Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96491
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周崇熙zh_TW
dc.contributor.advisorChung-Hsi Chouen
dc.contributor.author白宛平zh_TW
dc.contributor.authorWan-Ping Paien
dc.date.accessioned2025-02-19T16:12:41Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2024-
dc.date.submitted2025-01-22-
dc.identifier.citation王惠正。2023鵪鶉蛋外銷機會模式之研究。農業部112年度科技計畫研究報告。
王薪穰。2014。密閉式帆布平飼禽舍熱環境模式及環境控制之研究。國立中興大學生物產業機電工程學研究所。碩士論文。
柯冠銘。2021。雞用ND疫苗於鵪鶉之免疫原性分析計畫。行政院農業委員會110年度科技計畫研究報告。
翁振哲。 2005。 新城雞瘟病毒的基質基因之選殖、分析與快速檢測, 國立嘉義大學農業生物技術研究所。碩士論文。
陳盈豪。2023。優良國內蛋用鵪鶉管理手冊編撰完成及肉用鵪鶉管理手冊初稿完成。農業部112年度科技計畫研究報告。
楊泠泠。2021。台灣鵪鶉產業發展現況與未來。畜產報導 (237):26 -27。
葉駿諺。2022.。不同雞傳染性支氣管炎病毒株之S1 DNA疫苗在雞隻中之免疫反應及保護效能。國立中興大學微生物暨公共衛生學研究所。碩士論文。
農業部。2023。111年農業統計年報。
農業部。2023。112年第3季各類畜禽飼養場數及在養量—按品項別分。畜禽統計調查結果(112年 3 季)。行政院農業委員會。
趙慈。2019。臺灣養鹿產業發展現況之研究。東海大學畜產與生物科技學系。碩士論文。
蔡銘洋。2022。種鵪鶉飼養場輔導及相關 SOP 建立。行政院農業委員會111年度科技計畫研究報告。行政院農業委員會。2018b。2018年研商強化水資源調配措施相關事宜 (第二次)會議簡報。臺北市。行政院農業委員會。
Abdelqader, A., M. Abuajamieh, F. Hayajneh, and A.-R. Al-Fataftah. 2020. Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens. J. Thermal Biol. 92:102654.
Abdel-Wareth, A. A. A., S. Hammad, R. Khalaphallah, W. M. Salem, and J. Lohakare. 2019. Synbiotic as eco-friendly feed additive in diets of chickens under hot climatic conditions. Poult Sci. 98:4575–4583.
Ahmed, M. A., and S. O. Aro, Ogungbenro, D. C. and Adeosun, T. A. 2022. Laying Performance and Blood Parameters of Japanese Quails (Coturnix coturnix japonica) At Different Stocking Densities. Nigerian Journal of Animal Production 49(4):20-32.
Akram, M., J. Hussain, S. Ahmad, A. Rehman, F. Lohani, A. Munir, R. Amjad, and H. Noshahi. 2014. Comparative study on production performance, egg geometry, quality and hatching traits in four close-bred stocks of Japanese quail. Agricultural Advances 3(1):13-18.
Alagawany, M., M. R. Farag, M. E. Abd El-Hack, and A. Patra. 2019. Heat stress: effects on productive and reproductive performance of quail. World's Poult Science Journal 73(4):747-756.
Altuntas, A. S. a. E. 2008. Effects of egg weight on egg quality characteristics. Journal of the Science of Food and Agriculture 89(3):379-383.
Al-Zghoul, M. B., H. Sukker, and M. M. Ababneh. 2019. Effect of thermal manipulation of broilers embryos on the response to heat-induced oxidative stress. Poult Sci. 98:991–1001.
Arain, M. A., Z. Mei, F. U. Hassan, M. Saeed, M. Alagawany, A. H. Shar, and I. R. Rajput. 2018. Lycopene: A natural antioxidant for prevention of heat-induced oxidative stress in poultry. World's Poult Sci. J. 74:89–100.
Arima, Y., F. B. Mather, and M. M. Ahmad. 1976. Response of Egg Production and Shell Quality to Increases in Environmental Temperature in two Age Groups of Hens. Poult Science 55(2):818-820.
Ashley, E. and R. Isabelle. 2020. The influence of light of different wavelengths on laying hen production and egg quality. World's Poult. Sci. J. 76(3):443-458
Bain, M. M., Y. Nys, and I. C. Dunn. 2016. Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges? Br Poult Sci 57(3):330-338.
Barrett, N. W., K. Rowland, C. J. Schmidt, S. J. Lamont, M. F. Rothschild, C. M. Ashwell, and M. E. Persia. 2019. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens. Poult Sci. 98:6684–6692.
Bartlett, J. R., and M. O. Smith. 2003. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult Sci 82(10):1580-1588.
Batool, F., R. M. Bilal, F. U. Hassan, T. A. Nasir, M. Rafeeque, S. S. Elnesr, M. R. Farag, H. A. M. Mahgoub, M. A. E. Naiel, and M. Alagawany. 2023. An updated review on behavior of domestic quail with reference to the negative effect of heat stress. Anim Biotechnol 34(2):424-437.
Baylan, M., S. Canogullari, T. Ayasan, and G. Copur. 2011. Effects of dietary selenium source, storage time, and temperature on the quality of quail eggs. Biol Trace Elem Res 143(2):957-964.
Bobadilla-Mendez, M. F., C. P. Rojas-Granados, E. F. Andrade, P. L. Retes, L. G. Ferreira, R. R. Alvarenga, J. E. Rodriguez-Gil, É. J. Fassani, and M. G. Zangeronimo. 2016. Effect of different light sources on reproductive anatomy and physiology of Japanese quail (Coturnix coturnix japonica). Anim. Reprod. Sci. 168:50-56.
Carvalho, R. H., A. L. Soares, M. Grespan, R. S. Spurio, F. A. G. Coró, A. Oba, and M. Shimokomaki. 2015. The effects of the dark house system on growth, performance and meat quality of broiler chicken. Anim. Sci. J. 86:189–193.
Charles, D. R., and C. G. Payne. 1966. The influence of graded levels of atmospheric ammonia on chickens. II. Effects on the performance of laying hens. Br Poult Sci 7(3):189-198.
Cotterill, O. J., and A. W. Nordskog. 1954. Influence of Ammonia on Egg White Quality. Poult Science 33(2):432-434.
David, B., C. Mejdell, V. Michel, V. Lund, and R. O. Moe. 2015. Air Quality in Alternative Housing Systems may have an Impact on Laying Hen Welfare. Part II-Ammonia. Animals (Basel) 5(3):886-896.
de Oliveira, E. M., S. T. Nascimento, J. Mos, L. D. F. Roza, and T. C. Dos Santos. 2023. Maximum limit of sensible heat dissipation in Japanese quail. Int J Biometeorol 67(3):517-526.
Deaton, J. W., F. N. Reece, and B. D. Lott. 1982. Effect of atmospheric ammonia on laying hen performance. Poult Sci 61(9):1815-1817.
El- Shafei, A. A. A. F. A. A. a. E. A. A. 2012. Stocking density effects on performance and physiological changes of laying japanese quail. Journal of Animal and Poultry Production 3(8):379-398.
El-Kholy, M. S., M. M. El-Hindawy, M. Alagawany, M. E. Abd El-Hack, and S. El-Sayed. 2017. Dietary Supplementation of Chromium Can Alleviate Negative Impacts of Heat Stress on Performance, Carcass Yield, and Some Blood Hematology and Chemistry Indices of Growing Japanese Quail. Biol Trace Elem Res 179(1):148-157.
El-Tarabany, M. S. 2016a. Effect of thermal stress on fertility and egg quality of Japanese quail. J Therm Biol 61:38-43.
El-Tarabany, M. S. 2016b. Impact of cage stocking density on egg laying characteristics and related stress and immunity parameters of Japanese quails in subtropics. J Anim Physiol Anim Nutr (Berl) 100(5):893-901.
El-Tarabany, M. S. 2016c. Impact of temperature-humidity index on egg-laying characteristics and related stress and immunity parameters of Japanese quails. Int J Biometeorol 60(7):957-964.
El-Tarabany, M. S., T. M. Abdel-Hamid, and H. H. Mohammed. 2015. Bıldırcınlarda Kafes Yoğunluğunun Yumurta kalitesi Üzerine Etkileri. Kafkas Universitesi Veteriner Fakultesi Dergisi.
Er, D., Z. Wang, J. Cao, and Y. Chen. 2007. Effect of Monochromatic Light on the Egg Quality of Laying Hens. Journal of Applied Poultry Research 16(4):605-612. doi: 10.3382/japr.2006-00096
Erensoy, K., M. Sarıca, M. Noubandiguim, M. Dur, and A. Aslan. 2021. Effect of light intensity and stocking density on the performance, egg quality, and feather condition of laying hens reared in a battery cage system over the first laying period. Trop. Anim. Health Prod. 53(2):320.
Faitarone, A., P. AC, M. C, B. LS, O. RP, G. EA, P. CC, M. AA, and S. MR. 2005. Economic traits and performance of Italian quails reared at different cage stocking densities. Brazilian Journal of Poult Science 7(1):19-22.
Fayezi, M., F. Bagherzadeh Kasmani, M. Mehri, and M. Ghazaghi. 2022. The effect of short, long, natural, and intermittent short photoperiods on meat-type Japanese quails. Int. J. Biometeorol. 66(6):1737-1745.
Georgelin, M., V. H. B. Ferreira, F. Cornilleau, M. Meurisse, K. Poissenot, M. Beltramo, M. Keller, L. Lansade, H. Dardente, and L. Calandreau. 2023. Short photoperiod modulates behavior, cognition and hippocampal neurogenesis in male Japanese quail. Sci. Rep. 13(1):951.
Goel, A. 2021. Heat stress management in poultry. J. Anim. Physiol. Anim. Nutr. 105:1136–1145.
Grizzle, J., M. Iheanacho, A. Saxton, and J. Broaden. 1992. Nutritional and environmental factors involved in egg shell quality of laying hens. Br Poult Sci 33(4):781-794.
Han, H., Y. Zhou, Q. Liu, G. Wang, J. Feng, and M. Zhang. 2021. Effects of Ammonia on Gut Microbiota and Growth Performance of Broiler Chickens. Animals (Basel) 11(6)
Hassan, M. R., S. Sultana, H. S. Choe, and K. S. Ryu. 2014. Effect of combinations of monochromatic LED light color on the performance and behavior of laying hens. J. Poult. Sci. 51:321-326.
He, S. P., M. A. Arowolo, R. F. Medrano, S. Li, Q. F. Yu, J. Y. Chen, and J. H. He. 2018. Impact of heat stress and nutritional interventions on poultry production. World's Poult Sci. J. 74:647–664.
He, S., S. Li, M. A. Arowolo, Q. Yu, F. Chen, R. Hu, and J. He. 2019. Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow-feather broilers under heat stress. Anim. Sci. J. 90:401–411.
Hee, O. C. 2014. Validity and Reliability of the Customer-Oriented Behaviour Scale in the Health Tourism Hospitals in Malaysia. International Journal of Caring Science 7(3):771-775.
Huber-Eicher, B., A. Suter, and P. Spring-Stähli. 2013. Effects of colored light-emitting diode illumination on behavior and performance of laying hens. Poult. Sci. 92(4):869-873.
Iyasere, O. S., M. Bateson, A. P. Beard, and J. H. Guy. 2021. Provision of additional cup drinkers mildly alleviated moderate heat stress conditions in broiler chickens. J. Appl. Anim. Welf. Sci. 24:188–199.
Kang, D., and K. Shim. 2021. Early heat exposure effect on the heat shock proteins in broilers under acute heat stress. Poult Sci. 100:100964.
Karal, S., F. Korkmaz Turgud, D. Narinc, and A. Aygun. 2024. The Behavioral and Productive Characteristics of Japanese Quails (Coturnix japonica) Exposed to Different Monochromatic Lighting. Animals (Basel) 14
Karal, S., F. Korkmaz Turgud, D. Narinç, and A. Aygun. 2024. The behavioral and productive characteristics of Japanese quails (Coturnix japonica) exposed to different monochromatic lighting. Animals. 14(3):482.
Khalil, H., A. Hanafy, and A. Hamdy. 2016. Effect of artificial and natural day light intensities on some behavioral activities, plumage conditions, productive and physiological changes for Japanese quail. Asian J. Poult. Sci. 10(1):52-63.
Lara, L. J., and M. H. Rostagno. 2013. Impact of Heat Stress on Poultry Production. Animals (Basel) 3(2):356-369.
Lewis, P. D., G. C. Perry, and T. R. Morris. 1997. Effect of size and timing of photoperiod increase on age at first egg and subsequent performance of two breeds of laying hen. Br Poult Sci 38(2):142-150.
Li, D., L. Zhang, M. Yang, H. Yin, S. Trask, D. G. Smith, Z. Zhang, and Q. Zhu. 2014. The effect of monochromatic light-emitting diode light on reproductive traits of laying hens. J. Appl. Poult. Res. 23(3):367-375.
Li, D., Q. Tong, Z. Shi, W. Zheng, Y. Wang, B. Li, and G. Yan. 2020. Effects of Cold Stress and Ammonia Concentration on Productive Performance and Egg Quality Traits of Laying Hens. Animals (Basel) 10(12)
Liu, G., H. Zhu, T. Ma, Z. Yan, Y. Zhang, Y. Geng, Y. Zhu, and Y. Shi. 2020. Effect of chronic cyclic heat stress on the intestinal morphology, oxidative status and cecal bacterial communities in broilers. J. Thermal Biol. 91:102619.
Liu, K., H. Xin, J. Sekhon, and T. Wang. 2018. Effect of fluorescent vs. poultry-specific light-emitting diode lights on production performance and egg quality of W-36 laying hens. Poult. Sci. 97(3):834-844.
Long, H., Y. Zhao, H. Xin, H. Hansen, Z. Ning, and T. Wang. 2016. Effect of light-emitting diode (LED) vs. fluorescent (FL) lighting on laying hens in aviary hen houses: Part 2 – Egg quality, shelf-life and lipid composition. Poult. Sci. 95(1):115-124.
Long, H., Y. Zhao, T. Wang, Z. Ning, and H. Xin. 2016. Effect of light-emitting diode vs. fluorescent lighting on laying hens in aviary hen houses: Part 1 – Operational characteristics of lights and production traits of hens. Poult. Sci. 95(1):1-11.
Luo, J., J. Song, L. Liu, B. Xue, G. Tian, and Y. Yang. 2018. Effect of epigallocatechin gallate on growth performance and serum biochemical metabolites in heat-stressed broilers. Poult Sci. 97:599–606.
Madkour, M., F. M. Salman, I. El-Wardany, S. A. Abdel-Fattah, M. Alagawany, N. M. Hashem, S. A. Abdelnour, M. S. El-Kholy, and K. Dhama. 2022. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J. Thermal Biol. 103:103169.
Marques Coelho, L. P., A. F. Bernardes, V. V. Alves, B. G. Martins, J. V. Peixoto, L. J. Pereira, É. J. Fassani, R. R. Alvarenga, and M. G. Zangeronimo. 2021. Theriogenology 170:67-76.
McPhee, S., T. Shynkaruk, K. Buchynski, D. Beaulieu, J. Brown, T. Crowe, and K. Schwean-Lardner. 2024. Do flickering LED lights reduce productivity of layer pullets and hens? Poult. Sci. 103(3):103456.
McPhee, S., T. Shynkaruk, K. Buchynski, T. Crowe, and K. Schwean-Lardner. 2024. How does visible light flicker impact laying hen pullet behavior, fear, and stress levels? Poult. Sci. 103(6):103713.
Mohammed, A. A., S. Jiang, J. A. Jacobs, and H. W. Cheng. 2019. Effect of a synbiotic supplement on cecal microbial ecology, antioxidant status, and immune response of broiler chickens reared under heat stress. Poult Sci. 98:4408–4415.
Mohammed, H. H. 2016. Effect of different photoperiods on some maintenance behavior, external and internal egg quality traits of layers. Jpn. J. Vet. Res. 64(Suppl. 2):139-142.
Molino, A. B., E. A. Garcia, G. C. Santos, J. A. Vieira Filho, G. A. Baldo, and I. C. Almeida Paz. 2015. Photostimulation of Japanese quail. Poult. Sci. 94(2):156-161.
Nasar, A., A. Rahman, N. Hoque, A. Kumar Talukder, and Z. C. Das. 2016. A survey of Japanese quail (Coturnix coturnix japonica) farming in selected areas of Bangladesh. Vet World 9(9):940-947.
Naseem, S., and A. J. King. 2018. Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ Sci Pollut Res Int 25(16):15269-15293.
Nasr, M. A. F., H. H. Mohammed, R. A. Hassan, A. A. Swelum, and I. M. Saadeldin. 2019. Does light intensity affect the behavior, welfare, performance, meat quality, amino acid profile, and egg quality of Japanese quails? Poult. Sci. 98(8):3093-3102.
Nawab, A., F. Ibtisham, G. Li, B. Kieser, J. Wu, W. Liu, Y. Zhao, Y. Nawab, K. Li, M. Xiao, and L. An. 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Thermal Biol. 78:131–139.
Nunes, K. C., R. G. Garcia, I. A. Nääs, C. M. Eyng, F. R. Caldara, S. I. Roriz, and C. M. Ayala. 2016. Effect of LED lighting colors for laying Japanese quails. Braz. J. Poult. Sci. 18:051-056.
Oladokun, S., and D. I. Adewole. 2022. Biomarkers of heat stress and mechanism of heat stress response in avian species: Current insights and future perspectives from Poult Science. J. Thermal Biol. 110:103332.
Olanrewaju, H. A., W. W. Miller, W. R. Maslin, S. D. Collier, J. L. Purswell, and S. L. Branton. 2016. Effects of light sources and intensity on broilers grown to heavy weights. Part 1: Growth performance, carcass characteristics, and welfare indices. Poult. Sci. 95(4):727-735.
Parvin, R., M. M. H. Mushtaq, M. J. Kim, and H. C. Choi. 2019. Light emitting diode (LED) as a source of monochromatic light: A novel lighting approach for behaviour, physiology and welfare of poultry. World's Poult. Sci. J. 70(3):543-556.
Pawar, S., B. Sajjanar, V. Lonkar, N. Kurade, A. Kadam, A. Nirmal, M. Brahmane, and S. Bal. 2016. Assessing and mitigating the impact of heat stress in poultry. Adv. Anim. Vet. Sci. 4:332–341.
Petek, M., F. Alpay, S. S. Gezen, and R. ÇIbik. 2009. Ticari Yumurtacı Tavuklarda Barındırma Sistemi ve Yaşın Erken Dönem Yumurta Verimi ve Kalitesi Üzerine Etkileri. Kafkas Universitesi Veteriner Fakultesi Dergisi doi: 10.9775/kvfd.2008.65-A
Quinteiro-Filho, W. M., A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro, M. Sakai, L. R. Sa, A. J. Ferreira, and J. Palermo-Neto. 2010. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult Sci 89(9):1905-1914.
Sahin, K., C. Orhan, M. Tuzcu, N. Sahin, A. Hayirli, S. Bilgili, and O. Kucuk. 2016. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers. Poult Sci. 95:1088–1095.
Sahin, K., M. Onderci, N. Sahin, M. F. Gursu, F. Khachik, and O. Kucuk. 2006. Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat-stressed Japanese quail. Journal of Thermal Biology 31(4):307-312.
Samli, H. E., A. Agma, and N. Senkoylu. 2005. Effects of Storage Time and Temperature on Egg Quality in Old Laying Hens. Journal of Applied Poultry Research 14(3):548-553.
Sezer, M. 2007. Heritability of exterior egg quality traits in Japanese quail. Journal of Applied Biological Sciences 1(2):37-40.
Shakeel, A. W., W. A. Vistro, N. Rajput, S. K. Fareed, N. Mehmood, M. Farooq, and M. Ahmed. 2017. Effect of light duration on productivity of Japanese quail. Int. J. Curr. Res. 9(01):45594-45596.
Shakeri, M., J. J. Cottrell, S. Wilkinson, W. Zhao, H. H. Le, R. McQuade, J. B. Furness, and F. R. Dunshea. 2019. Dietary betaine improves intestinal barrier function and ameliorates the impact of heat stress in multiple vital organs as measured by Evans blue dye in broiler chickens. Animals 10:38.
Silversides, F. G., and T. A. Scott. 2001. Effect of storage and layer age on quality of eggs from two lines of hens. Poult Sci 80(8):1240-1245.
Slawinska, A., S. Mendes, A. Dunislawska, M. Siwek, M. Zampiga, F. Sirri, A. Meluzzi, S. Tavaniello, and G. Maiorano. 2019. Avian model to mitigate gut-derived immune response and oxidative stress during heat. Biosystems 178:10–15.
Soares, D. F., C. C. Pizzolante, K. M. R. Duarte, J. E. Moraes, F. E. L. Budino, W. V. B. Soares, and S. K. Kakimoto. 2018. Welfare indicators for laying Japanese quails caged at different densities. An Acad Bras Cienc 90(4):3791-3797.
Song, D. J., and A. J. King. 2015. Effects of heat stress on broiler meat quality. World's Poult Sci. J. 71:701–709.
Song, J., K. Xiao, Y. L. Ke, L. F. Jiao, C. H. Hu, Q. Y. Diao, B. Shi, and X. T. Zou. 2014. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult Sci. 93:581–588.
Swennen, Q., P. J. Verhulst, A. Collin, A. Bordas, K. Verbeke, G. Vansant, E. Decuypere, and J. Buyse. 2007. Further investigations on the role of diet-induced thermogenesis in the regulation of feed intake in chickens: comparison of adult cockerels of lines selected for high or low residual feed intake. Poult Sci 86(9):1960-1971.
Tavaniello, S., G. Maiorano, K. Stadnicka, R. Mucci, J. Bogucka, and M. Bednarczyk. 2018. Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route. Poult Sci. 97:2979–2987.
Toussant, M. J., and J. D. Latshaw. 1999. Ovomucin content and composition in chicken eggs with different interior quality. Journal of the Science of Food and Agriculture 79(12):1666-1670.
Van Den Brand, H., H. K. Parmentier, and B. Kemp. 2004. Effects of housing system (outdoor vs cages) and age of laying hens on egg characteristics. Br Poult Sci 45(6):745-752.
Vercese, F., G. EA, S. JR, S. A. d. P, F. ABG, B. DA, M. A. d. B, and P. K. 2012. Performance and egg quality of Japanese quails submitted to cyclic heat stress. Brazilian Journal of Poult Science 14:37-41.
Vlckova, J., E. Tumova, K. Mikova, M. Englmaierova, M. Okrouhla, and D. Chodova. 2019. Changes in the quality of eggs during storage depending on the housing system and the age of hens. Poult Sci 98(11):6187-6193.
Vlčková, J., E. Tůmová, M. Ketta, M. Englmaierová, and D. Chodová. 2018. Effect of housing system and age of laying hens on eggshell quality, microbial contamination, and penetration of microorganisms into eggs. Czech Journal of Animal Science 63(2):51-60.
Wichman, A., R. De Groot, O. Håstad, H. Wall, and D. Rubene. 2021. Influence of different light spectrums on behaviour and welfare in laying hens. Animals. 11(4):924.
Xin, H., R. S. Gates, A. R. Green, F. M. Mitloehner, P. A. Moore, Jr., and C. M. Wathes. 2011. Environmental impacts and sustainability of egg production systems. Poult Sci 90(1):263-277.
Yadav, S., and C. M. Chaturvedi. 2015. Light colour and intensity alters reproductive/seasonal responses in Japanese quail. Physiol. Behav. 147:163-168.
Zampiga, M., L. Laghi, C. Zhu, A. Cartoni Mancinelli, S. Mattioli, and F. Sirri. 2021. Breast muscle and plasma metabolomics profile of broiler chickens exposed to chronic heat stress conditions. Anim. 15:100275.
Zhang, P., T. Yan, X. Wang, S. Kuang, Y. Xiao, W. Lu, and D. Bi. 2017. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrier function and improving gut microbiota. Ital. J. Anim. Sci. 16:292–300.
Zhang, X., K. Liao, S. Chen, K. Yan, X. Du, C. Zhang, M. Guo, and Y. Wu. 2020. Evaluation of the reproductive system development and egg-laying performance of hens infected with TW I-type infectious bronchitis virus. Vet Res 51(1):95.
Zhou, W. T., M. Fujita, S. Yamamoto, K. Iwasaki, R. Ikawa, H. Oyama, and H. Horikawa. 1998. Effects of glucose in drinking water on the changes in whole blood viscosity and plasma osmolality of broiler chickens during high temperature exposure. Poult Sci 77(5):644-647.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96491-
dc.description.abstract鵪鶉是重要的肉品與蛋品來源之一,近年來全球鵪鶉蛋的總產量呈現緩步成長的趨勢,展現其產業發展潛力。有鑑於此,農業部於2022年正式將鵪鶉納入《畜牧法》法定家禽範疇,以促進臺灣本土鵪鶉產業的發展與經營效益。
  本研究分為兩個部分進行探討。第一部分透過問卷調查,針對臺灣現有蛋用鵪鶉場的飼養環境與生產表現進行分析,涵蓋的項目包括飼養禽舍型態、飼養密度、開產日齡、育雛天數及產蛋率等產蛋性能指標。第二部分根據回收的問卷結果,選定三家具有一定飼養規模、配合意願高且計劃申請畜牧場登記證的鵪鶉業者,進行實地訪視與現場指導,針對飼養條件提出改善建議並測定其蛋品質,並於隔年再次訪視,以檢視改善措施的成效及飼養問題的解決情況。
  有效問卷結果顯示,密閉式禽舍相較於非開放式(圍網)禽舍,其開產日齡提前了4天(p < 0.05),且產蛋率提高了5%(p < 0.05)。此外,當鵪鶉的活動空間低於80平方公分/隻時,開產日齡可再提前2天,產蛋率提高2%。在實地訪視部分,2022年的調查發現三家業者的禽舍均存在內部風速不均及氨氣濃度略高的問題。針對這些問題,提出了多項改善建議,包括定期清潔禽舍內的蜘蛛網與通風口、增加抽風頻率以及裝設水霧降溫設施等。2023年的追蹤訪視顯示,三家業者的禽舍內最小風速均有所提升,通風效果明顯改善,且氨氣濃度降低。
  在蛋品質方面,對這三家鵪鶉場兩年的蛋品質數據進行統計分析,結果顯示平均蛋重均有提升,其中一家場的蛋重較前一年增加了1.01公克(p < 0.05)。此外,這三場鵪鶉蛋之霍氏單位(Haugh Unit)皆維持在AA級,顯示蛋品質穩定優良。
  臺灣位於亞熱帶地區,環境溫濕度相較其他地區更為嚴苛,因此深入瞭解本土飼養現況並評估適合臺灣鵪鶉飼養的最佳環境條件與規模,可作為未來產業發展與技術改良的參考依據。
zh_TW
dc.description.abstractQuails are an important source of meat and eggs. In recent years, the global production of quail eggs has shown a slight upward trend, highlighting the industry’s development potential. Recognizing this, the Ministry of Agriculture officially classified quails as statutory poultry under the Animal Husbandry Act in 2022 to promote the growth and management efficiency of Taiwan's domestic quail industry.
This study is divided into two parts. The first part involves a questionnaire survey to analyze the current rearing practices and production performance of egg-laying quail farms in Taiwan, including housing types, stocking density, age at first lay, brooding duration, and egg production rates. The second part selects three farms with significant scale, high willingness to cooperate, and plans to apply for livestock farm registration certificates based on survey responses. These farms underwent on-site visits, where rearing improvement suggestions were provided, and egg quality measurements were conducted. Follow-up visits were made the following year to evaluate the effectiveness of the improvements and address any identified challenges.
The survey results revealed that quails housed in closed systems had an earlier age at first lay by 4 days (p < 0.05) and a 5% increase in egg production rate (p < 0.05) compared to those in open (netted) housing. Additionally, when the space per bird was less than 80 cm², the age at first lay advanced by 2 days, and egg production rate increased by 2%. During on-site visits in 2022, common issues identified across the three farms included uneven airflow and slightly elevated ammonia levels inside the housing. Recommendations were made, such as regular cleaning of spider webs and ventilation inlets, increasing exhaust fan operation frequency, and installing misting systems. Follow-up visits in 2023 showed notable improvements, including increased minimum airflow, enhanced ventilation, and reduced ammonia levels.
In terms of egg quality, a statistical analysis of egg quality data from these farms over two years showed an overall increase in average egg weight. One farm, in particular, exhibited an increase of 1.01 grams compared to the previous year (p < 0.05). Moreover, the Haugh Unit (HU) of eggs from all three farms remained consistently at an AA grade, indicating stable and excellent egg quality.
Given Taiwan's subtropical climate, which features relatively high temperatures and humidity compared to other regions, understanding local quail farming practices and evaluating optimal environmental conditions, rearing systems, and scales suited to Taiwan's quail industry is crucial. These findings provide valuable insights for further research and serve as a practical reference for improving the development and technology of the domestic quail industry.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:12:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:12:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
中文摘要 III
Abstract IV
目次 VI
圖次 VIII
表次 IX
緒言 X
第壹章、 文獻回顧 1
一、 臺灣蛋鵪鶉產業之概況 1
(一) 臺灣蛋鵪鶉產業狀況 1
(二) 蛋鵪鶉特徵與生理狀態 4
(三) 鵪鶉的育成及產蛋 5
(四) 全球鵪鶉蛋之經濟規模 5
(五) 產業發展策略 7
二、 影響鵪鶉生產表現之因素 8
(一) 環境條件 8
(二) 光照時間 10
(三) 飼養密度 12
(四) 疾病 13
三、 影響鵪鶉蛋品質之因素 14
(一) 環境條件 15
(二) 飼養密度 16
(三) 雞齡 17
第貳章、 研究方法 19
一、 臺灣鵪鶉產業經營現況調查 20
(一) 訪視執行流程大綱 20
(二) 訪視問卷設計 21
(三) 問卷調查的信效度分析 24
(四) 問卷資料建檔及資料檢核 26
(五) 統計分析 26
二、 實地訪視及進行輔導措施 27
(一) 現場訪視對象及訪視時間 27
(二) 環境檢測 29
(三) 鵪鶉蛋蛋品質之測定 30
第參章、 結果與討論 32
一、 臺灣鵪鶉場經營現況問卷調查結果 32
(一) 臺灣蛋鵪鶉場調查結果 32
二、 影響蛋鵪鶉生產性能因素分析 41
(一) 禽舍形式與生產性能之分析 41
(二) 飼養密度與生產性能之分析 43
(三) 疫苗接種與生產性能之分析 45
(四) 光照時間與生產性能之分析 47
三、 輔導改善措施結果 48
(一) 三場鵪鶉場輔導改善建議狀況及結果 48
(二) 三場鵪鶉場蛋品質之分析 59
第肆章、 結論 61
第伍章、 參考文獻 63
-
dc.language.isozh_TW-
dc.subject生產性能zh_TW
dc.subject飼養管理zh_TW
dc.subject鵪鶉養殖zh_TW
dc.subjectFarm managementen
dc.subjectQuail farmingen
dc.subjectLaying performanceen
dc.title臺灣蛋鵪鶉產蛋性能與其影響因素分析zh_TW
dc.titleAnalyses of Performance and Its Influencing Factors of Laying Quails in Taiwanen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李滋泰;陳億乘;陳志維zh_TW
dc.contributor.oralexamcommitteeTzu-Tai Lee;Yi-Chen Chen;Jr-Wei Chenen
dc.subject.keyword鵪鶉養殖,生產性能,飼養管理,zh_TW
dc.subject.keywordQuail farming,Laying performance,Farm management,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202500106-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-23-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2025-02-20-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf2.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved