroom immunomodulators: unique molecules with unlimited applications. Trends in Biotechnology 31:668-677. Ellefsen, C.F., Wold, C.W., Wilkins, A.L., Rise, F., and Samuelsen, A.B.C. 2021. Water-soluble polysaccharides from Pleurotus eryngii fruiting bodies, their activity and affinity for toll-like receptor 2 and dectin-1. Carbohydrate Polymers 264:117991. Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicologic Pathology 35:495-516. Engeland, K. 2022. Cell cycle regulation: p53-p21-RB signaling. Cell Death and Differentiation 29:946-960. Faes, S., and Dormond, O. 2015. PI3K and AKT: unfaithful partners in cancer. International Journal of Molecular Sciences 16:21138-21152. Fan, T., Kuang, G., Long, R., Han, Y., and Wang, J. 2022. The overall process of metastasis: from initiation to a new tumor. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer 1877:188750. Fernández, P.V., Estevez, J.M., Cerezo, A.S., and Ciancia, M. 2012. Sulfated β-d-mannan from green seaweed Codium vermilara. Carbohydrate Polymers 87:916-919. Fu, Y.L., and Shi, L. 2024. Methods of study on conformation of polysaccharides from natural products: a review. International Journal of Biological Macromolecules 263:130275. Gajek, A., Rogalska, A., and Koceva-Chyła, A. 2019. Aclarubicin in subtoxic doses reduces doxorubicin cytotoxicity in human non-small cell lung adenocarcinoma (A549) and human hepatocellular carcinoma (HepG2) cells by decreasing DNA damage. Toxicology In Vitro 55:140-150. Gan, Q.X., Wang, J., Hu, J., Lou, G.H., Xiong, H.J., Peng, C.Y., and Huang, Q.W. 2020. Modulation of apoptosis by plant polysaccharides for exerting anti-cancer effects: a review. Frontiers in Pharmacology 11:792. Gao, Q., Seljelid, R., Chen, H., and Jiang, R. 1996. Characterisation of acidic heteroglycans from Tremella fuciformis Berk with cytokine stimulating activity. Carbohydrate Research 288:135-142. Garcia, J., Rodrigues, F., Saavedra, M.J., Nunes, F.M., and Marques, G. 2022. Bioactive polysaccharides from medicinal mushrooms: a review on their isolation, structural characteristics and antitumor activity. Food Bioscience 49:101955. Gehl, J., Boesgaard, M., Paaske, T., Jensen, B.V., and Dombernowsky, P. 1996. Combined doxorubicin and paclitaxel in advanced breast cancer: effective and cardiotoxic. Annals of Oncology 7:687-693. Geng, Y., Xing, L., Sun, M., and Su, F. 2016. Immunomodulatory effects of sulfated polysaccharides of pine pollen on mouse macrophages. International Journal of Biological Macromolecules 91:846-855. Genin, M., Clement, F., Fattaccioli, A., Raes, M., and Michiels, C. 2015. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15:577. Ghosh, S., Khatua, S., Dasgupta, A., and Acharya, K. 2021. Crude polysaccharide from the milky mushroom, Calocybe indica, modulates innate immunity of macrophage cells by triggering MyD88-dependent TLR4/NF-κB pathway. Journal of Pharmacy and Pharmacology 73:70-81. Giavasis, I. 2014. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Current Opinion in Biotechnology 26:162-173. Goldhirsch, A., Winer, E.P., Coates, A.S., Gelber, R.D., Piccart-Gebhart, M., Thürlimann, B., Senn, H.J., Albain, K.S., André, F., Bergh, J., Bonnefoi, H., Bretel-Morales, D., Burstein, H., Cardoso, F., Castiglione-Gertsch, M., Coates, A.S., Colleoni, M., Costa, A., Curigliano, G., Davidson, N.E., Di Leo, A., Ejlertsen, B., Forbes, J.F., Gelber, R.D., Gnant, M., Goldhirsch, A., Goodwin, P., Goss, P.E., Harris, J.R., Hayes, D.F., Hudis, C.A., Ingle, J.N., Jassem, J., Jiang, Z., Karlsson, P., Loibl, S., Morrow, M., Namer, M., Kent Osborne, C., Partridge, A.H., Penault-Llorca, F., Perou, C.M., Piccart-Gebhart, M.J., Pritchard, K.I., Rutgers, E.J.T., Sedlmayer, F., Semiglazov, V., Shao, Z.-M., Smith, I., Thürlimann, B., Toi, M., Tutt, A., Untch, M., Viale, G., Watanabe, T., Wilcken, N., Winer, E.P., and Wood, W.C. 2013. Personalizing the treatment of women with early breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2013. Annals of Oncology 24:2206-2223. Graves, J., and Sommer, S. 2021. Polysaccharides influence the results of polymeric pigment analysis in red wines. ACS Food Science & Technology 1:1770-1775. Grienke, U., Zöll, M., Peintner, U., and Rollinger, J.M. 2014. European medicinal polypores – a modern view on traditional uses. Journal of Ethnopharmacology 154:564-583. Guo, R., Chen, M., Ding, Y., Yang, P., Wang, M., Zhang, H., He, Y., and Ma, H. 2022. Polysaccharides as potential anti-tumor biomacromolecules – a review. Frontiers in Nutrition 9:838179. Guo, X., Kang, J., Xu, Z., Guo, Q., Zhang, L., Ning, H., and Cui, S.W. 2021. Triple-helix polysaccharides: formation mechanisms and analytical methods. Carbohydrate Polymers 262:117962. Guo, Y.J., Pan, W.W., Liu, S.B., Shen, Z.F., Xu, Y., and Hu, L.L. 2020. ERK/MAPK signalling pathway and tumorigenesis. Experimental and Therapeutic Medicine 19:1997-2007. Ham, M., and Moon, A. 2013. Inflammatory and microenvironmental factors involved in breast cancer progression. Archives of Pharmacal Research 36:1419-1431. Han, X.Q., Yue, G.L., Yue, R.Q., Dong, C.X., Chan, C.L., Ko, C.H., Cheung, W.S., Luo, K.W., Dai, H., and Wong, C.K. 2014. Structure elucidation and immunomodulatory activity of a beta glucan from the fruiting bodies of Ganoderma sinense. PLoS One 9:e100380. He, Y., Zhang, L., and Wang, H. 2019. The biological activities of the antitumor drug Grifola frondosa polysaccharide. Progress in Molecular Biology and Translational Science 163:221-261. Hinz, M., Krappmann, D., Eichten, A., Heder, A., Scheidereit, C., and Strauss, M. 1999. NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Molecular and Cellular Biology 19:2690-2698. Hoeflich, K.P., O'Brien, C., Boyd, Z., Cavet, G., Guerrero, S., Jung, K., Januario, T., Savage, H., Punnoose, E., and Truong, T. 2009. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clinical Cancer Research 15:4649-4664. Hogwood, J., Naggi, A., Torri, G., Page, C., Rigsby, P., Mulloy, B., and Gray, E. 2018. The effect of increasing the sulfation level of chondroitin sulfate on anticoagulant specific activity and activation of the kinin system. PLoS One 13:e0193482. Hossain, A., Dave, D., and Shahidi, F. 2023. Sulfated polysaccharides in sea cucumbers and their biological properties: a review. International Journal of Biological Macromolecules 253:127329. Hsieh, T.C., Wu, P., Park, S., and Wu, J.M. 2006. Induction of cell cycle changes and modulation of apoptogenic/anti-apoptotic and extracellular signaling regulatory protein expression by water extracts of I'm-Yunity™(PSP). BMC Complementary and Alternative Medicine 6:1-15. Hsu, H.Y., Lin, T.Y., Hu, C.H., Shu, D.T.F., and Lu, M.K. 2018. Fucoidan upregulates TLR4/CHOP-mediated caspase-3 and PARP activation to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Cancer Letters 432:112-120. Hsu, H.Y., Lin, T.Y., Lu, M.K., Leng, P.J., Tsao, S.M., and Wu, Y.C. 2017. Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer. Scientific Reports 7:44990. Hsu, W.H., Hua, W.J., Qiu, W.L., Tseng, A.J., Cheng, H.C., and Lin, T.Y. 2021. WSG, a glucose-enriched polysaccharide from Ganoderma lucidum, suppresses tongue cancer cells via inhibition of EGFR-mediated signaling and potentiates cisplatin-induced apoptosis. International Journal of Biological Macromolecules 193:1201-1208. Hsu, W.H., Qiu, W.L., Tsao, S.M., Tseng, A.J., Lu, M.K., Hua, W.J., Cheng, H.C., Hsu, H.Y., and Lin, T.Y. 2020. Effects of WSG, a polysaccharide from Ganoderma lucidum, on suppressing cell growth and mobility of lung cancer. International Journal of Biological Macromolecules 165:1604-1613. Hu, B., Yan, W., Wang, M., Cui, X., Hu, Y., Chen, Q., Zhang, Y., Qi, X., and Jiang, J. 2019. Huaier polysaccharide inhibits the stem-like characteristics of ERα-36high triple negative breast cancer cells via inactivation of the ERα-36 signaling pathway. International Journal of Biological Sciences 15:1358-1367. Hu, J., Cao, J., Topatana, W., Juengpanich, S., Li, S., Zhang, B., Shen, J., Cai, L., Cai, X., and Chen, M. 2021. Targeting mutant p53 for cancer therapy: direct and indirect strategies. Journal of Hematology & Oncology 14:157. Hu, Q., Sun, W., Wang, C., and Gu, Z. 2016. Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews 98:19-34. Hu, R., and Kong, A.N.T. 2004. Activation of MAP kinases, apoptosis and nutrigenomics of gene expression elicited by dietary cancer-prevention compounds. Nutrition 20:83-88. Huang, L., Li, A., Liao, G., Yang, F., Yang, J., Chen, X., and Jiang, X. 2017. Curcumol triggers apoptosis of p53 mutant triple-negative human breast cancer MDA-MB 231 cells via activation of p73 and PUMA. Oncology Letters 14:1080-1088. Huang, L., Shen, M., Morris, G.A., and Xie, J. 2019. Sulfated polysaccharides: immunomodulation and signaling mechanisms. Trends in Food Science and Technology 92:1-11. Hwang, H.S., Lee, S.H., Baek, Y.M., Kim, S.W., Jeong, Y.K., and Yun, J.W. 2008. Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties. Applied Microbiology and Biotechnology 78:419-429. Hwang, H.S., and Yun, J.W. 2010. Hypoglycemic effect of polysaccharides produced by submerged mycelial culture of Laetiporus sulphureus on streptozotocin induced diabetic rats. Biotechnology and Bioprocess Engineering 15:173-181. Ito, G., Tanaka, H., Ohira, M., Yoshii, M., Muguruma, K., Kubo, N., Yashiro, M., Yamada, N., Maeda, K., and Sawada, T. 2012. Correlation between efficacy of PSK postoperative adjuvant immunochemotherapy for gastric cancer and expression of MHC class I. Experimental and Therapeutic Medicine 3:925-930. Jayachandran, M., Chen, J., Chung, S.S.M., and Xu, B. 2018. A critical review on the impacts of β-glucans on gut microbiota and human health. Journal of Nutritional Biochemistry 61:101-110. Jayasooriya, R.G.P.T., Kang, C.H., Seo, M.J., Choi, Y.H., Jeong, Y.K., and Kim, G.Y. 2011. Exopolysaccharide of Laetiporus sulphureus var. miniatus downregulates LPS-induced production of NO, PGE2, and TNF-α in BV2 microglia cells via suppression of the NF-κB pathway. Food and Chemical Toxicology 49:2758-2764. Jędrzejewski, T., Pawlikowska, M., Sobocińska, J., and Wrotek, S. 2020. Protein-bound polysaccharides from Coriolus versicolor fungus disrupt the crosstalk between breast cancer cells and macrophages through inhibition of angiogenic cytokines production and shifting tumour-associated macrophages from the M2 to M1 subtype. Cellular Physiology and Biochemistry 54:615-628. Jen, C.I., Su, C.H., Lai, M.N., and Ng, L.T. 2021a. Comparative anti-inflammatory characterization of selected fungal and plant water soluble polysaccharides. Food Science and Technology Research 27:453-462. Jen, C.I., Su, C.H., Lu, M.K., Lai, M.N., and Ng, L.T. 2021b. Synergistic anti‐inflammatory effects of different polysaccharide components from Xylaria nigripes. Journal of Food Biochemistry 45:e13694. Jia, W., Luo, S., Lai, G., Li, S., Huo, S., Li, M., and Zeng, X. 2021. Homogeneous polyporus polysaccharide inhibits bladder cancer by polarizing macrophages to M1 subtype in tumor microenvironment. BMC Complementary Medicine and Therapies 21:150. Jia, X., Wang, C., Bai, Y., Yu, J., and Xu, C. 2017. Sulfation of the extracellular polysaccharide produced by the king oyster culinary-medicinal mushroom, Pleurotus eryngii (Agaricomycetes), and its antioxidant properties in vitro. International Journal of Medicinal Mushrooms 19:355-362. Jiang, C., Wang, M., Liu, J., Gan, D., and Zeng, X. 2011. Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensis. Carbohydrate Polymers 84:851-857. Jiao, C., Chen, W., Tan, X., Liang, H., Li, J., Yun, H., He, C., Chen, J., Ma, X., and Xie, Y. 2020. Ganoderma lucidum spore oil induces apoptosis of breast cancer cells in vitro and in vivo by activating caspase-3 and caspase-9. Journal of Ethnopharmacology 247:112256. Jin, H., Li, M., Tian, F., Yu, F., and Zhao, W. 2022. An overview of antitumour activity of polysaccharides. Molecules 27:8083. Jodynis-Liebert, J., and Kujawska, M. 2020. Biphasic dose-response induced by phytochemicals: experimental evidence. Journal of Clinical Medicine 9:718. Kagimura, F.Y., da Cunha, M.A.A., Barbosa, A.M., Dekker, R.F.H., and Malfatti, C.R.M. 2015. Biological activities of derivatized D-glucans: a review. International Journal of Biological Macromolecules 72:588-598. Kamble, P., Cheriyamundath, S., Lopus, M., and Sirisha, V.L. 2018. Chemical characteristics, antioxidant and anticancer potential of sulfated polysaccharides from Chlamydomonas reinhardtii. Journal of Applied Phycology 30:1641-1653. Kawagishi, H., Kanao, T., Inagaki, R., Mizuno, T., Shimura, K., Ito, H., Hagiwara, T., and Nakamura, T. 1990. Formolysis of a potent antitumor (1→6)-β-D-glucan-protein complex from Agaricus blazei fruiting bodies and antitumor activity of the resulting products. Carbohydrate Polymers 12:393-403. Kciuk, M., Gielecińska, A., Mujwar, S., Kołat, D., Kałuzińska-Kołat, Ż., Celik, I., and Kontek, R. 2023. Doxorubicin – an agent with multiple mechanisms of anticancer activity. Cells 12:659. Khan, T., Date, A., Chawda, H., and Patel, K. 2019. Polysaccharides as potential anticancer agents – a review of their progress. Carbohydrate Polymers 210:412-428. Khatua, S., Ghosh, S., and Acharya, K. 2017. Laetiporus sulphureus (Bull.: Fr.) Murr. as food as medicine. Pharmacognosy Journal 9:1-15. Kim, B.M., Kim, D.H., Park, J.H., Surh, Y.J., and Na, H.K. 2014. Ginsenoside Rg3 inhibits constitutive activation of NF-κB signaling in human breast cancer (MDA-MB-231) cells: ERK and Akt as potential upstream targets. Journal of Cancer Prevention 19:23-30. Kim, Y.S., Hwang, J., Lee, S.G., Jo, H.Y., Oh, M.J., Liyanage, N.M., Je, J.G., An, H.J., and Jeon, Y.J. 2022. Structural characteristics of sulfated polysaccharides from Sargassum horneri and immune-enhancing activity of polysaccharides combined with lactic acid bacteria. Food & Function 13:8214-8227. Klaus, A., Kozarski, M., Niksic, M., Jakovljevic, D., Todorovic, N., Stefanoska, I., and Van Griensven, L.J.L.D. 2013. The edible mushroom Laetiporus sulphureus as potential source of natural antioxidants. International Journal of Food Sciences and Nutrition 64:599-610. Klein, A.M., Biderman, L., Tong, D., Alaghebandan, B., Plumber, S.A., Mueller, H.S., van Vlimmeren, A., Katz, C., and Prives, C. 2021. MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53. Proceedings of the National Academy of Sciences 118:e2102420118. Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S., and Shimeno, H. 2003. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochemical Pharmacology 65:173-179. Kulicke, W.-M., Lettau, A.I., and Thielking, H. 1997. Correlation between immunological activity, molar mass, and molecular structure of different (1→3)-β-D-glucans. Carbohydrate Research 297:135-143. Kuo, H.C., Liu, Y.W., Lum, C.C., Hsu, K.D., Lin, S.P., Hsieh, C.W., Lin, H.W., Lu, T.Y., and Cheng, K.C. 2021. Ganoderma formosanum exopolysaccharides inhibit tumor growth via immunomodulation. International Journal of Molecular Sciences 22:11251. Lee, K.R., Lee, J.S., Kim, Y.R., Song, I.G., and Hong, E.K. 2014. Polysaccharide from Inonotus obliquus inhibits migration and invasion in B16-F10 cells by suppressing MMP‑2 and MMP‑9 via downregulation of NF-κB signaling pathway. Oncology Reports 31:2447-2453. Lee, K.R., Lee, J.S., Song, J.E., Ha, S.J., and Hong, E.K. 2014. Inonotus obliquus-derived polysaccharide inhibits the migration and invasion of human non-small cell lung carcinoma cells via suppression of MMP-2 and MMP-9. International Journal of Oncology 45:2533-2540. Leis, H., Segrelles, C., Ruiz, S., Santos, M., and Paramio, J.M. 2002. Expression, localization, and activity of glycogen synthase kinase 3β during mouse skin tumorigenesis. Molecular Carcinogenesis 35:180-185. Lemieszek, M.K., Nunes, F.M., and Rzeski, W. 2019. Branched mannans from the mushroom Cantharellus cibarius enhance the anticancer activity of natural killer cells against human cancers of lung and colon. Food & Function 10:5816-5826. Li, H., Qiu, Z., Li, F., and Wang, C. 2017a. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncology Letters 14:5865-5870. Li, J., Bao, Y., Lam, W., Li, W., Lu, F., Zhu, X., Liu, J., and Wang, H. 2008. Immunoregulatory and anti-tumor effects of polysaccharopeptide and Astragalus polysaccharides on tumor-bearing mice. Immunopharmacology and Immunotoxicology 30:771-782. Li, N., Wang, C., Georgiev, M.I., Bajpai, V.K., Tundis, R., Simal-Gandara, J., Lu, X., Xiao, J., Tang, X., and Qiao, X. 2021a. Advances in dietary polysaccharides as anticancer agents: structure-activity relationship. Trends in Food Science and Technology 111:360-377. Li, S., Li, J., Zhi, Z., Wei, C., Wang, W., Ding, T., Ye, X., Hu, Y., Linhardt, R.J., and Chen, S. 2017b. Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers. Carbohydrate Polymers 173:330-337. Li, W., Hu, X., Li, Y., and Song, K. 2021b. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1. Journal of Natural Medicines 75:854-870. Li, W., Song, K., Wang, S., Zhang, C., Zhuang, M., Wang, Y., and Liu, T. 2019. Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Materials Science and Engineering: C 98:685-695. Li, X., and Wang, J. 2020. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis. International Journal of Biological Sciences 16:2014-2028. Li, Y., Liu, L., Xing, Y., Wang, J., Yin, W., Huang, Y., Guo, C., and Zhou, N. 2024. The synergistic inhibitory effect of combination drug treatment of Enteromorpha prolifera polysaccaharide and doxorubicin hydrochloride on A549 cell. Frontiers in Bioscience-Landmark 29:300. Liang, Z., Yi, Y., Guo, Y., Wang, R., Hu, Q., and Xiong, X. 2014. Chemical characterization and antitumor activities of polysaccharide extracted from Ganoderma lucidum. International Journal of Molecular Sciences 15:9103-9116. Liao, S.F., Liang, C.H., Ho, M.Y., Hsu, T.L., Tsai, T.I., Hsieh, Y.S.Y., Tsai, C.M., Li, S.T., Cheng, Y.Y., and Tsao, S.M. 2013. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes. Proceedings of the National Academy of Sciences 110:13809-13814. Lin, J., He, Z., and Liu, S. 2022. Polysaccharide peptide induced colorectal cancer cells apoptosis by down-regulating EGFR and PD-L1 expression. Iranian Journal of Pharmaceutical Research 21:e123909. Lin, J., Song, T., Li, C., and Mao, W. 2020a. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research 1867:118659. Lin, S., Lyu, X., Yu, J., Sun, L., Du, D., Lai, Y., Li, H., Wang, Y., Zhang, L., Yin, H., and Yuan, S. 2016. MHP-1 inhibits cancer metastasis and restores topotecan sensitivity via regulating epithelial-mesenchymal transition and TGF-β signaling in human breast cancer cells. Phytomedicine 23:1053-1063. Lin, T.Y., Lu, M.K., and Chang, C.C. 2020b. Structural identification of a fucose-containing 1,3-β-mannoglucan from Poria cocos and its anti-lung cancer CL1-5 cells migration via inhibition of TGFβR-mediated signaling. International Journal of Biological Macromolecules 157:311-318. Lin, Y., Qi, X., Liu, H., Xue, K., Xu, S., and Tian, Z. 2020c. The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations. Cancer Cell International 20:154. Linhardt, R.J. 2003. 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. Journal of Medicinal Chemistry 46:2551-2564. Liu, B., Li, Q.M., Shang, Z.Z., Zha, X.Q., Pan, L.H., and Luo, J.P. 2021a. Anti-gastric cancer activity of cultivated Dendrobium huoshanense stem polysaccharide in tumor-bearing mice: effects of molecular weight and O-acetyl group. International Journal of Biological Macromolecules 192:590-599. Liu, J., Geng, X., Hou, J., and Wu, G. 2021b. New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell International 21:1-7. Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., Zhou, Z., Shu, G., and Yin, G. 2022a. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduction and Targeted Therapy 7:3. Liu, S., Zhang, F., Liang, Y., Wu, G., Liu, R., Li, X., Saw, P.E., and Yang, Z. 2023. Nanoparticle (NP)-mediated APOC1 silencing to inhibit MAPK/ERK and NF-κB pathway and suppress breast cancer growth and metastasis. Science China Life Sciences 66:2451-2465. Liu, X., Liu, R., Zhao, R., Wang, J., Cheng, Y., Liu, Q., Wang, Y., and Yang, S. 2022. Synergistic interaction between paired combinations of natural antimicrobials against poultry-borne pathogens. Frontiers in Microbiology 13:811784. Liu, Y., Cao, Y., Kai, H., Han, Y., Huang, M., Gao, L., and Qiao, H. 2022b. Polyphyllin E inhibits proliferation, migration and invasion of ovarian cancer cells by down-regulating the AKT/NF-κB pathway. Biological and Pharmaceutical Bulletin 45:561-568. Liu, Y., Tang, Q., Zhang, J., Xia, Y., Yang, Y., Wu, D., Fan, H., and Cui, S.W. 2018. Triple helix conformation of β-D-glucan from Ganoderma lucidum and effect of molecular weight on its immunostimulatory activity. International Journal of Biological Macromolecules 114:1064-1070. Lu, M.K., Chang, C.C., Chao, C.H., and Hsu, Y.C. 2022. Structural changes, and anti-inflammatory, anti-cancer potential of polysaccharides from multiple processing of Rehmannia glutinosa. International Journal of Biological Macromolecules 206:621-632. Lu, M.K., Chao, C.H., Chang, T.Y., Cheng, M.C., Hsu, Y.C., and Chang, C.C. 2023a. A branched 2-O sulfated 1,3-/1,4-galactoglucan from Antrodia cinnamomea exhibits moderate antiproliferative and anti-inflammatory activities. International Journal of Biological Macromolecules 241:124559. Lu, M.K., Jen, C.I., Chao, C.H., Hsu, Y.C., and Ng, L.T. 2023b. SPS, a sulfated galactoglucan of Laetiporus sulphureus, exhibited anti-inflammatory activities. International Journal of Biological Macromolecules 226:1236-1247. Lu, M.K., Lee, M.H., Chao, C.H., and Hsu, Y.C. 2024. Sodium sulfate addition increases the bioresource of biologically active sulfated polysaccharides from Antrodia cinnamomea. International Journal of Biological Macromolecules 257:128699. Lu, M.K., Lin, T.Y., and Chang, C.C. 2018. Chemical identification of a sulfated glucan from Antrodia cinnamomea and its anti-cancer functions via inhibition of EGFR and mTOR activity. Carbohydrate Polymers 202:536-544. Lu, M.K., Lin, T.Y., Chao, C.H., Hu, C.H., and Hsu, H.Y. 2017. Molecular mechanism of Antrodia cinnamomea sulfated polysaccharide on the suppression of lung cancer cell growth and migration via induction of transforming growth factor β receptor degradation. International Journal of Biological Macromolecules 95:1144-1152. Lu, W., Yang, Z., Chen, J., Wang, D., and Zhang, Y. 2021. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides. Carbohydrate Polymers 272:118526. Lung, M.Y., and Huang, W.Z. 2012. Antioxidant properties of polysaccharides from Laetiporus sulphureus in submerged cultures. African Journal of Biotechnology 11:6350-6358. Luo, J. 2009. Glycogen synthase kinase 3β (GSK3β) in tumorigenesis and cancer chemotherapy. Cancer Letters 273:194-200. Maity, K.K., Patra, S., Dey, B., Bhunia, S.K., Mandal, S., Das, D., Majumdar, D.K., Maiti, S., Maiti, T.K., and Islam, S.S. 2011. A heteropolysaccharide from aqueous extract of an edible mushroom, Pleurotus ostreatus cultivar: structural and biological studies. Carbohydrate Research 346:366-372. Malhotra, V., Dorr, V.J., Lyss, A.P., Anderson, C.M., Westgate, S., Reynolds, M., Barrett, B., Perry, M.C., and Group, F.T.M.O. 2004. Neoadjuvant and adjuvant chemotherapy with doxorubicin and docetaxel in locally advanced breast cancer. Clinical Breast Cancer 5:377-384. Malumbres, M. 2014. Cyclin-dependent kinases. Genome Biology 15:1-10. Mantena, S.K., Sharma, S.D., and Katiyar, S.K. 2006. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Molecular Cancer Therapeutics 5:296-308. Marei, H.E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G., Morrione, A., Giordano, A., and Cenciarelli, C. 2021. p53 signaling in cancer progression and therapy. Cancer Cell International 21:703. Markman, M., and Mekhail, T.M. 2002. Paclitaxel in cancer therapy. Expert Opinion on Pharmacotherapy 3:755-766. Martin, M., Villar, A., Sole-Calvo, A., Gonzalez, R., Massuti, B., Lizon, J., Camps, C., Carrato, A., Casado, A., and Candel, M.T. 2003. Doxorubicin in combination with fluorouracil and cyclophosphamide (iv FAC regimen, day 1, 21) versus methotrexate in combination with fluorouracil and cyclophosphamide (iv CMF regimen, day 1, 21) as adjuvant chemotherapy for operable breast cancer: a study by the GEICAM group. Annals of Oncology 14:833-842. Mendonsa, A.M., Na, T.Y., and Gumbiner, B.M. 2018. E-cadherin in contact inhibition and cancer. Oncogene 37:4769-4780. Meng, M., Cheng, D., Han, L., Chen, Y., and Wang, C. 2017. Isolation, purification, structural analysis and immunostimulatory activity of water-soluble polysaccharides from Grifola frondosa fruiting body. Carbohydrate Polymers 157:1134-1143. Meng, X., Liang, H., and Luo, L. 2016. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydrate Research 424:30-41. Meng, Y., Lyu, F., Xu, X., and Zhang, L. 2020. Recent advances in chain conformation and bioactivities of triple-helix polysaccharides. Biomacromolecules 21:1653-1677. Miao, B., Geng, M., Li, J., Li, F., Chen, H., Guan, H., and Ding, J. 2004. Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome (AIDS) drug candidate, targeting CD4 in lymphocytes. Biochemical Pharmacology 68:641-649. Micallef, I., and Baron, B. 2020. Doxorubicin: an overview of the anti-cancer and chemoresistance mechanisms. Annals of Clinical Toxicology 3:1031. Mitsudomi, T., and Yatabe, Y. 2010. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS Journal 277:301-308. Mizuno, M., and Minato, K. 2024. Anti-inflammatory and immunomodulatory properties of polysaccharides in mushrooms. Current Opinion in Biotechnology 86:103076. Mizuno, M., and Nishitani, Y. 2013. Immunomodulating compounds in Basidiomycetes. Journal of Clinical Biochemistry and Nutrition 52:202-207. Mokhtari, R.B., Homayouni, T.S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., and Yeger, H. 2017. Combination therapy in combating cancer. Oncotarget 8:38022-38043. Muller, P.A.J., and Vousden, K.H. 2014. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304-317. Novikov, N.M., Zolotaryova, S.Y., Gautreau, A.M., and Denisov, E.V. 2021. Mutational drivers of cancer cell migration and invasion. British Journal of Cancer 124:102-114. Nyman, A.A.T., Aachmann, F.L., Rise, F., Ballance, S., and Samuelsen, A.B.C. 2016. Structural characterization of a branched (1→6)-α-mannan and β-glucans isolated from the fruiting bodies of Cantharellus cibarius. Carbohydrate Polymers 146:197-207. Olennikov, D.N., Agafonova, S.V., Borovskii, G.B., Penzina, T.A., and Rokhin, A.V. 2009a. Alkali-soluble polysaccharides of Laetiporus sulphureus (Bull.: Fr.) Murr. fruit bodies. Applied Biochemistry and Microbiology 45:626-630. Olennikov, D.N., Agafonova, S.V., Borovskii, G.B., Penzina, T.A., and Rokhin, A.V. 2009b. Water-soluble endopolysaccharides from the fruiting bodies of Laetiporus sulphureus (Bull.:Fr.) Murr. Applied Biochemistry and Microbiology 45:536-543. Ooi, V.E.C., and Liu, F. 2000. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current Medicinal Chemistry 7:715-729. Ozaki, T., and Nakagawara, A. 2011. Role of p53 in cell death and human cancers. Cancers 3:994-1013. Pérez Recalde, M., Noseda, M.D., Pujol, C.A., Carlucci, M.J., and Matulewicz, M.C. 2009. Sulfated mannans from the red seaweed Nemalion helminthoides of the South Atlantic. Phytochemistry 70:1062-1068. Pang, G., Wang, F., and Zhang, L.W. 2018. Dose matters: direct killing or immunoregulatory effects of natural polysaccharides in cancer treatment. Carbohydrate Polymers 195:243-256. Park, H.S., Jang, M.H., Kim, E.J., Kim, H.J., Lee, H.J., Kim, Y.J., Kim, J.H., Kang, E., Kim, S.W., and Kim, I.A. 2014. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Modern Pathology 27:1212-1222. Park, H.Y., Han, M.H., Park, C., Jin, C.Y., Kim, G.Y., Choi, I.W., Kim, N.D., Nam, T.J., Kwon, T.K., and Choi, Y.H. 2011. Anti-inflammatory effects of fucoidan through inhibition of NF-κB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food and Chemical Toxicology 49:1745-1752. Patocka, J. 2019. Will the sulphur polypore (Laetiporus sulphureus) become a new functional food? Global Journal of Medical and Clinical Case Reports 6:006-009. Pavitra, E., Kancharla, J., Gupta, V.K., Prasad, K., Sung, J.Y., Kim, J., Tej, M.B., Choi, R., Lee, J.H., and Han, Y.K. 2023. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomedicine and Pharmacotherapy 163:114822. Pavão, M.S.G., Albano, R.M., Lawson, A.M., and Mourão, P.A.S. 1989. Structural heterogeneity among unique sulfated L-galactans from different species of Ascidians (Tunicates). Journal of Biological Chemistry 264:9972-9979. Pawlikowska, M., Piotrowski, J., Jędrzejewski, T., Kozak, W., Slominski, A.T., and Brożyna, A.A. 2020. Coriolus versicolor‐derived protein‐bound polysaccharides trigger the caspase‐independent cell death pathway in amelanotic but not melanotic melanoma cells. Phytotherapy Research 34:173-183. Perez, E.A. 1998. Paclitaxel in breast cancer. The Oncologist 3:373-389. Petrova, R.D., Wasser, S.P., Mahajna, J.A., Denchev, C.M., and Nevo, E.D. 2005. Potential role of medicinal mushrooms in breast cancer treatment: current knowledge and future perspectives. International Journal of Medicinal Mushrooms 7:141-146. Petrova, Y.I., Schecterson, L., and Gumbiner, B.M. 2016. Roles for E-cadherin cell surface regulation in cancer. Molecular Biology of the Cell 27:3233-3244. Pietenpol, J.A., and Stewart, Z.A. 2002. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181-182:475-481. Pádua, D., Rocha, E., Gargiulo, D., and Ramos, A.A. 2015. Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochemistry Letters 14:91-98. Qi, H., Zhao, T., Zhang, Q., Li, Z., Zhao, Z., and Xing, R. 2005. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology 17:527-534. Quail, D.F., and Joyce, J.A. 2013. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine 19:1423-1437. Radic, N., and Injac, R. 2009. Sulphur tuft culinary-medicinal mushroom, Laetiporus sulphureus (Bull.: Fr.) Murrill (Aphyllophoromycetideae): bioactive compounds and pharmaceutical effects. International Journal of Medicinal Mushrooms 11:103-116. Rasmi, R.R., Sakthivel, K.M., and Guruvayoorappan, C. 2020. NF-κB inhibitors in treatment and prevention of lung cancer. Biomedicine and Pharmacotherapy 130:110569. Ren, L., Perera, C., and Hemar, Y. 2012. Antitumor activity of mushroom polysaccharides: a review. Food & Function 3:1118-1130. Ren, L., Zhang, J., and Zhang, T. 2021. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chemistry 340:127933. Ren, Z., He, M., and Bai, L. 2023. Chitosan targets PI3K/Akt/FoxO3a axis to up-regulate FAM172A and suppress MAPK/ERK pathway to exert anti-tumor effect in osteosarcoma. Chemico-Biological Interactions 373:110354. Roca-Lema, D., Martinez-Iglesias, O., de Ana Portela, C.F., Rodríguez-Blanco, A., Valladares-Ayerbes, M., Díaz-Díaz, A., Casas-Pais, A., Prego, C., and Figueroa, A. 2019. In vitro anti-proliferative and anti-invasive effect of polysaccharide-rich extracts from Trametes versicolor and Grifola frondosa in colon cancer cells. International Journal of Medical Sciences 16:231-240. Ross, E.A., Devitt, A., and Johnson, J.R. 2021. Macrophages: the good, the bad, and the gluttony. Frontiers in Immunology 12:708186. Ruthes, A.C., Smiderle, F.R., and Iacomini, M. 2016. Mushroom heteropolysaccharides: a review on their sources, structure and biological effects. Carbohydrate Polymers 136:358-375. Saitô, H., Yoshioka, Y., Uehara, N., Aketagawa, J., Tanaka, S., and Shibata, Y. 1991. Relationship between conformation and biological response for (1→3)-β-D-glucans in the activation of coagulation Factor G from limulus amebocyte lysate and host-mediated antitumor activity. Demonstration of single-helix conformation as a stimulant. Carbohydrate Research 217:181-190. Samuelsen, A.B.C., Rise, F., Wilkins, A.L., Teveleva, L., Nyman, A.A.T., and Aachmann, F.L. 2019. The edible mushroom Albatrellus ovinus contains a α-L-fuco-α-D-galactan, α-D-glucan, a branched (1→6)-β-D-glucan and a branched (1→3)-β-D-glucan. Carbohydrate Research 471:28-38. Sanjeewa, K.K.A., Kang, N., Ahn, G., Jee, Y., Kim, Y.T., and Jeon, Y.J. 2018. Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: a review. Food Hydrocolloids 81:200-208. Santos-Neves, J.C., Pereira, M.I., Carbonero, E.R., Gracher, A.H.P., Gorin, P.A.J., Sassaki, G.L., and Iacomini, M. 2008. A gel-forming β-glucan isolated from the fruit bodies of the edible mushroom Pleurotus florida. Carbohydrate Research 343:1456-1462. Seo, M.J., Kang, B.W., Park, J.U., Kim, M.J., Lee, H.H., Choi, Y.H., and Jeong, Y.K. 2011. Biochemical characterization of the exopolysaccharide purified from Laetiporus sulphureus mycelia. Journal of Microbiology and Biotechnology 21:1287-1293. Sheibani, M., Azizi, Y., Shayan, M., Nezamoleslami, S., Eslami, F., Farjoo, M.H., and Dehpour, A.R. 2022. Doxorubicin-induced cardiotoxicity: an overview on pre-clinical therapeutic approaches. Cardiovascular Toxicology 22:292-310. Sheng, K., Wang, C., Chen, B., Kang, M., Wang, M., Liu, K., and Wang, M. 2021. Recent advances in polysaccharides from Lentinus edodes (Berk.): isolation, structures and bioactivities. Food Chemistry 358:129883. Shim, G., Kim, M.G., Kim, D., Park, J.Y., and Oh, Y.K. 2017. Nanoformulation-based sequential combination cancer therapy. Advanced Drug Delivery Reviews 115:57-81. Shimura, T., Noma, N., Oikawa, T., Ochiai, Y., Kakuda, S., Kuwahara, Y., Takai, Y., Takahashi, A., and Fukumoto, M. 2012. Activation of the AKT/cyclin D1/Cdk4 survival signaling pathway in radioresistant cancer stem cells. Oncogenesis 1:e12-e12. Shyu, Y.M., Liu, L.Y.M., and Chuang, Y.J. 2021. Synergistic effect of simultaneous versus sequential combined treatment of histone deacetylase inhibitor valproic acid with etoposide on melanoma cells. International Journal of Molecular Sciences 22:10029. Singdevsachan, S.K., Auroshree, P., Mishra, J., Baliyarsingh, B., Tayung, K., and Thatoi, H. 2016. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: a review. Bioactive Carbohydrates and Dietary Fibre 7:1-14. Sivanesan, I., Muthu, M., Gopal, J., and Oh, J.W. 2022. Mushroom polysaccharide-assisted anticarcinogenic mycotherapy: reviewing its clinical trials. Molecules 27:4090. Slade, D. 2019. Mitotic functions of poly (ADP-ribose) polymerases. Biochemical Pharmacology 167:33-43. Sledge, G.W., Neuberg, D., Bernardo, P., Ingle, J.N., Martino, S., Rowinsky, E.K., and Wood, W.C. 2003. Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193). Journal of Clinical Oncology 21:588-592. Sledge Jr, G.W., Loehrer Sr, P.J., Roth, B.J., and Einhorn, L.H. 1988. Cisplatin as first-line therapy for metastatic breast cancer. Journal of Clinical Oncology 6:1811-1814. Sletmoen, M., and Stokke, B.T. 2013. Structure–function relationships in glycopolymers: effects of residue sequences, duplex, and triplex organization. Biopolymers 99:757-771. Smith, M.P., Young, H., Hurlstone, A., and Wellbrock, C. 2015. Differentiation of THP1 cells into macrophages for transwell co-culture assay with melanoma cells. Bio Protocol 5:e1638-e1638. Sánchez, R.A.R., Matulewicz, M.C., and Ciancia, M. 2022. NMR spectroscopy for structural elucidation of sulfated polysaccharides from red seaweeds. International Journal of Biological Macromolecules 199:386-400. Soldani, C., and Scovassi, A.I. 2002. Poly (ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7:321-328. Song, X., Zhang, Y., Yin, Z., Zhao, X., Liang, X., He, C., Yin, L., Lv, C., Zhao, L., and Ye, G. 2015. Antiviral effect of sulfated Chuanmingshen violaceum polysaccharide in chickens infected with virulent Newcastle disease virus. Virology 476:316-322. Sousa, P., Tavares-Valente, D., Amorim, M., Azevedo-Silva, J., Pintado, M., and Fernandes, J. 2023. β-Glucan extracts as high-value multifunctional ingredients for skin health: a review. Carbohydrate Polymers 322:121329. Su, B., Yan, X., Li, Y., Zhang, J., and Xia, X. 2020. Effects of Inonotus obliquus polysaccharides on proliferation, invasion, migration, and apoptosis of osteosarcoma cells. Analytical Cellular Pathology 2020:4282036. Su, C.H., Lai, M.N., Lin, C.C., and Ng, L.T. 2016. Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Applied Microbiology and Biotechnology 100:4385-4393. Su, C.H., Lai, M.N., and Ng, L.T. 2017. Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa. Food Chemistry 220:400-405. Su, C.H., Lu, M.K., Lu, T.J., Lai, M.N., and Ng, L.T. 2020. A (1→6)-branched (1→4)-β-D-glucan from Grifola frondosa inhibits lipopolysaccharide-induced cytokine production in RAW264. 7 macrophages by binding to TLR2 rather than Dectin-1 or CR3 receptors. Journal of Natural Products 83:231-242. Sun, L., Wang, L., and Zhou, Y. 2012. Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydrate Polymers 87:1206-1210. Sun, M., Qiu, S., Xiao, Q., Wang, T., Tian, X., Chen, C., Wang, X., Han, J., Zheng, H., and Shou, Y. 2020. Synergistic effects of multiple myeloma cells and tumor-associated macrophages on vascular endothelial cells in vitro. Medical Oncology 37:99. Surayot, U., Wangtueai, S., You, S., Palanisamy, S., Krusong, W., Brennan, C.S., Barba, F.J., Phimolsiripol, Y., and Seesuriyachan, P. 2021. Extraction, structural characterisation, and immunomodulatory properties of edible Amanita hemibapha subspecies javanica (Corner and Bas) mucilage polysaccharide as a potential of functional food. Journal of Fungi 7:683. Suzuki, M., Iwashiro, M., Takatsuki, F., Kuribayashi, K., and Hamuro, J. 1994. Reconstitution of anti‐tumor effects of lentinan in nude mice: roles of delayed‐type hypersensitivity reaction triggered by CD4‐positive T cell clone in the infiltration of effector cells into tumor. Japanese Journal of Cancer Research 85:409-417. Tahtamouni, L., Ahram, M., Koblinski, J., and Rolfo, C. 2019. Molecular regulation of cancer cell migration, invasion, and metastasis. Analytical Cellular Pathology 2019:1356508. Takeda, K., Tomimori, K., Kimura, R., Ishikawa, C., Nowling, T.K., and Mori, N. 2012. Anti-tumor activity of fucoidan is mediated by nitric oxide released from macrophages. International Journal of Oncology 40:251-260. Teruya, T., Konishi, T., Uechi, S., Tamaki, H., and Tako, M. 2007. Anti-proliferative activity of oversulfated fucoidan from commercially cultured Cladosiphon okamuranus TOKIDA in U937 cells. International Journal of Biological Macromolecules 41:221-226. Tetsu, O., and McCormick, F. 1999. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422-426. Tian, Y., Wu, J., Zeng, L., Zhou, L., Hu, Y., Pan, Q., Liu, W., Yan, Y., Wu, Z., and Wang, Z. 2021. Huaier polysaccharides suppress triple-negative breast cancer metastasis and epithelial-mesenchymal transition by inducing autophagic degradation of Snail. Cell and Bioscience 11:170. Tiwary, R., Yu, W., Sanders, B.G., and Kline, K. 2011. α-TEA cooperates with chemotherapeutic agents to induce apoptosis of p53 mutant, triple-negative human breast cancer cells via activating p73. Breast Cancer Research 13:R1. Trung, D.T., Surits, V.V., Zueva, A.O., Cao, H.T.T., Shevchenko, N.M., Ermakova, S.P., and Thinh, P.D. 2024. Anticancer activity in vitro of sulfated polysaccharides from the brown alga Spatoglossum vietnamense. Molecules 29:4982. Van Weelden, G., Bobiński, M., Okła, K., Van Weelden, W.J., Romano, A., and Pijnenborg, J.M.A. 2019. Fucoidan structure and activity in relation to anti-cancer mechanisms. Marine Drugs 17:32. VanArsdale, T., Boshoff, C., Arndt, K.T., and Abraham, R.T. 2015. Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clinical Cancer Research 21:2905-2910. Verzella, D., Pescatore, A., Capece, D., Vecchiotti, D., Ursini, M.V., Franzoso, G., Alesse, E., and Zazzeroni, F. 2020. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death and Disease 11:210. Waks, A.G., and Winer, E.P. 2019. Breast cancer treatment: a review. JAMA 321:288-300. Waldman, T., Zhang, Y., Dillehay, L., Yu, J., Kinzler, K., Vogelstein, B., and Williams, J. 1997. Cell-cycle arrest versus cell death in cancer therapy. Nature Medicine 3:1034-1036. Wan-Mohtar, W.A.A.Q.I., Ilham, Z., Jamaludin, A.A., and Rowan, N. 2021. Use of zebrafish embryo assay to evaluate toxicity and safety of bioreactor-grown exopolysaccharides and endopolysaccharides from European Ganoderma applanatum mycelium for future aquaculture applications. International Journal of Molecular Sciences 22:1675. Wan, J.M.F., Sit, W.H., and Louie, J.C.Y. 2008. Polysaccharopeptide enhances the anticancer activity of doxorubicin and etoposide on human breast cancer cells ZR-75-30. International Journal of Oncology 32:689-699. Wan, X., Jin, X., Wu, X., Yang, X., Lin, D., Li, C., Fu, Y., Liu, Y., Liu, X., Lv, J., Gontcharov, A.A., Yang, H., Wang, Q., and Li, Y. 2022. Structural characterisation and antitumor activity against non-small cell lung cancer of polysaccharides from Sanghuangporus vaninii. Carbohydrate Polymers 276:118798. Wan, X., Jin, X., Xie, M., Liu, J., Gontcharov, A.A., Wang, H., Lv, R., Liu, D., Wang, Q., and Li, Y. 2020. Characterization of a polysaccharide from Sanghuangporus vaninii and its antitumor regulation via activation of the p53 signaling pathway in breast cancer MCF-7 cells. International Journal of Biological Macromolecules 163:865-877. Wang, H., Guo, S., Kim, S.J., Shao, F., Ho, J.W.K., Wong, K.U., Miao, Z., Hao, D., Zhao, M., and Xu, J. 2021a. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics 11:2442-2459. Wang, H.T., Yang, L.C., Yu, H.C., Chen, M.L., Wang, H.J., and Lu, T.J. 2018. Characteristics of fucose-containing polysaccharides from submerged fermentation of Agaricus blazei Murill. Journal of Food and Drug Analysis 26:678-687. Wang, J., Wu, H.J., Zhou, C.Z., and Wang, H. 2016. Sulfated polysaccharide‑protein complex sensitizes doxorubicin‑induced apoptosis of breast cancer cells in vitro and in vivo. Experimental and Therapeutic Medicine 12:2169-2176. Wang, J., Zhao, J., Nie, S., Xie, M., and Li, S. 2023a. MALDI mass spectrometry in food carbohydrates analysis: a review of recent researches. Food Chemistry 399:133968. Wang, J.Q., Yin, J.Y., Nie, S.P., and Xie, M.Y. 2021b. A review of NMR analysis in polysaccharide structure and conformation: progress, challenge and perspective. Food Research International 143:110290. Wang, Q., Sheng, X., Shi, A., Hu, H., Yang, Y., Liu, L., Fei, L., and Liu, H. 2017. β-Glucans: relationships between modification, conformation and functional activities. Molecules 22:257. Wang, X., Li, J., Chen, R., Li, T., and Chen, M. 2023b. Active ingredients from Chinese medicine for combination cancer therapy. International Journal of Biological Sciences 19:3499-3525. Wang, Y.Y., Khoo, K.H., Chen, S.T., Lin, C.C., Wong, C.H., and Lin, C.H. 2002. Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorganic and Medicinal Chemistry 10:1057-1062. Wasser, S. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology 60:258-274. Webb, A.H., Gao, B.T., Goldsmith, Z.K., Irvine, A.S., Saleh, N., Lee, R.P., Lendermon, J.B., Bheemreddy, R., Zhang, Q., and Brennan, R.C. 2017. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 17:434. Wee, P., and Wang, Z. 2017. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9:52. Wei, D., Wei, Y., Cheng, W., and Zhang, L. 2012. Sulfated modification, characterization and antitumor activities of Radix hedysari polysaccharide. International Journal of Biological Macromolecules 51:471-476. Weng, H.C., Sung, C.J., Hsu, J.L., Leu, W.J., Guh, J.H., Kung, F.L., and Hsu, L.C. 2022. The combination of a novel GLUT1 inhibitor and cisplatin synergistically inhibits breast cancer cell growth by enhancing the DNA damaging effect and modulating the Akt/mTOR and MAPK signaling pathways. Frontiers in Pharmacology 13:879748. Wheeler, K.C., Jena, M.K., Pradhan, B.S., Nayak, N., Das, S., Hsu, C.D., Wheeler, D.S., Chen, K., and Nayak, N.R. 2018. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua. PloS One 13:e0191040. Wiater, A., Waśko, A., Adamczyk, P., Gustaw, K., Pleszczyńska, M., Wlizło, K., Skowronek, M., Tomczyk, M., and Szczodrak, J. 2020. Prebiotic potential of oligosaccharides obtained by acid hydrolysis of α-(1→3)-glucan from Laetiporus sulphureus: a pilot study. Molecules 25:5542. Wu, S., Li, F., Jia, S., Ren, H., Gong, G., Wang, Y., and Lv, Z. 2014. Drying effects on the antioxidant properties of polysaccharides obtained from Agaricus blazei Murrill. Carbohydrate Polymers 103:414-417. Xia, L., Tan, S., Zhou, Y., Lin, J., Wang, H., Oyang, L., Tian, Y., Liu, L., Su, M., and Wang, H. 2018. Role of the NFκB-signaling pathway in cancer. OncoTargets and Therapy 11:2063-2073. Xu, H., Liu, L., Ding, M., Fan, W., Chen, C., and Song, H. 2020. Effect of Ganoderma applanatum polysaccharides on MAPK/ERK pathway affecting autophagy in breast cancer MCF-7 cells. International Journal of Biological Macromolecules 146:353-362. Xue, M., Ji, X., Xue, C., Liang, H., Ge, Y., He, X., Zhang, L., Bian, K., and Zhang, L. 2017. Caspase-dependent and caspase-independent induction of apoptosis in breast cancer by fucoidan via the PI3K/AKT/GSK3β pathway in vivo and in vitro. Biomedicine and Pharmacotherapy 94:898-908. Yanaki, T., Ito, W., Tabata, K., Kojima, T., Norisuye, T., Takano, N., and Fujita, H. 1983. Correlation between the antitumor activity of a polysaccharide schizophyllan and its triple-helical conformation in dilute aqueous solution. Biophysical Chemistry 17:337-342. Yang, F., Teves, S.S., Kemp, C.J., and Henikoff, S. 2014. Doxorubicin, DNA torsion, and chromatin dynamics. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer 1845:84-89. Yang, M., Belwal, T., Devkota, H.P., Li, L., and Luo, Z. 2019. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: a comprehensive review. Trends in Food Science and Technology 92:94-110. Yang, M., Zhou, D., Xiao, H., Fu, X., Kong, Q., Zhu, C., Han, Z., and Mou, H. 2022. Marine-derived uronic acid-containing polysaccharides: structures, sources, production, and nutritional functions. Trends in Food Science and Technology 122:1-12. Yang, W., Pei, F., Shi, Y., Zhao, L., Fang, Y., and Hu, Q. 2012. Purification, characterization and anti-proliferation activity of polysaccharides from Flammulina velutipes. Carbohydrate Polymers 88:474-480. Yao, W., Qiu, H.M., Cheong, K.L., and Zhong, S. 2022. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. International Journal of Biological Macromolecules 221:472-485. Yao, W.Z., Veeraperumal, S., Qiu, H.M., Chen, X.Q., and Cheong, K.L. 2020. Anti-cancer effects of Porphyra haitanensis polysaccharides on human colon cancer cells via cell cycle arrest and apoptosis without causing adverse effects in vitro. 3 Biotech 10:386. Ye, L.B., Zhang, J.S., Zhou, K., Yang, Y., Zhou, S., Jia, W., Hao, R.X., and Pan, Y.J. 2008. Purification, NMR study and immunostimulating property of a fucogalactan from the fruiting bodies of Ganoderma lucidum. Planta Medica 74:1730-1734. Yin, L., Duan, J.J., Bian, X.W., and Yu, S.C. 2020. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research 22:1-13. Yoshikawa, K., Bando, S., Arihara, S., Matsumura, E., and Katayama, S. 2001. A benzofuran glycoside and an acetylenic acid from the fungus Laetiporus sulphureus var. miniatus. Chemical and Pharmaceutical Bulletin 49:327-329. Yu, Z., Ming, G., Kaiping, W., Zhixiang, C., Liquan, D., Jingyu, L., and Fang, Z. 2010. Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes. Fitoterapia 81:1163-1170. Yue, F., Zhang, J., Xu, J., Niu, T., Lü, X., and Liu, M. 2022. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Frontiers in Nutrition 9:963318. Zan, X., Cui, F., Li, Y., Yang, Y., Wu, D., Sun, W., and Ping, L. 2015. Hericium erinaceus polysaccharide-protein HEG-5 inhibits SGC-7901 cell growth via cell cycle arrest and apoptosis. International Journal of Biological Macromolecules 76:242-253. Zavadinack, M., de Lima Bellan, D., da Rocha Bertage, J.L., da Silva Milhorini, S., da Silva Trindade, E., Simas, F.F., Sassaki, G.L., Cordeiro, L.M.C., and Iacomini, M. 2021. An α-D-galactan and a β-D-glucan from the mushroom Amanita muscaria: structural characterization and antitumor activity against melanoma. Carbohydrate Polymers 274:118647. Zhang, C., Liu, J., Xu, D., Zhang, T., Hu, W., and Feng, Z. 2020a. Gain-of-function mutant p53 in cancer progression and therapy. Journal of Molecular Cell Biology 12:674-687. Zhang, J., Gao, Z., Li, S., Gao, S., Ren, Z., Jing, H., and Jia, L. 2016. Purification, characterization, antioxidation, and antiaging properties of exopolysaccharides and endopolysaccharides of the royal sun medicinal mushroom, Agaricus brasiliensis (Agaricomycetes). International Journal of Medicinal Mushrooms 18:1071-1081. Zhang, L., Hu, Y., Duan, X., Tang, T., Shen, Y., Hu, B., Liu, A., Chen, H., Li, C., and Liu, Y. 2018. Characterization and antioxidant activities of polysaccharides from thirteen Boletus mushrooms. International Journal of Biological Macromolecules 113:1-7. Zhang, L., Li, X., Xu, X., and Zeng, F. 2005. Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydrate Research 340:1515-1521. Zhang, M., Chiu, L.C.M., Cheung, P.C.K., and Ooi, V.E.C. 2006. Growth-inhibitory effects of a β-glucan from the mycelium of Poria cocos on human breast carcinoma MCF-7 cells: cell-cycle arrest and apoptosis induction. Oncology Reports 15:637-643. Zhang, M., Cui, S.W., Cheung, P.C.K., and Wang, Q. 2007. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science and Technology 18:4-19. Zhang, M., Zhang, Y., Zhang, L., and Tian, Q. 2019. Chapter thirteen – mushroom polysaccharide lentinan for treating different types of cancers: a review of 12 years clinical studies in China. Progress in Molecular Biology and Translational Science 163:297-328. Zhang, Q., Du, Z., Zhang, Y., Zheng, Z., Li, Q., and Wang, K. 2020b. Apoptosis induction activity of polysaccharide from Lentinus edodes in H22-bearing mice through ROS-mediated mitochondrial pathway and inhibition of tubulin polymerization. Food and Nutrition Research 64:4364. Zhang, W., Xiang, Q., Zhao, J., Mao, G., Feng, W., Chen, Y., Li, Q., Wu, X., Yang, L., and Zhao, T. 2020c. Purification, structural elucidation and physicochemical properties of a polysaccharide from Abelmoschus esculentus L (okra) flowers. International Journal of Biological Macromolecules 155:740-750. Zhang, W., Zhang, X., Bai, Q., Liang, L., Wang, S., and Guo, L. 2023. Structure-effect relationship studies of polysaccharides based on receptor-active centres: an alternative view. Food & Function 14:4981-5000. Zhang, Y., Nie, R., Liu, W., Dong, S., Yang, J., Wang, X., Wang, Y., and Zheng, L. 2024. Sulfation on polysaccharides from Zizania latifolia extracted using ultrasound: characterization, antioxidant and anti-non-small cell lung cancer activities. Ultrasonics Sonochemistry 103:106803. Zhao, H., Lan, Y., Liu, H., Zhu, Y., Liu, W., Zhang, J., and Jia, L. 2017. Antioxidant and hepatoprotective activities of polysaccharides from spent mushroom substrates (Laetiporus sulphureus) in acute alcohol-induced mice. Oxidative Medicine and Cellular Longevity 2017:5863523. Zhao, S., Tang, Y., Wang, R., and Najafi, M. 2022. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis 27:647-667. Zhao, T., Yang, M., Ma, L., Liu, X., Ding, Q., Chai, G., Lu, Y., Wei, H., Zhang, S., and Ding, C. 2023. Structural modification and biological activity of polysaccharides. Molecules 28:5416. Zhao, Y., Tian, N., Wang, H., and Yan, H. 2021. Chemically sulfated polysaccharides from Agaricus Blazei Murill: synthesis, characterization and anti‐HIV activity. Chemistry and Biodiversity 18:e2100338. Zheng, H., Pei, Y., He, Y.L., Liu, Y., Chen, M., Hong, P., Zhou, C., and Qian, Z.J. 2022. A sulfated polysaccharide from red algae (Gelidium crinale) to suppress cells metastasis and MMP-9 expression of HT1080 cells. Foods 11:2360. Zheng, J., Li, C., Wu, X., Liu, M., Sun, X., Yang, Y., Hao, M., Sheng, S., Sun, Y., and Zhang, H. 2014. Huaier polysaccharides suppresses hepatocarcinoma MHCC97-H cell metastasis via inactivation of EMT and AEG-1 pathway. International Journal of Biological Macromolecules 64:106-110. Zhu, L., and Chen, L. 2019. Progress in research on paclitaxel and tumor immunotherapy. Cellular & Molecular Biology Letters 24:40. Zhu, Z., Zhu, B., Sun, Y., Ai, C., Wu, S., Wang, L., Song, S., and Liu, X. 2018. Sulfated polysaccharide from sea cucumber modulates the gut microbiota and its metabolites in normal mice. International Journal of Biological Macromolecules 120:502-512. Zong, S., Li, J., Yang, L., Huang, Q., Hou, G., Ye, Z., and Ye, M. 2019. Mechanism of bioactive polysaccharide from Lachnum sp. acts synergistically with 5‐fluorouracil against human hepatocellular carcinoma. Journal of Cellular Physiology 234:15548-15562. 水野卓。1983。制癌性を有するサルノコシカケ。化学と生物 21:473-479。 李瑋崧、呂昀陞、陳美杏、黃棨陽。2019。神農本草經藥用菌介紹:黃芝與白芝。 農業世界雜誌 429:48-51。 薛守英。2006。硫磺菌固體發酵及其生物活性之研究。南臺科技大學生物科技系碩士論文,臺南。95頁。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96493 | - |
dc.description.abstract | 藥用菇類應用於保健食品及民俗用藥的歷史悠久。多醣體 (polysaccharides, PS) 為菇類主要的活性成分之一,其多元的生物活性深受物化性質及結構影響。含硫多醣體 (sulfated polysaccharides, SPS) 為一種單醣上帶有硫酸根的PS,由於其特殊的物化性質而具有優異的生物活性,故廣泛應用於醫療及保健食品。天然SPS的來源主要為海藻,迄今尚未發現其存在於菇類子實體中,直到本研究團隊於臺灣南投豐丘採集到一株食藥用菇類「硫磺菌 (Laetiporus sulphureus)」,並經初步研究後發現其子實體富含SPS,然而目前有關硫磺菌PS和SPS之物化性質及其生物活性研究仍十分缺乏。本研究目的擬探討本土產硫磺菌之PS及SPS的物化性質差異,並選用三陰性乳癌細胞株MDA-MB-231作為抗癌活性模式細胞,分析PS及SPS之抗乳癌活性,並進一步解析活性多醣體的化學結構與分子作用機轉,以及評估活性多醣體與乳癌化療藥物合併施用的潛力。結果顯示,硫磺菌PS及SPS的硫酸根 (0.16%及16.17%)、蛋白質 (0.43%及4.33%) 和糖醛酸 (10.98%及3.43%) 含量,以及單醣組成、分子量和構形皆具有顯著差異。SPS對MDA-MB-231細胞增生的抑制活性優於PS,且對乳癌細胞具有選擇性細胞毒性。SPS主要透過阻滯細胞週期於G0/G1期進而抑制乳癌細胞增生。此外,其亦能阻止乳癌細胞遷徙,並且具有活化巨噬細胞並增強毒殺乳癌細胞的活性。根據SPS的分子量分布特徵,可將其分為三個不同分子量的分餾物,其中以中分子量群含硫多醣體F2對乳癌細胞增生的抑制效果最佳,且能選擇性毒殺乳癌細胞。F2主要透過抑制表皮生長因子受體 (EGFR) 的磷酸化與蛋白質表現,進而減弱ERK1/2和Akt磷酸化,阻礙NF-κB與GSK-3β/β-catenin途徑的活化,導致下游CDK4與cyclin D1的蛋白質表現量下降,同時促使p21的蛋白質表現量提高,最後引發乳癌細胞週期停滯於G0/G1期。此外,F2還能透過EGFR介導之途徑下調MMP-9及MMP-2的蛋白質表現量,進而抑制乳癌細胞的遷徙及侵襲。F2主要由半乳糖、甘露糖、岩藻糖及葡萄糖組成,莫耳比例約為4:3:3:2,分子量為23.0 kDa,其主鏈的重複單元由24個α-(1→6)半乳糖殘基與6個β-(1→6)葡萄糖殘基構成,部分半乳糖殘基的2-O處連接α-甘露糖、α-岩藻糖或α-岩藻糖-3-O-α-甘露糖,而部分葡萄糖殘基在3-O處與β-葡萄糖-3-O-β-葡萄糖連接,硫酸根基團主要位於岩藻糖上。F2能增強小紅莓 (doxorubicin) 對乳癌細胞的毒殺效果,同時減少其對正常乳房表皮細胞的毒害,其中以序列性處理模式的效果優於同步處理模式。F2主要透過增強小紅莓誘導的cleaved PARP蛋白質表現量,進一步促進細胞凋亡,進而達到兩者在序列性處理下的協同抗乳癌效果。總結來說,硫磺菌含硫多醣體F2具有獨特的化學結構,並會透過調控EGFR介導的訊息傳遞途徑,對乳癌細胞產生抗增生與抗轉移效果;此外,F2與小紅莓的協同抗癌作用顯示其在乳癌合併治療中的應用潛力。 | zh_TW |
dc.description.abstract | Medicinal mushrooms have a long history of being widely used as functional foods and folk medicines. Polysaccharides (PS) are one of the major bioactive components in mushrooms, and their diverse bioactivities are mainly affected by their physicochemical properties and structures. Sulfated polysaccharides (SPS) are a group of polysaccharides characterized by the presence of sulfate groups on monosaccharides; they possess remarkable bioactivities due to their unique physicochemical properties. Currently, natural SPS are mainly derived from marine algae, it has not been reported in mushroom fruiting bodies. It was until our research team first collected an edible and medicinal mushroom, Laetiporus sulphureus, from Fengqiu, Nantou, Taiwan. Preliminary studies discovered that its fruiting bodies contained a high amount of SPS. However, to-date, studies on the physicochemical properties and anti-breast cancer activities of PS and SPS from L. sulphureus remain limited. This study aimed to investigate the differences of physicochemical properties between PS and SPS from local L. sulphureus, followed by using the triple-negative breast cancer cell line MDA-MB-231 as a cancer model organism to examine their anti-breast cancer activities. Furthermore, the chemical structures and mechanism(s) of action of the most bioactive polysaccharides, and their potential of combining with chemotherapy drugs for breast cancer therapy were also analyzed. Results showed that the contents of sulfate (0.16% vs. 16.17%), protein (0.43% vs. 4.33%), and uronic acid (10.98% vs. 3.43%), as well as the monosaccharide composition, the molecular weight, and the conformation of PS were significantly different from SPS. SPS exhibited more potent inhibitory effect on the MDA-MB-231 cell proliferation than PS, and it also possessed selective cytotoxicity against breast cancer cells. The inhibitory effect of SPS on breast cancer cells was mainly mediated by arresting cell cycle at G0/G1 phase. Furthermore, it also inhibited cancer cell migration and was shown to activate macrophages, consequently led to enhance a cytotoxicity against breast cancer cells. Based on the molecular weight distribution of SPS, it was separated into three different fractions. Among the three SPS fractions, the medium-molecular-weight sulfated polysaccharide fraction, F2, exhibited the most potent inhibitory effect on the breast cancer cell proliferation, and it showed selective cytotoxicity against breast cancer cells. F2 inhibited the phosphorylation and protein expression of epidermal growth factor receptor (EGFR), thereby attenuating the phosphorylation of ERK1/2 and Akt, blocking the activation of NF-κB and GSK-3β/β-catenin pathways, and resulted in the down-regulation of downstream targets, CDK4 and cyclin D1, protein expressions, as well as the up-regulation of p21 protein expression, to induce the breast cancer cell cycle arrest at G0/G1 phase. Furthermore, F2 also inhibited breast cancer cell migration and invasion by down-regulating MMP-9 and MMP-2 protein expressions through the EGFR-mediated pathway. F2 was composed of galactose, mannose, fucose, and glucose in a ratio of approximately 4:3:3:2, with a molecular weight of 23.0 kDa. The repeat unit of the F2 backbone was composed of twenty-four α-(1→6)-galactosyl residues and six β-(1→6)-glucosyl residues. Parts of the galactosyl residues were substituted at 2-O by α-mannosyl, α-fucosyl, or α-fucosyl-3-O-α-mannosyl residues, and the parts of glucosyl residues were substituted at 3-O with β-glucosyl-3-O-β-glucosyl residues. Sulfate groups were primarily located on the fucose residues. F2 enhanced the cytotoxic effect of doxorubicin on breast cancer cells while reducing its toxicity to normal mammary epithelial cells, with sequential treatment showing greater efficacy than simultaneous treatment. F2 enhanced doxorubicin-induced cleaved PARP protein expression, promoting cell apoptosis and synergistically enhancing anti-breast cancer effects under the sequential treatment. In conclusion, the sulfated polysaccharide F2 from L. sulphureus possessed a unique chemical structure and exhibited anti-proliferative and anti-metastatic effects on breast cancer cells by regulating EGFR-mediated signaling pathways. Additionally, the synergistic anti-cancer activity of F2 combined with doxorubicin highlighted its potential application in breast cancer combination therapy. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:13:14Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-19T16:13:14Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 I
摘要 III Abstract V 目次 VII 圖次 XIII 表次 XVI 第一章、前言 1 1.1. 文獻回顧 3 1.1.1. 硫磺菌 3 1.1.1.1. 硫磺菌之學名、俗名、產地及形態特徵 3 1.1.1.2. 硫磺菌多醣體的化學結構與生物活性 4 1.1.2. 多醣體 (polysaccharides) 6 1.1.2.1. 多醣體之物化性質與活性關聯 7 1.1.2.1.1. 非醣物質 (non-glycan component) 7 1.1.2.1.2. 分子量 (molecular weight) 8 1.1.2.1.3. 單醣組成 (monosaccharide composition) 9 1.1.2.1.4. 醣苷鍵結形式 (linkage type) 10 1.1.2.1.5. 構形 (conformation) 10 1.1.2.2. 菇類多醣體 12 1.1.2.2.1. 菇類多醣體之化學結構 12 1.1.2.2.2. 菇類多醣體之藥理活性 15 1.1.2.3. 含硫多醣體 19 1.1.2.3.1. 含硫多醣體簡介 19 1.1.2.3.2. 含硫多醣體之化學結構 19 1.1.2.3.3. 含硫多醣體之藥理活性 24 1.1.3. 三陰性乳癌 (triple-negative breast cancer) 25 1.1.3.1. 三陰性乳癌之簡介及研究現況 25 1.1.3.2. 三陰性乳癌的治療方法 26 1.1.4. 腫瘤微環境 (tumor microenvironment) 與巨噬細胞 (macrophage) 27 1.1.5. 多醣體之抗癌活性及作用機轉 28 1.1.5.1. 對癌細胞增生及轉移的抑制活性 28 1.1.5.2. 增強免疫反應 31 1.1.5.3. 與化療藥物合併處理 33 1.2. 研究假設 35 1.3. 研究目的 35 1.4. 研究架構 36 第二章、硫磺菌PS及SPS之物化性質及抗乳癌活性差異 37 2.1. 前言 37 2.2. 材料與方法 38 2.2.1. 材料及藥品 38 2.2.2. 多醣體 (PS) 的製備 38 2.2.3. 含硫多醣體 (SPS) 的製備 39 2.2.4. 總醣含量分析 39 2.2.5. 蛋白質含量分析 39 2.2.6. 硫酸根含量分析 40 2.2.7. 糖醛酸含量分析 40 2.2.8. 分子量分析 40 2.2.9. 單醣組成分析 41 2.2.9.1. 酸水解 41 2.2.9.2. 衍生化 41 2.2.9.3. HPLC分析 41 2.2.10. 三股螺旋結構分析 41 2.2.11. 細胞培養 42 2.2.12. 乳癌細胞之抑制活性 42 2.2.12.1. 細胞增生能力分析 42 2.2.12.2. 細胞週期 (cell cycle) 分析 42 2.3.12.3. 細胞凋亡 (apoptosis) 分析 43 2.2.12.4. 細胞遷移 (migration) 能力分析 43 2.2.12.5. 蛋白質表現量分析 43 2.2.13. 經由活化巨噬細胞產生之抗乳癌活性分析 44 2.2.13.1. THP-1細胞的分化 44 2.2.13.2. THP-1巨噬細胞之存活率分析 44 2.2.13.3. 乳癌細胞之增生能力分析 (共培養模式) 44 2.2.14. 數據分析 45 2.3. 結果與討論 46 2.3.1. 硫磺菌PS及SPS之物化性質差異 46 2.3.2. PS及SPS之抗乳癌活性 52 2.3.2.1. PS及SPS對乳癌細胞增生的影響 52 2.3.2.2. SPS對正常乳房上皮細胞增生之影響 54 2.3.2.3. SPS誘導乳癌細胞週期停滯 55 2.3.2.4. SPS誘導乳癌細胞凋亡 57 2.3.2.5. SPS對細胞週期相關蛋白質表現量之影響 59 2.3.2.6. SPS抑制乳癌細胞遷徙 61 2.3.2.7. PS及SPS經由活化巨噬細胞產生之抗乳癌活性 63 2.4. 結論 68 第三章、SPS之三種含硫多醣體分餾物的物化性質及抗乳癌活性差異 69 3.1. 前言 69 3.2. 材料與方法 70 3.2.1. 材料及藥品 70 3.2.2. SPS之純化與分離 70 3.2.3. F1、F2及F3的物化性質分析 70 3.2.4. 細胞培養 70 3.3.5. 細胞增生能力分析 70 3.2.6. 數據分析 71 3.3. 結果與討論 72 3.3.1. F1、F2及F3的分離純化 72 3.3.2. F1、F2及F3的物化性質差異 73 3.3.3. F1、F2及F3對乳癌細胞增生的影響 78 3.3.4. F1、F2及F3對乳癌細胞之選擇性細胞毒性 81 3.4. 結論 83 第四章、F2之抗乳癌活性的分子機轉 84 4.1. 前言 84 4.2. 材料與方法 85 4.2.1. 材料與藥品 85 4.2.2. 細胞培養 85 4.2.3. 細胞週期分析 85 4.2.4. 細胞凋亡分析 85 4.2.5. 細胞遷徙能力分析 86 4.2.6. 細胞侵襲 (invasion) 能力分析 86 4.2.7. 蛋白質表現量分析 87 4.2.8. 數據分析 87 4.3. 結果與討論 88 4.3.1. F2對乳癌細胞之細胞毒性及其作用機轉 88 4.3.1.1. F2誘導乳癌細胞週期停滯而非細胞凋亡 88 4.3.1.2. F2對乳癌細胞之細胞週期相關蛋白質表現量影響 91 4.3.1.3. F2下調突變型p53蛋白質表現量 92 4.3.1.4. F2對表皮生長因子受體 (EGFR) 介導之訊息傳遞分子的影響 94 4.3.1.5. F2抑制表皮生長因子受體 (EGFR) 的磷酸化與蛋白質表現量 99 4.3.2. F2對乳癌細胞之抗轉移活性及其作用機轉 101 4.3.2.1. F2抑制乳癌細胞遷徙 101 4.3.2.2. F2抑制乳癌細胞侵襲 103 4.3.2.3. F2對乳癌細胞之轉移相關蛋白質表現量影響 105 4.4. 結論 107 第五章、F2之化學結構鑑定 108 5.1. 前言 108 5.2. 材料與方法 109 5.2.1. 材料與藥品 109 5.2.2. 核磁共振 (nuclear magnetic resonance, NMR) 光譜分析 109 5.2.3. 基質輔助雷射脫附游離飛行時間質譜儀 (MALDI-TOF-MS) 分析 109 5.3. 結果與討論 110 5.3.1. 1H NMR圖譜解析 110 5.3.2. 13C NMR圖譜解析 112 5.3.3. COSY圖譜解析 113 5.3.4. TOCSY圖譜解析 116 5.3.5. ROESY圖譜解析 118 5.3.6. HSQC圖譜解析 121 5.3.7. HMBC圖譜解析 123 5.3.8. F2結構討論與構效關係 125 5.3.9. MALDI-TOF質譜解析 129 5.4. 結論 133 第六章、F2與化療藥物合併施用之潛力評估 134 6.1. 前言 134 6.2. 材料與方法 136 6.2.1. 材料與藥品 136 6.2.2. 細胞培養 136 6.2.3. 化療藥物對MDA-MB-231細胞之IC25及IC50分析 136 6.2.4. 序列性處理 (sequential treatment) 之細胞增生分析 136 6.2.5. 同步處理 (simultaneous treatment) 之細胞增生分析 137 6.2.6. 協同效應分析 137 6.2.7. 細胞週期分析 137 6.2.8. 細胞凋亡分析 138 6.2.9. 蛋白質表現量分析 138 6.2.10. 數據分析 138 6.3. 結果與討論 139 6.3.1. 化療藥物之處理濃度選擇 139 6.3.2. 序列性F2處理會增強化療藥物對乳癌細胞的抗癌作用 141 6.3.3. F2與化療藥物同步處理會增強對乳癌細胞的抗癌作用 143 6.3.4. 序列性處理與同步處理之細胞毒性差異性 145 6.3.5. F2與化療藥物具有協同效應 147 6.3.6. F2與小紅莓序列性處理對乳癌細胞週期的影響 149 6.3.7. F2增強小紅莓誘導的乳癌細胞凋亡 151 6.3.8. F2與小紅莓對細胞凋亡相關蛋白質的表現量影響 153 6.4. 結論 155 第七章、整體結論 156 參考文獻 158 研究成果 179 附錄圖表 181 | - |
dc.language.iso | zh_TW | - |
dc.title | 本土產硫磺菌含硫多醣體之物化性質、化學結構及抗乳癌活性研究 | zh_TW |
dc.title | Study on the physicochemical properties, chemical structures, and anti-breast cancer activities of sulfated polysaccharides from local Laetiporus sulphureus | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 張嘉銓;廖志中;盧美光;蘇俊翰;謝松源 | zh_TW |
dc.contributor.oralexamcommittee | Chia-Chuan Chang;Chih-Chuang Liaw;Mei-Kuang Lu;Chun-Han Su;Sung-Yuan Hsieh | en |
dc.subject.keyword | 硫磺菌,含硫多醣體,物化性質,抗乳癌活性,表皮生長因子受體,序列性處理, | zh_TW |
dc.subject.keyword | Laetiporus sulphureus,Sulfated polysaccharides,Physicochemical properties,Anti-breast cancer activity,Epidermal growth factor receptor,Sequential treatment, | en |
dc.relation.page | 181 | - |
dc.identifier.doi | 10.6342/NTU202500290 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-01-29 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農業化學系 | - |
dc.date.embargo-lift | 2025-02-20 | - |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。