Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96483
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張皓巽zh_TW
dc.contributor.advisorHao-Xun Changen
dc.contributor.author陳怡君zh_TW
dc.contributor.authorYi-Jyun Chenen
dc.date.accessioned2025-02-19T16:10:32Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-23-
dc.identifier.citationAjayi‐Oyetunde, O. O., and Bradley, C. A. 2018. Rhizoctonia solani: Taxonomy, population biology and management of Rhizoctonia seedling disease of soybean. Plant Pathol. 67:3–17.
Akber, M. A., Mubeen, M., Sohail, M. A., Khan, S. W., Solanki, M. K., Khalid, R., Abbas, A., et al. 2023. Global distribution, traditional and modern detection, diagnostic, and management approaches of Rhizoctonia solani associated with legume crops. Front. Microbiol. 13:1091288.
Albertin, W., and Marullo, P. 2012. Polyploidy in fungi: Evolution after whole-genome duplication. Proc. R. Soc. B: Biol. Sci. 279:2497–2509.
Anderson, N. A., Stretton, H. M., Groth, J. V., and Flentje, N. T. 1972. Genetics of heterokaryosis in Thanatephorus cucumeris. Phytopathology. 62:1057–1065.
Armentrout, V. N., and Downer, A. J. 1987. Infection cushion development by Rhizoctonia solani on cotton. Phytopathology. 77:619–623.
Assis, A. F., Oliveira, E. H., Donate, P. B., Giuliatti, S., Nguyen, C., and Passos, G. A. 2022. What is the transcriptome and how it is evaluated? In Transcriptomics in Health and Disease, G. A. Passos, ed. Springer International Publishing, p. 3–50.
Badawi, N., Rønhede, S., Olsson, S., Kragelund, B. B., Johnsen, A. H., Jacobsen, O. S., and Aamand, J. 2009. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ. Pollut. 157:2806–2812.
Bhunjun, C. S., Chen, Y. J., Phukhamsakda, C., Boekhout, T., Groenewald, J. Z., McKenzie, E. H. C., Francisco, E. C., et al. 2024. What are the 100 most cited fungal genera? Stud. Mycol. 108:1–412.
Bolton, M. D., Ebert, M. K., Faino, L., Rivera-Varas, V., de Jonge, R., Van de Peer, Y., Thomma, B. P., et al. 2016. RNA-sequencing of Cercospora beticola DMI-sensitive and-resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction. Fungal Genet. Biol. 92:1–13.
Bradley, C. A., Hartman, G. L., Nelson, R. L., Mueller, D. S., and Pederson, W. L. 2001. Response of ancestral soybean lines and commercial cultivars to Rhizoctonia root and hypocotyl rot. Plant Dis. 85:1091–1095.
Brent, K. J., and Hollomon, D. W. 1995. Fungicide resistance in crop pathogens: How can it be managed? Global Crop Protection Federation, Brussels, p. 16.
Buchfink, B., Reuter, K., and Drost, H. G. 2021. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods. 18:366–368.
Buied, A., Moore, C. B., Denning, D. W., and Bowyer, P. 2013. High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J. of Antimicrob. Chemother. 68:512–514.
Butler, E. E., and Bracker, C. E. 1970. Morphology and cytology of Rhizoctonia solani. In Rhizoctonia solani, biology and pathology. J.R. Parmeter, ed. University of California Press, p. 32–51.
Byrne, L. J., O’Callaghan, K. J., and Tuite, M. F. 2005. Heterologous gene expression in yeast. In Therapeutic Proteins: Methods and Protocols, C. M. Smales and D. C. James, eds. Humana Press, p. 51–64
Campion, C., Chatot, C., Perraton, B., and Andrivon, D. 2003. Anastomosis groups, pathogenicity and sensitivity to fungicides of Rhizoctonia solani isolates collected on potato crops in France. Eur. J. Plant Pathol. 109:983–992.
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., and Huerta-Cepas, J. 2021. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38:5825–5829.
Carling, D. E. 1996. Grouping in Rhizoctonia solani by hyphal anastomosis reaction. In Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control. B. Sneh, S. Jabaji-Hare, S. Neate, and G. Dijst, eds. Kluwer Academic Publishers, p. 37–47.
Carling, D. E., Kuninaga, S., and Brainard, K. A. 2002. Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology. 92:43–50.
Carling, D. E., Pope, E. J., Brainard, K. A., and Carter, D. A. 1999. Characterization of mycorrhizal isolates of Rhizoctonia solani from an orchid, including AG-12, a new anastomosis group. Phytopathology. 89:942–946.
Castillo, R., Gallegos, G., Flores, O. A., Aguilar, G. C., Rodriguez, H. R., and Hernandez, C. F. D. 2020. Genetic variability of Rhizoctonia solani Kühn and its resistance to fungicides. Stud. Fungi. 5:381–391.
Challis, R., Richards, E., Rajan, J., Cochrane, G., and Blaxter, M. 2020. BlobToolKit–interactive quality assessment of genome assemblies. G3: Genes Genomes Genet. 10:1361–1374.
Chamilos, G., and Kontoyiannis, D. P. 2005. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus. Drug Resist. Updat. 8:344–358.
Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., et al. 2023. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant. 16:1733–1742.
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., and Li, H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods. 18:170–175.
Cheng, X., Dai, T., Hu, Z., Cui, T., Wang, W., Han, P., Hu, M., et al. 2022. Cytochrome P450 and glutathione S-transferase confer metabolic resistance to SYP-14288 and multi-drug resistance in Rhizoctonia solani. Front. Microbiol. 13:806339.
Cheng, X., Man, X., Wang, Z., Liang, L., Zhang, F., Wang, Z., Liu, P., et al. 2020. Fungicide SYP-14288 inducing multidrug resistance in Rhizoctonia solani. Plant Dis. 104:2563–2570.
Cheng, X., Zhang, J., Liang, Z., Wu, Z., Liu, P., Hao, J., and Liu, X. 2023. Multidrug resistance of Rhizoctonia solani determined by enhanced efflux for fungicides. Pestic. Biochem. Physiol. 195:105525.
Comai, L. 2005. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6:836–846.
Copley, T. R., Duggavathi, R., and Jabaji, S. 2017. The transcriptional landscape of Rhizoctonia solani AG1-IA during infection of soybean as defined by RNA-seq. PLoS One. 12:e0184095.
Decottignies, A., Grant, A. M., Nichols, J. W., de Wet, H., McIntosh, D. B., and Goffeau, A. 1998. ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J. Biol. Chem. 273:12612–12622.
Donk, M. A. 1956. Notes on resupinate Hymenomycetes-II. The tulasnelloid fungi. Reinwardtia. 3:363–379.
Dorrance, A. E., Kleinhenz, M. D., McClure, S. A., and Tuttle, N. T. 2003. Temperature, moisture, and seed treatment effects on Rhizoctonia solani root rot of soybean. Plant Dis. 87:533–538.
Duggar, B. M. 1915. Rhizoctonia crocorum (Pers.) DC. and R. solani Kühn (Corticium Vagum B. and C.), with notes on other species. Ann. Missouri Bot. Gard. 2:403–458.
Ejendal, K. F., and Hrycyna, C. A. 2002. Multidrug resistance and cancer: The role of the human ABC transporter ABCG2. Curr. Protein Pept. Sci. 3:503–511.
El bakali, A. M., Lilja, A., Hantula, J., and Martín, M. P. 2003. Identification of Spanish isolates of Rhizoctonia solani from potato by anastomosis grouping, ITS-RFLP and RAMS-fingerprinting. Phytopathol. Mediterr. 42:167–176.
Fenoll, J., Sabater, P., Navarro, G., Pérez-Lucas, G., and Navarro, S. 2013. Photocatalytic transformation of sixteen substituted phenylurea herbicides in aqueous semiconductor suspensions: Intermediates and degradation pathways. J. Hazard. Mater. 244:370–379.
Feyereisen, R. 2011. Insect CYP genes and P450 enzymes. In Insect Molecular Biology and Biochemistry. Scopus, p. 236–316.
Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., and Smit, A. F. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. 117:9451–9457.
Fraczek, M. G., Bromley, M., Buied, A., Moore, C. B., Rajendran, R., Rautemaa, R., Ramage, G., et al. 2013. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J. Antimicrob. Chemother. 68:1486–1496.
Francis, A., Ghosh, S., Tyagi, K., Prakasam, V., Rani, M., Singh, N. P., Pradhan, A., et al. 2023. Evolution of pathogenicity-associated genes in Rhizoctonia solani AG1-IA by genome duplication and transposon-mediated gene function alterations. BMC Biol. 21:15.
Glavinas, H., Krajcsi, P., Cserepes, J., and Sarkadi, B. 2004. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr. Drug Deliv. 1:27–42.
Gong, C., Liu, M., Liu, D., Wang, Q., Hasnain, A., Zhan, X., Pu, J., et al. 2022. Status of fungicide resistance and physiological characterization of tebuconazole resistance in Rhizocotonia solani in Sichuan Province, China. Curr. Issues Mol. Biol. 44:4859–4876.
Gonzalez, F. J., and Coughtrie, M. 2023. Drug metabolism. In Goodman and Gilman’s: The Pharmacological Basis of Therapeutics (14th Edition). L. L. Brunton and B. C. Knollmann, eds. McGraw-Hill Education.
Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. 2013. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 29:1072–1075.
Hagiwara, D., Arai, T., Takahashi, H., Kusuya, Y., Watanabe, A., and Kamei, K. 2018. Non-cyp51A azole-resistant Aspergillus fumigatus isolates with mutation in HMG-CoA reductase. Emerg. Infect. Dis. 24:1889.
Haiser, H. J., and Turnbaugh, P. J. 2012. Is it time for a metagenomic basis of therapeutics? Science. 336:1253–1255.
Healey, K. R., and Singh, A. 2023. Heterologous expression of candida antifungal target genes in the model organism Saccharomyces cerevisiae. In Antifungal Drug Resistance: Methods and Protocols, D. J. Krysan and W. S. Moye-Rowley, eds. Springer, p. 181–190.
Hellin, P., King, R., Urban, M., Hammond-Kosack, K. E., and Legrève, A. 2018. The adaptation of Fusarium culmorum to DMI fungicides is mediated by major transcriptome modifications in response to azole fungicide, including the overexpression of a PDR transporter (FcABC1). Front. Microbiol. 9:1385.
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., et al. 2019. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47:D309–D314.
Hyakumachi, M., and Ui, T. 1987. Non-self-anastomosing isolates of Rhizoctonia solani obtained from fields of sugarbeet monoculture. Trans. Br. Mycol. Soc. 89:155–159.
Jang, J., Khanom, S., Moon, Y., Shin, S., and Lee, O. R. 2020. PgCYP76B93 docks on phenylurea herbicides and its expression enhances chlorotoluron tolerance in Arabidopsis. Appl. Biol. Chem. 63:14.
Jiang, Z., Zhou, X., Li, R., Michal, J. J., Zhang, S., Dodson, M. V., Zhang, Z., et al. 2015. Whole transcriptome analysis with sequencing: Methods, challenges and potential solutions. Cell. Mol. Life Sci. 72:3425–3439.
Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., et al. 2014. InterProScan 5: Genome-scale protein function classification. Bioinformatics. 30:1236–1240.
Kanetis, L., Tsimouris, D., and Christoforou, M. 2016. Characterization of Rhizoctonia solani associated with black scurf in Cyprus. Plant Dis. 100:1591–1598.
Kataria, H. R., Hugelshofer, U., and Gisi, U. 1991a. Sensitivity of Rhizoctonia species to different fungicides. Plant Pathol. 40:203–211.
Kataria, H. R., Verma, P. R., and Gisi, U. 1991b. Variability in the sensitivity of Rhizoctonia solani anastomosis groups to fungicides. J. Phytopathol. 133:121–133.
Kebeish, R., Azab, E., Peterhaensel, C., and El-Basheer, R. 2014. Engineering the metabolism of the phenylurea herbicide chlortoluron in genetically modified Arabidopsis thaliana plants expressing the mammalian cytochrome P450 enzyme CYP1A2. Environ. Sci. Pollut. Res. 21:8224–8232.
Keijer, J. 1996. The initial steps of the infection process in Rhizoctonia solani. In Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control, B. Sneh, S. Jabaji-Hare, S. Neate, and G. Dijst, eds. Springer Netherlands, p. 149–162
Khanom, S., Jang, J., and Lee, O. R. 2019. Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis. J. Ginseng Res. 43:645.
Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37:907–915.
Kim, H. T., and Yamaguchi, I. 1996. Effect of pencycuron on fluidity of lipid membranes of Rhizoctonia solani: Action mechanism of pencycuron, a specific antifungal compound (part 2). J. Pestic. Sci. 21:323–328.
Kim, H. T., Kamakura, T., and Yamaguchi, I. 1996. Effect of pencycuron on the osmotic stability of protoplasts of Rhizoctonia solani: Action mechanism of pencycuron, a specific antifungal compound (Part 1). J. Pestic. Sci. 21:159–163.
Kim, H. T., Yamaguchi, I., and Cho, K. Y. 2001. The secondary effects of pencycuron on the formation of giant protoplasts and the lipid peroxidation of Rhizoctonia solani AG4. Plant Pathol. J. 17:36–39.
Kokot, M., Długosz, M., and Deorowicz, S. 2017. KMC 3: Counting and manipulating k-mer statistics. Bioinformatics. 33:2759–2761.
Kukal, S., Guin, D., Rawat, C., Bora, S., Mishra, M. K., Sharma, P., Paul, P. R., et al. 2021. Multidrug efflux transporter ABCG2: Expression and regulation. Cell. Mol. Life Sci. 78:6887–6939.
Kurogoochi, S., Tajase, I., and Yamaguchi, I. 1987. Metablism of a phenylurea fungicide, pencycuron [1-(4-chlorobezyl)-1-cyclopentyl-3-phenylurea] in rice plants. J. Pestic. Sci. 12:435–443.
Lee, F. N. 1983. Rice sheath blight: A major rice disease. Plant Dis. 67:829–832.
Lee, M. H., Chiu, C. M., Roubtsova, T., Chou, C. M., and Bostock, R. M. 2010. Overexpression of a redox-regulated cutinase gene, MfCUT1, increases virulence of the brown rot pathogen Monilinia fructicola on Prunus spp. Mol. Plant Microbe. Interact. 23:176–186.
Leroux, V., Droughot, P., and Gredt, M. 1990. Cellular microtubules: Targets for the fungicides pencycuron and zarilamide? J. Pestic. Sci. 30:348–350.
Li, H. 2018. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 34:3094–3100.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25:2078–2079.
Liao, Y., Smyth, G. K., and Shi, W. 2014. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30:923–930.
Lilly, M., Fierobe, H. P., van Zyl, W. H., and Volschenk, H. 2009. Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res. 9:1236–1249.
Lin, Y. C., Liu, H. H., Tseng, M. N., and Chang, H. X. 2023. Heritability and gene functions associated with sclerotia formation of Rhizoctonia solani AG-7 using whole genome sequencing and genome-wide association study. Microb. Genom. 9:000948.
Lin, Y. C., Tseng, M. N., and Chang, H. X. 2022. First report of soybean seedling disease caused by Rhizoctonia solani AG-7 in Taiwan. Plant Dis. 106:314.
Liu, J., Wang, S., Qin, T., Li, N., Niu, Y., Li, D., Yuan, Y., et al. 2015. Whole transcriptome analysis of Penicillium digitatum strains treatmented with prochloraz reveals their drug-resistant mechanisms. BMC Genomics. 16:855.
Love, M. I., Huber, W., and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
Lucas, J. A., Hawkins, N. J., and Fraaije, B. A. 2015. Chapter two—the evolution of fungicide resistance. In Advances in Applied Microbiology, S. Sariaslani and G. M. Gadd, eds. Academic Press, p. 29–92.
Lugones, L. G., Scholtmeijer, K., Klootwijk, R., and Wessels, J. G. H. 1999. Introns are necessary for mRNA accumulation in Schizophyllum commune. Mol. Microbiol. 32:681–689.
Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17:10–12.
Mayer, V. W., Goin, C. J., Arras, C. A., and Taylor-Mayer, R. E. 1992. Comparison of chemically induced chromosome loss in a diploid, triploid, and tetraploid strain of Saccharomyces cerevisiae. Mutat. Res. Genet. Toxicol. 279:41–48.
Mo, W., and Zhang, J. T. 2011. Human ABCG2: Structure, function, and its role in multidrug resistance. Int. J. Biochem. Mol. Biol. 3:1–27.
Molla, K. A., Karmakar, S., Chanda, P. K., Ghosh, S., Sarkar, S. N., Datta, S. K., and Datta, K. 2013. Rice oxalate oxidase gene driven by green tissue‐specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Mol. Plant Pathol. 14:910–922.
Mu, W., Wang, Z., Bi, Y., Ni, X., Hou, Y., Zhang, S., and Liu, X. 2017. Sensitivity determination and resistance risk assessment of Rhizoctonia solani to SDHI fungicide thifluzamide. Ann. Appl. Biol. 170:240–250.
Muzhinji, N., Woodhall, J. W., Truter, M., and Van Der Waals, J. E. 2018. Variation in fungicide sensitivity among Rhizoctonia isolates recovered from potatoes in South Africa. Plant Dis. 102:1520–1526.
Nasimi, Z., Barriuso, J., Keshavarz, T., and Zheng, A. 2024. Molecular, physiological, and biochemical properties of sclerotia metamorphosis in Rhizoctonia solani. Fungal Biol. Rev. 48:100351.
Nelson, D. R. 2018. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta-Proteins Proteom. 1866:141–154.
Ogoshi, A. 1987. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Ann. Rev. Phytopathol. 25:125–143.
Olaya, G. 2012. Detection of resistance to QoI fungicides in Rhizoctonia solani isolates from rice. Phytopathology. 102:88.
Olaya, G., Sarmiento, L., Edlebeck, K., Buitrago, C., Sierotzki, H., Zaunbrecher, J., and Tally, A. 2013. Azoxystrobin (QoI) resistance monitoring of Rhizoctonia solani isolates causing rice sheath blight in Louisiana. Phytopathology. 103:106.
Ou, S., and Jiang, N. 2018. LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176:1410–1422.
Parmeter, J. R. 1970. Rhizoctonia solani: Biology and pathology. University of California Press, Berkeley, CA.
Perperopoulou, F., Pouliou, F., and Labrou, N. E. 2018. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit. Rev. Biotechnol. 38:511–528.
Ranallo-Benavidez, T. R., Jaron, K. S., and Schatz, M. C. 2020. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11:1432.
Ritz, C., and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Softw. 12:1–22.
Robinson, H. L., and Deacon, J. W. 2001. Protoplast preparation and transient transformation of Rhizoctonia solani. Mycol. Res. 105:1295–1303.
Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., and Mesirov, J. P. 2011. Integrative genomics viewer. Nat. Biotechnol. 29:24–26.
Roh, S. H., Kim, H. T., and Yamaguchi, I. 1999. Cloning of β-tubulin gene and effect of pencycuron on tubulin assembly in Rhizoctonia solani. Plant Pathol. J. 15:68–71.
Sang, H., Hulvey, J. P., Green, R., Xu, H., Im, J., Chang, T., and Jung, G. 2018. A xenobiotic detoxification pathway through transcriptional regulation in filamentous fungi. mBio. 9:e00457-18.
Sang, H., Hulvey, J., Popko, J. T., Lopes, J., Swaminathan, A., Chang, T., and Jung, G. 2015. A pleiotropic drug resistance transporter is involved in reduced sensitivity to multiple fungicide classes in Sclerotinia homoeocarpa (F. T. Bennett). Mol. Plant Pathol. 16:251–261.
Sharon, M., Sneh, B., Kuninaga, S., and Hyakumachi, M. 2006. The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience. 47:299–316.
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31:3210–3212.
Siminszky, B., Corbin, F. T., Ward, E. R., Fleischmann, T. J., and Dewey, R. E. 1999. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc. Natl. Acad. Sci. 96:1750–1755.
Sinclair, J. B., and Backman, P. A. 1989. Compendium of soybean diseases, 3rd edn. American Phytopathological Society, St. Paul, Minnesota.
Soucek, P. 2009. Xenobiotics. In Encyclopedia of Cancer, M. Schwab, ed. Springer, p. 3215–3218.
Storchová, Z. 2014. Ploidy changes and genome stability in yeast. Yeast. 31:421–430.
Storchová, Z., Breneman, A., Cande, J., Dunn, J., Burbank, K., O’Toole, E., and Pellman, D. 2006. Genome-wide genetic analysis of polyploidy in yeast. Nature. 443:541–547.
Sumner, D. R. 1996. Sclerotia formation by Rhizoctonia species and their survival. In Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control, B. Sneh, S. Jabaji-Hare, S. Neate, and G. Dijst, eds. Springer Netherlands, p. 207–215.
Taheri, P., and Tarighi, S. 2011. Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani. Eur. J. Plant Pathol. 129:511–528.
Tarailo‐Graovac, M., and Chen, N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 25:4–10.
Taylor, N. M. I., Manolaridis, I., Jackson, S. M., Kowal, J., Stahlberg, H., and Locher, K. P. 2017. Structure of the human multidrug transporter ABCG2. Nature. 546:504–509.
Todd, R. T., Forche, A., and Selmecki, A. 2017. Ploidy variation in fungi – polyploidy, aneuploidy, and genome evolution. Microbiol. Spectr. 5:FUNK-0051-2016.
Törönen, P., Medlar, A., and Holm, L. 2018. PANNZER2: A rapid functional annotation web server. Nucleic Acids Res. 46:W84–W88.
Tsror, L. 2010. Biology, epidemiology and management of Rhizoctonia solani on potato. J. Phytopathol. 158:649–658.
Ueyama, I., and Kurahashi, Y. 2007. Pencycuron, a phenylurea fungicide for Rhizoctonia solani. In Modern crop protection compounds, W. Kramer and U. Schirmer, eds. Wiley-VCH, p. 591–604.
Ueyama, I., Araki, Y., Kurogochi, S., Yoneyama, K., and Yamaguchi, I. 1990. Mode of action of the phenylurea fungicide pencycuron in Rhizoctonia solani. Pestic. Sci. 30:363–365.
Ueyama, I., Araki, Y., Kurogochi, S., and Yamaguchi, I. 1993. Metabolism of the phenylurea fungicide, pencycuron, in sensitive and tolerant strains of Rhizoctonia solani. J. Pestic. Sci. 18:109–117.
Vasiliou, V., Vasiliou, K., and Nebert, D. W. 2009. Human ATP-binding cassette (ABC) transporter family. Hum. Genet. 3:281–290.
Verrier, P. J., Bird, D., Burla, B., Dassa, E., Forestier, C., Geisler, M., Klein, M., et al. 2008. Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci. 13:151–159.
Verweij, P. E., Snelders, E., Kema, G. H., Mellado, E., and Melchers, W. J. 2009. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 9:789–795.
Víglaš, J., and Olejníková, P. 2021. An update on ABC transporters of filamentous fungi–from physiological substrates to xenobiotics. Microbiol. Res. 246:126684.
Vilgalys, R., and Cubeta, M. A. 1994. Molecular systematics and population biology of Rhizoctonia. Annu. Rev. Phytopathol. 32:135–155.
Virgen-Calleros, G., Olalde-Portugal, V., and Carling, D. E. 2000. Anastomosis groups of Rhizoctonia solani on potato in central México and potential for biological and chemical control. Am. J. Potato Res. 77:219–224.
Wang, Y., Tang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., Lee, T., et al. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40(7):e49.
Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1):57–63.
Wang, Z., Wang, Z., Wang, G., Zhang, Q., Wang, Q., and Wang, W. 2023. New insight into biodegradation mechanism of phenylurea herbicides by cytochrome P450 enzymes: Successive N-demethylation mechanism. Environ. Int. 182:108332.
Watts, A., Sankaranarayanan, S., Watts, A., and Raipuria, R. K. 2021. Optimizing protein expression in heterologous system: Strategies and tools. Meta Gene. 29:100899.
Wei, X., Chen, P., Gao, R., Li, Y., Zhang, A., Liu, F., and Lu, L. 2016. Screening and characterization of a non-cyp51A mutation in an Aspergillus fumigatus cox10 strain conferring azole resistance. Antimicrob. Agents Chemother. 61:e02101-16.
Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P. C., Hall, R. J., Concepcion, G. T., Ebler, J., et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37:1155–1162.
Wibberg, D., Andersson, L., Tzelepis, G., Rupp, O., Blom, J., Jelonek, L., Pühler, A., et al. 2016. Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes. BMC Genomics. 17:1–12.
Wibberg, D., Genzel, F., Verwaaijen, B., Blom, J., Rupp, O., Goesmann, A., Zrenner, R., et al. 2017. Draft genome sequence of the potato pathogen Rhizoctonia solani AG3-PT isolate Ben3. Arch. Microbiol. 199:1065–1068.
Wibberg, D., Jelonek, L., Rupp, O., Hennig, M., Eikmeyer, F., Goesmann, A., Hartmann, A., et al. 2013. Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. J. Biotechnol. 167:142–155.
Wu, J. 2003. Transformation of Rhizoctonia solani. Doctoral dissertation, Murdoch University.
Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., et al. 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. 2:100141.
Xu, C., Li, C. Y. T., and Kong, A. N. T. 2005. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch. Pharm. Res. 28:249–268.
Yamada Y., Saito J., and Takase I. 1988. Development of a new fungicide, pencycuron. J. Pestic. Sci. 13:375–387.
Yin, Y., Miao, J., Shao, W., Liu, X., Zhao, Y., and Ma, Z. 2023. Fungicide resistance: Progress in understanding mechanism, monitoring, and management. Phytopathology. 113:707–718.
Yu, P. L., Wang, C. L., Chen, P. Y., and Lee, M. H. 2016. YAP1 homologue‐mediated redox sensing is crucial for a successful infection by Monilinia fructicola. Mol. Plant Pathol. 18:783–797.
Zhang, J., Hong, Q., Li, Q., Li, C., Cao, L., Sun, J. Q., Yan, X., et al. 2012. Characterization of isoproturon biodegradation pathway in Sphingobium sp. YBL2. Int. Biodeter. Biodegr. 70:8–13.
Zhang, T., Cao, Q., Li, N., Liu, D., and Yuan, Y. 2020. Transcriptome analysis of fungicide-responsive gene expression profiles in two Penicillium italicum strains with different response to the sterol demethylation inhibitor (DMI) fungicide prochloraz. BMC Genomics. 21:1–16.
Zhao, C., Li, S., Ma, Z., Wang, W., Gao, L., Han, C., Yang, A., et al. 2023. Anastomosis groups and mycovirome of Rhizoctonia isolates causing sugar beet root and crown rot and their sensitivity to flutolanil, thifluzamide, and pencycuron. J. Fungi. 9:545.
Zhao, C., Li, Y., Liang, Z., Gao, L., Han, C., and Wu, X. 2022. Molecular mechanisms associated with the resistance of Rhizoctonia solani AG-4 isolates to the succinate dehydrogenase inhibitor thifluzamide. Phytopathology. 112:567–578.
Zhao, C., Zhang, X., Hua, H., Han, C., and Wu, X. 2019. Sensitivity of Rhizoctonia spp. to flutolanil and characterization of the point mutation in succinate dehydrogenase conferring fungicide resistance. Eur. J. Plant Pathol. 155:13–23.
Zhao, G., Ablett, G. R., Anderson, T. R., Rajcan, I., and Schaafsma, A. W. 2005. Inheritance and genetic mapping of resistance to Rhizoctonia root and hypocotyl rot in soybean. Crop Sci. 45:1441–1447.
Zhao, M., Wang, C., Wan, J., Li, Z., Liu, D., Yamamoto, N., Zhou, E., et al. 2021. Functional validation of pathogenicity genes in rice sheath blight pathogen Rhizoctonia solani by a novel host-induced gene silencing system. Mol. Plant Pathol. 22:1587–1598.
Zheng, A., Lin, R., Zhang, D., Qin, P., Xu, L., Ai, P., Ding, L., et al. 2013. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun. 4:1424.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96483-
dc.description.abstract立枯絲核菌 (Rhizoctonia solani) 為一種重要的植物病原菌,能造成多種作物病害以及嚴重的農業經濟損失,而化學防治是當前防治立枯絲核菌病害的主要方法。在諸多化學藥劑中,賓克隆 (pencycuron) 因其對R. solani的專一性防治效果而被廣泛使用;然而,R. solani對賓克隆的抗性機制尚不明確。本研究針對來自臺灣的164株 R. solani AG-7 分離株進行賓克隆敏感性測試,結果顯示菌株對藥劑的反應存在顯著差異。所有分離株均表現出中至高度的抗性,唯獨分離株214對藥劑高度敏感。其中抗性最強的分離株213之EC₅₀值超過2,000 μg/mL,而最敏感的分離株214則顯示EC₅₀值僅為0.47 μg/mL。為理解這二菌株之間的抗藥反應差異,本研究利用比較基因體學和比較轉錄體學,結果顯示這二菌株在基因體上具有顯著差異。菌株213具有34.46 Mb的二倍體 (AB)結構,而菌株214則為94.97 Mb的五倍體 (AAABB)結構且伴隨高雜合度。根據賓克隆處理下的轉錄體分析結果,抗藥性菌株213顯著上調與解毒作用相關的基因,包括細胞色素P450 (cytochrome P450) 和ABC運輸蛋白 (ABC transporter);相比之下,感藥性菌株214則表現出多元分歧的基因表現反應,其中與DNA複製、脂質生合成及細胞維持相關的途徑顯著下調。後續針對抗藥性菌株213中的細胞色素P450 (RsP450) 和ABC運輸蛋白 (RsABC1) 進行功能性驗證,然因R. solani無法建構穩定基因轉植菌株,故於感藥性的Monilinia fructicola中進行異源表現以驗證R. solani的基因功能。結果顯示,轉殖RsP450及 RsABC1的M. fructicola菌株皆顯著提升對賓克隆的抗藥性,顯示其部分提升了賓克隆的抗藥性。綜合以上結果,本研究針對R. solani AG-7對於殺菌劑賓克隆抗藥性,提供了比較基因體學、比較轉錄體學、及基因功能驗證的嶄新知識。這些結果不僅加深對賓克隆抗藥性機制的理解,亦為立枯絲核菌之病害管理策略及殺菌劑使用提供了重要認識。zh_TW
dc.description.abstractRhizoctonia solani is a destructive plant pathogen, and it causes severe diseases in various crops, leading to substantial economic losses worldwide. Currently, chemical control is the primary strategy for managing Rhizoctonia diseases. Among a diverse range of chemicals, pencycuron is a fungicide widely used due to its specific efficacy against R. solani. Nonetheless, the resistance mechanisms to pencycuron remain poorly understood. In this study, the sensitivity of 164 R. solani AG-7 isolates from Taiwan to pencycuron was investigated, revealing a wide range of sensitivity. All isolates exhibited moderate to high resistance, except for the isolate 214, which was highly sensitive. The most resistant isolate, 213, exhibited an EC₅₀ value exceeding 2,000 μg/mL, whereas the most sensitive isolate, 214, displayed an EC50 value at 0.47 μg/mL. To elucidate the molecular basis of the different pencycuron resistance between these two isolates, comparative genomics and transcriptomics were employed and the results identified that the isolate 213 has a diploid (AB) genome structure of 34.46 Mb, while the isolate 214 exhibits a pentaploid (AAABB) genome structure of 94.97 Mb with high heterozygosity. The resistant isolate 213 significantly upregulated the detoxification-related genes, including cytochrome P450s and ATP-binding cassette (ABC) transporters; in contrast, the sensitive isolate 214 displayed widespread transcriptional responses, such as downregulation of pathways associated with DNA replication, lipid biosynthesis, and cellular maintenance. Subsequently, functional validation of a cytochrome P450 (RsP450) and an ABC transporter (RsABC1) from the isolate 213, was performed using the pencycuron-sensitive Monilinia fructicola as a heterologous host due to the instability of R. solani transformants. The M. fructicola transformants expressing RsP450 or RsABC1 exhibited significantly elevated resistance to pencycuron, indicating their contribution to pencycuron resistance. Collectively, this study provides novel insights into the comparative genomics, transcriptomics, and gene functions of pencycuron resistance in R. solani AG-7. The findings enhance the understanding of pencycuron resistance and offer new prospects to the development of Rhizoctonia disease management and fungicide usage.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:10:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:10:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Table of Contents iv
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Biology of Rhizoctonia solani 1
1.2 Disease symptoms and disease cycle 2
1.3 Management of Rhizoctonia diseases 3
1.4 Fungicide resistance 4
1.5 Fungicide resistance of Rhizoctonia solani 5
1.6 Pencycuron 6
1.7 Research history of discovering the mechanism of action of pencycuron 7
1.8 Transcriptome analysis for studying fungicide resistance mechanisms 9
1.9 Research objectives 11
Chapter 2 Materials and Methods 12
2.1 Chemicals 12
2.2 Fungal materials 12
2.2.1 Rhizoctonia solani isolates 12
2.2.2 Monilinia fructicola isolate 12
2.2.3 Long-term preservation of fungal materials 13
2.3 Screening for pencycuron sensitivity in the R. solani AG-7 population 13
2.4 RNA-Seq analysis 14
2.4.1 RNA extraction, RNA-Seq library construction, and Illumina sequencing 14
2.4.2 RNA-Seq data analysis 16
2.5 Whole-genome sequencing of the R. solani AG-7 isolates 213 and 214 17
2.5.1 DNA extraction, library construction, and PacBio HiFi sequencing 17
2.5.2 Genome survey and ploidy analysis 18
2.5.3 De novo genome assembly and quality assessment 18
2.5.4 Repeat element analysis, gene prediction, and functional annotation 20
2.6 Differentially expressed genes (DEGs) identification 21
2.7 Selection of candidate genes associated with the pencycuron resistance 22
2.8 Vector construction for RsP450 and RsABC1 from genomic DNA of the isolate 213 22
2.9 Functional validation of cytochrome P450 and ABC transporter genes in R. solani and Monilinia fructicola 24
2.9.1 Preparation of the linear DNA fragments for protoplast transformation 24
2.9.2 Protoplast production for R. solani 25
2.9.3 Protoplast production for M. fructicola 26
2.9.4 Polyethyleneglycol (PEG) transformation of protoplasts 26
2.9.5 Pencycuron sensitive assay 28
2.9.6 RT-PCR validation of RsP450 and RsABC1 expression in M. fructicola transformants 28
2.10 Vector construction for RsP450 and RsABC1 from cDNA of the isolate 213 29
2.11 Statistical analyses 31
Chapter 3 Results 32
3.1 Sensitivity of Rhizoctonia solani AG-7 isolates to pencycuron 32
3.2 RNA-Seq analysis 33
3.3 Genome survey of the R. solani AG-7 isolates 213 and 214 33
3.4 De novo assembly of the R. solani AG-7 isolates 213 and 214 34
3.5 Gene prediction and functional annotation 35
3.6 Identification of differentially expressed genes (DEGs) 36
3.7 GO and KEGG pathway enrichment analyses of the pencycuron-responsive DEGs 37
3.8 Candidate genes selection for functional validation in the pencycuron resistance 39
3.9 Functional validation of RsP450 and RsABC1 41
Chapter 4 Discussion 44
4.1 Transcriptomic insights into the pencycuron resistance in the isolate 213 44
4.2 Difficulties in the functional validation of R. solani candidate genes 47
4.3 Functional validation of RsP450 and RsABC1 in Monilinia fructicola 48
4.4 Genomic complexity and transcriptional responses underlying the pencycuron sensitivity in the isolate 214 49
4.5 Conclusion 51
References 52
Tables 69
Figures 87
Supplementary Data 99
1.1 Figures 99
1.2 Tables 105
-
dc.language.isoen-
dc.subject立枯絲核菌zh_TW
dc.subjectABC 運輸蛋白zh_TW
dc.subject細胞色素 P450zh_TW
dc.subject外源性物質解毒zh_TW
dc.subject比較轉錄體學zh_TW
dc.subject比較基因體學zh_TW
dc.subject殺菌劑抗藥性zh_TW
dc.subjectcomparative transcriptomicsen
dc.subjectRhizoctonia solanien
dc.subjectABC transporteren
dc.subjectcytochrome P450en
dc.subjectxenobiotic detoxificationen
dc.subjectcomparative genomicsen
dc.subjectfungicide resistanceen
dc.title利用基因體與轉錄體解析立枯絲核菌 AG-7 對殺菌劑賓克隆的反應機制zh_TW
dc.titleGenomic and Transcriptomic Insights into the Response of Rhizoctonia solani AG-7 to the Fungicide Pencycuronen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李敏惠;郭志鴻;蔡怡陞zh_TW
dc.contributor.oralexamcommitteeMiin-Huey Lee;Chih-Horng Kuo;Isheng Jason Tsaien
dc.subject.keyword立枯絲核菌,殺菌劑抗藥性,比較基因體學,比較轉錄體學,外源性物質解毒,細胞色素 P450,ABC 運輸蛋白,zh_TW
dc.subject.keywordRhizoctonia solani,fungicide resistance,comparative genomics,comparative transcriptomics,xenobiotic detoxification,cytochrome P450,ABC transporter,en
dc.relation.page115-
dc.identifier.doi10.6342/NTU202500289-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-01-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2025-02-20-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
16.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved