請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96477
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱遠 | zh_TW |
dc.contributor.advisor | Yuan Luo | en |
dc.contributor.author | 邱晧平 | zh_TW |
dc.contributor.author | Hao-Pin Chiu | en |
dc.date.accessioned | 2025-02-19T16:08:48Z | - |
dc.date.available | 2025-02-20 | - |
dc.date.copyright | 2025-02-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-01-23 | - |
dc.identifier.citation | [1] Zuo, C., Sun, J., Li, J., Asundi, A., and Chen, Q., Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Optics and Lasers in Engineering, 2020. 128: p. 106003.
[2] Zheng, G.A., Horstmeyer, R., and Yang, C.H., Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics, 2013. 7(9): p. 739-745. [3] Konda, P.C., Loetgering, L., Zhou, K.C., Xu, S., Harvey, A.R., and Horstmeyer, R., Fourier ptychography: current applications and future promises. Optics Express, 2020. 28(7): p. 9603-9630. [4] Xu, F., Wu, Z., Tan, C., Liao, Y., Wang, Z., Chen, K., and Pan, A., Fourier Ptychographic Microscopy 10 Years on: A Review. Cells, 2024. 13(4): p. 324. [5] Tian, L. and Waller, L., 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica, 2015. 2(2): p. 104-111. [6] Pan, A., Zuo, C., and Yao, B.L., High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. Reports on Progress in Physics, 2020. 83(9): p. 096101. [7] Nguyen, T., Xue, Y.J., Li, Y.Z., Tian, L., and Nehmetallah, G., Deep learning approach to Fourier ptychographic microscopy. Optics Express, 2018. 26(20): p. 26470-26484. [8] Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C., and Pfeiffer, F., High-resolution scanning x-ray diffraction microscopy. Science, 2008. 321(5887): p. 379-382. [9] Rivenson, Y., Zhang, Y., Günaydin, H., Teng, D., and Ozcan, A., Phase recovery and holographic image reconstruction using deep learning in neural networks. Light-Science & Applications, 2018. 7(2): p. 17141-17141. [10] Tian, L., Li, X., Ramchandran, K., and Waller, L., Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. Biomedical Optics Express, 2014. 5(7): p. 2376-2389. [11] Horstmeyer, R., Chung, J., Ou, X.Z., Zheng, G.A., and Yang, C.H., Diffraction tomography with Fourier ptychography. Optica, 2016. 3(8): p. 827-835. [12] Song, P., Wang, R., Zhu, J., Wang, T., Bian, Z., Zhang, Z., Hoshino, K., Murphy, M., Jiang, S., Guo, C., and Zheng, G., Super-resolved multispectral lensless microscopy via angle-tilted, wavelength-multiplexed ptychographic modulation. Optics Letters, 2020. 45(13): p. 3486-3489. [13] Chen, Q., Huang, D., and Chen, R., Fourier ptychographic microscopy with untrained deep neural network priors. Optics Express, 2022. 30(22): p. 39597-39612. [14] Murphy, D.B. and Davidson, M.W., Fundamentals of light microscopy and electronic imaging. 2012: John Wiley & Sons. [15] Pawley, J.B., Handbook of biological confocal microscopy, in Springer Science & Business Media. 2006. p. 1035-1040. [16] Diaspro, A., Confocal and two-photon microscopy: foundations, applications and advances. 2001: John Wiley & Sons. [17] Barty, A., Nugent, K.A., Paganin, D., and Roberts, A., Quantitative optical phase microscopy. Optics Letters, 1998. 23(11): p. 817-819. [18] Lee, K., Kim, K., Jung, J., Heo, J., Cho, S., Lee, S., Chang, G., Jo, Y., Park, H., and Park, Y., Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications. Sensors, 2013. 13(4): p. 4170-4191. [19] Park, Y., Depeursinge, C., and Popescu, G., Quantitative phase imaging in biomedicine. Nature Photonics, 2018. 12(10): p. 578-589. [20] Fan, X., Healy, J.J., O'Dwyer, K., and Hennelly, B.M., Label-free color staining of quantitative phase images of biological cells by simulated Rheinberg illumination. Applied Optics, 2019. 58(12): p. 3104-3114. [21] Zernike, F., How I discovered phase contrast. Science, 1955. 121(3141): p. 345-349. [22] Wang, J., Zhao, X., Wang, Y., and Li, D., Color-multiplexed 3D differential phase contrast microscopy with optimal annular illumination. Optics Express, 2024. 32(27): p. 49135-49152. [23] Sun, J., Wu, J., Wu, S., Goswami, R., Girardo, S., Cao, L.C., Guck, J., Koukourakis, N., and Czarske, J.W., Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light-Science & Applications, 2022. 11(1): p. 204. [24] Popescu, G., Quantitative phase imaging of nanoscale cell structure and dynamics, in Methods in Nano Cell Biology, B.P. Jena, Editor. 2008. p. 87-115. [25] Zangle, T.A. and Teitell, M.A., Live-cell mass profiling: an emerging approach in quantitative biophysics. Nature Methods, 2014. 11(12): p. 1221-1228. [26] Mir, M., Bhaduri, B., Wang, R., Zhu, R., and Popescu, G., Quantitative phase imaging, in Progress in optics. 2012, Elsevier. p. 133-217. [27] Huang, Z. and Cao, L., Quantitative phase imaging based on holography: trends and new perspectives. Light-Science & Applications, 2024. 13(1): p. 145. [28] Zheng, G., Shen, C., Jiang, S., Song, P., and Yang, C., Concept, implementations and applications of Fourier ptychography. Nature Reviews Physics, 2021. 3(3): p. 207-223. [29] Kim, M.K., Principles and techniques of digital holographic microscopy. Journal of Photonics for Energy, 2010. 1(1): p. 018005. [30] Cuche, E., Bevilacqua, F., and Depeursinge, C., Digital holography for quantitative phase-contrast imaging. Optics Letters, 1999. 24(5): p. 291-293. [31] Arnison, M.R., Larkin, K.G., Sheppard, C.J.R., Smith, N.I., and Cogswell, C.J., Linear phase imaging using differential interference contrast microscopy. Journal of Microscopy-Oxford, 2004. 214(1): p. 7-12. [32] Wang, Z., Millet, L., Mir, M., Ding, H.F., Unarunotai, S., Rogers, J., Gillette, M.U., and Popescu, G., Spatial light interference microscopy (SLIM). Optics Express, 2011. 19(2): p. 1016-1026. [33] Micó, V., Zheng, J.J., Garcia, J., Zalevsky, Z., and Gao, P., Resolution enhancement in quantitative phase microscopy. Advances in Optics and Photonics, 2019. 11(1): p. 135-214. [34] Ou, X., Horstmeyer, R., Yang, C., and Zheng, G., Quantitative phase imaging via Fourier ptychographic microscopy. Optics Letters, 2013. 38(22): p. 4845-4848. [35] Yan, H., Ptychographic phase retrieval by proximal algorithms. New Journal of Physics, 2020. 22(2): p. 023035. [36] Sun, J., Zuo, C., Zhang, J., Fan, Y., and Chen, Q., High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Scientific Reports, 2018. 8(1): p. 7669. [37] Hampson, K.M., Turcotte, R., Miller, D.T., Kurokawa, K., Males, J.R., Ji, N., and Booth, M.J., Adaptive optics for high-resolution imaging. Nature Reviews Methods Primers, 2021. 1(1): p. 68. [38] LeCun, Y., Bengio, Y., and Hinton, G., Deep learning. Nature, 2015. 521(7553): p. 436-444. [39] Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J., A survey of convolutional neural networks: analysis, applications, and prospects. Ieee Transactions on Neural Networks and Learning Systems, 2022. 33(12): p. 6999-7019. [40] Goodfellow, I., Bengio, Y., and Courville, A., Deep learning introduction. Deep learning. 2016. 1-+. [41] Ongie, G., Jalal, A., Metzler, C.A., Baraniuk, R.G., Dimakis, A.G., and Willett, R., Deep learning techniques for inverse problems in imaging. IEEE Journal on Selected Areas in Information Theory, 2020. 1(1): p. 39-56. [42] Visitsattapongse, S., Thadson, K., Pechprasarn, S., and Thongpance, N., Analysis of deep learning-based phase retrieval algorithm performance for quantitative phase imaging microscopy. Sensors, 2022. 22(9): p. 3530. [43] Xue, Y., Cheng, S., Li, Y., and Tian, L., Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 2019. 6(5): p. 618-629. [44] Li, X., Qi, H., Jiang, S., Song, P., Zheng, G., and Zhang, Y., Quantitative phase imaging via a cGAN network with dual intensity images captured under centrosymmetric illumination. Optics Letters, 2019. 44(11): p. 2879-2882. [45] Li, X., Wu, Y., Zhang, W., Wang, R., and Hou, F., Deep learning methods in real-time image super-resolution: a survey. Journal of Real-Time Image Processing, 2020. 17(6): p. 1885-1909. [46] Bianco, V., Valentino, M., Behal, J., Pirone, D., Bardozzo, F., Memmolo, P., Miccio, L., Tagliaferri, R., and Ferraro, P. Deep learning assisted Fourier ptychography for cells and tissue analysis. in Optical Methods for Inspection, Characterization, and Imaging of Biomaterials VI. 2023. SPIE. [47] Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M., and Devlin, R., Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 2017. 4(1): p. 139-152. [48] Yu, N. and Capasso, F., Flat optics with designer metasurfaces. Nature Materials, 2014. 13(2): p. 139-150. [49] Khorasaninejad, M. and Capasso, F., Metalenses: Versatile multifunctional photonic components. Science, 2017. 358(6367): p. 1146. [50] Arbabi, A., Horie, Y., Ball, A.J., Bagheri, M., and Faraon, A., Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 2015. 6(1): p. 7069. [51] Jahani, S. and Jacob, Z., All-dielectric metamaterials. Nature Nanotechnology, 2016. 11(1): p. 23-36. [52] Candès, E.J., Li, X., and Soltanolkotabi, M., Phase retrieval via Wirtinger flow: Theory and algorithms. IEEE Transactions on Information Theory, 2015. 61(4): p. 1985-2007. [53] Alexandrov, S.A., Hillman, T.R., Gutzler, T., and Sampson, D.D., Synthetic aperture fourier holographic optical microscopy. Physical Review Letters, 2006. 97(16): p. 168102. [54] Zheng, G., Fourier ptychographic imaging: A MATLAB® tutorial. 2016: Morgan & Claypool Publishers. [55] Song, W., Matlock, A., Fu, S., Qin, X., Feng, H., Gabel, C.V., Tian, L., and Yi, J. Programmable LED array reflectance microscopy for multi-contrast imaging. in Quantitative Phase Imaging VII. 2021. SPIE. [56] Krames, M.R., Light emitting diode materials and devices, in Materials for Solid State Lighting and Displays. 2017. p. 273-311. [57] Gustafsson, M.G.L., Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 2000. 198(2): p. 82-87. [58] Hamilton, D.K., Sheppard, C.J.R., and Wilson, T., Improved imaging of phase gradients in scanning optical microscopy. Journal of Microscopy-Oxford, 1984. 135(3): p. 275-286. [59] Jiang, S., Guo, K., Liao, J., and Zheng, G., Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Biomedical Optics Express, 2018. 9(7): p. 3306-3319. [60] Huang, X., Yan, H., Harder, R., Hwu, Y., Robinson, I.K., and Chu, Y.S., Optimization of overlap uniformness for ptychography. Optics Express, 2014. 22(10): p. 12634-12644. [61] Maiden, A., Johnson, D., and Li, P., Further improvements to the ptychographical iterative engine. Optica, 2017. 4(7): p. 736-745. [62] Michelson, A.A., Studies in optics. 1995: Courier Corporation. [63] Gonzales, R.C. and Wintz, P., Digital image processing. 3 ed. 1987: Addison-Wesley Longman Publishing Co., Inc.. [64] Zhang, Y., Dai, J., and Li, W. Measurement of minimum resolvable contrast based on human visual property. in Fifth International Symposium on Instrumentation Science and Technology. 2009. SPIE. [65] Zhang, J., Xu, T., Zhang, J., Chen, Y., and Li, J., Data preprocessing methods for robust Fourier ptychographic microscopy. Optical Engineering, 2017. 56(12): p. 123107-123107. [66] Zheng, C., Zhang, S., Zhou, G., Hu, Y., and Hao, Q., Robust Fourier ptychographic microscopy via a physics-based defocusing strategy for calibrating angle-varied LED illumination. Biomedical Optics Express, 2022. 13(3): p. 1581-1594. [67] Fan, Y., Sun, J., Shu, Y., Zhang, Z., Zheng, G., Chen, W., Zhang, J., Gui, K., Wang, K., Chen, Q., and Zuo, C., Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser & Photonics Reviews, 2023. 17(3): p. 2200201. [68] Horstmeyer, R. and Yang, C., A phase space model of Fourier ptychographic microscopy. Optics Express, 2014. 22(1): p. 338-358. [69] Maiden, A.M., Humphry, M.J., Zhang, F.C., and Rodenburg, J.M., Superresolution imaging via ptychography. Journal of the Optical Society of America a-Optics Image Science and Vision, 2011. 28(4): p. 604-612. [70] Ou, X., Horstmeyer, R., Zheng, G., and Yang, C., High numerical aperture Fourier ptychography: principle, implementation and characterization. Optics Express, 2015. 23(3): p. 3472-3491. [71] Lin, Y.Z., Huang, K.Y., and Luo, Y., Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination. Optics Letters, 2018. 43(12): p. 2973-2976. [72] Lohmann, A.W., Dorsch, R.G., Mendlovic, D., Zalevsky, Z., and Ferreira, C., Space-bandwidth product of optical signals and systems. Journal of the Optical Society of America a-Optics Image Science and Vision, 1996. 13(3): p. 470-473. [73] Goodman, J.W., Introduction to Fourier optics. 2005: Roberts and Company publishers. [74] Sinha, A., Lee, J., Li, S., and Barbastathis, G., Lensless computational imaging through deep learning. Optica, 2017. 4(9): p. 1117-1125. [75] Kappeler, A., Yoo, S., Dai, Q., and Katsaggelos, A.K., Video super-resolution with convolutional neural networks. IEEE Transactions on Computational Imaging, 2016. 2(2): p. 109-122. [76] Ronneberger, O., Fischer, P., and Brox, T., U-net: Convolutional networks for biomedical image segmentation. 2015, Springer International Publishing. p. 234-241. [77] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. [78] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K.Q. Densely connected convolutional networks. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. [79] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O., Understanding deep learning (still) requires rethinking generalization. Communications of the Acm, 2021. 64(3): p. 107-115. [80] Liang, M. and Hu, X., Recurrent convolutional neural network for object recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. 8: p. 3367-3375. [81] Chia, Y., Liao, W., Vyas, S., Chu, C., Yamaguchi, T., Liu, X., Tanaka, T., Huang, Y., Chen, M., Chen, W., Tsai, D., and Luo, Y., In vivo intelligent fluorescence endo-microscopy by varifocal meta-device and deep learning. Advanced Science, 2024. 11(20): p. 2307837. [82] Hu, C. and Popescu, G., Quantitative Phase Imaging (QPI) in Neuroscience. IEEE Journal of Selected Topics in Quantum Electronics, 2019. 25(1): p. 1-9. [83] Liu, P.Y., Chin, L.K., Ser, W., Chen, H.F., Hsieh, C.M., Lee, C.H., Sung, K.B., Ayi, T.C., Yap, P.H., Liedberg, B., Wang, K., Bourouina, T., and Leprince-Wang, Y., Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab on a Chip, 2016. 16(4): p. 634-644. [84] Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.P., Capasso, F., and Gaburro, Z., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011. 334(6054): p. 333-337. [85] Chu, C.H., Chia, Y.H., Hsu, H.C., Vyas, S., Tsai, C.M., Yamaguchi, T., Tanaka, T., Chen, H.W., Luo, Y., Yang, P.C., and Tsai, D.P., Intelligent Phase Contrast Meta-Microscope System. Nano Letters, 2023. 23(24): p. 11630-11637. [86] Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A.Y., and Capasso, F., Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016. 352(6290): p. 1190-1194. [87] Glynn, E.F., USAF 1951 and microcopy resolution test charts and pixel profiles. Photonics Spectra, 1999: p. 183-189. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96477 | - |
dc.description.abstract | 本論文對傅立葉疊層顯微術(Fourier ptychography microscopy,FP)的設計、自動化和應用進行了全面的研究。該研究重點通過整合先進技術,包括深度學習和超穎透鏡,來提高本顯微術的性能和功能。
傅立葉疊層顯微術為一種定量相位成像免標記技術,可以在觀測細胞或組織的同時避免因染色傷害細胞造成細胞毒性,最主要的目的是為了解決一個影像系統容易遇到的問題:當在使用的傳統的顯微鏡系統時,為了得到大範圍視野的影像會使用較小放大倍率的物鏡,但此時的影像解析度較低。如果想得到較高的影像解析度,可以提高物鏡的放大倍率,但是高解析度的較大倍率物鏡所能得到的視野較小。傅立葉疊層顯微術的目的即是保持傳統顯微鏡使用較低方大倍率物鏡、低數值孔徑的物鏡來得到較大視野且同時能夠讓影像有高解析度。傅立葉疊層顯微術在低數值孔徑的系統架構下,使用多個不同角度的入射光得到多張影像輸入,因此有較高的視野,再藉由在經過合成孔徑以及影像重建過程後,藉由影像之間的相位差異來重建出原本樣本的影像,在這一個過程中會影像會在空間域與頻率域之間不斷的進行傅立葉轉換,可以在原本的系統數值孔徑再加上一個合成數值孔徑來提升FP系統來達到提升解析度的目的。 傅立葉疊層顯微術目前最需要改進的層面在於其大量的影像輸入,因此在整個傅立葉疊層顯微術的過程中,在影像拍攝與重建的同時,會因為大量的影像輸入,因此便需要耗費大量時間,而其中拍攝的過程所耗費時間又更長,因此將整個傅立葉疊層顯微術系統的拍攝快速自動化,能夠減少因為手動所耗費大量的時間。而此快速的系統化配置也能應用於其他的顯微系統當中,例如定量微分相位差顯微術,此種顯微術亦需要多張的影像輸入。在硬體系統上,將LED矩陣替換為薄膜電晶體液晶顯示器,可以自由調整光源的位置,我們設計了有別於傳統的拍攝光源位置,對於光源的使用可以提高效率並且有更高的自由度。隨後,探討了 FP 顯微鏡系統的設計和自動化,利用LabVIEW 面整合軟體達到系統自動化,應於生物醫學影像分析上,可以使用於透明的薄層細胞,並且在加快效率並且自動化的同時能夠有利於長時間的細胞觀察。 為了進一步提高傅立葉疊層顯微術的分辨率和圖像質量,應用深度學習技術,利用是殘差卷積神經網絡(RCNNs)。開發的 RCNNs-FP 模型在圖像重建和分析方面取得了顯著進展。此外,本研究將超穎透鏡整合到 FP 顯微鏡中,稱為 Meta-FP 顯微鏡。超表面能夠在納米尺度上操縱光波,從而增強成像能力。通過實驗評估了 Meta-FP 顯微鏡的性能,展示了其在高分辨率成像和定量相位成像方面的潛力。本論文通過探索創新方法來提高 FP 顯微鏡的性能和擴展其應用,為 FP 顯微鏡的發展做出了貢獻。本研究中的發現有可能影響包括生物醫學研究、材料科學和光學工程在內的各種領域。 | zh_TW |
dc.description.abstract | This thesis presents a comprehensive investigation into the design, automation, and application of Fourier Ptychography (FP) microscopy. The work focuses on enhancing the performance and capabilities of FP microscopy through the integration of advanced technologies, including deep learning and metasurfaces.
FP microscopy is a label-free imaging technique of quantitative phase imaging. It allows observing cells or tissues without inducing cell toxicity due to staining. Traditional microscopes, when used with lower magnification objectives to achieve a wider field of view, often sacrifice image resolution. Conversely, higher magnification objectives yield better resolution but offer a narrower field of view. In FP microscopy these issues can be overcome. The goal of FP microscopy is to use lower magnification objectives with lower numerical apertures to maintain a wider field of view while ensuring high-resolution images. In this technique, multiple images are captured from different illumination angles under a low numerical aperture system architecture to achieve a broad field of view. By employing synthetic aperture and image reconstruction techniques, the phase differences between images are utilized to recreate the image of the original sample. This involves iterative Fourier transformations between spatial and frequency domains, potentially enhancing resolution by adding a synthetic numerical aperture to the original system. One major area for improvement in FP microscopy lies in managing the substantial amount of image inputs. The process of capturing and reconstructing images is time-consuming, particularly the image capture phase. Automating the entire system's capture process can significantly reduce manual time investment. This rapid system configuration is also applied to other microscopy systems, such as quantitative differential phase contrast microscopy, requiring multiple image inputs. On the hardware front, replacing LED matrices with thin-film transistor liquid crystal displays allows for flexible adjustment of light source positions. By proposing a novel approach to light source utilization, diverging from traditional methods, to enhance efficiency and provide greater flexibility. In biomedical image analysis, this could be applied to transparent thin-layered cells, facilitating efficient automation and prolonged cell observation. LabVIEW automation system with GUI is designed, developed, and implemented for FP microscopy. Subsequently, the design and automation of FP microscopy systems are explored, emphasizing the importance of precise control and efficient data processing. Deep learning techniques, specifically Residual Convolutional Neural Networks (RCNNs), are applied to further enhance the resolution and image fidelity of FP microscopy. The developed RCNNs-FP model demonstrates significant advancements in image reconstruction and analysis. Additionally, the integration of metasurfaces into FP microscopy, referred to as Meta-FP microscopy, is investigated. Metasurfaces enable the manipulation of light waves at the nanoscale, leading to enhanced imaging capabilities. The performance of Meta-FP microscopy is evaluated through experiments, showcasing its potential for high-resolution imaging and quantitative phase imaging. In conclusion, this thesis contributes to the advancement of FP microscopy by exploring innovative approaches to enhance its performance and expand its applications. The findings presented in this work have the potential to impact various fields, including biomedical research, materials science, and optical engineering. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:08:48Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-19T16:08:48Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii Table of Contents vi List of Illustrations xii List of Tables xxi List of Symbols xxiii Chapter 1 Introduction 1 1.1. Research Background and Motivation 1 1.2. Wide Field Microscopy 4 1.3. Quantitative Phase Imaging 4 1.4. Fourier Ptychography Microscopy 7 1.4.1. Literature Review of FP 7 1.4.2. Advantage and Limitation of FP Microscopy 8 1.5. Deep Learning (DL) for Optic Imaging 9 1.6. Metasurface for Optical Imaging 11 1.7. Research Purpose and Method 12 1.7.1. Research Purpose 12 1.7.2. Research Method 13 1.8. Overview of the Thesis 14 Chapter 2 FP Microscopy Designing and Automation 17 2.1. Experimental Setup of FP Microscopy 19 2.1.1. Conventional FP Microscopy 19 2.1.2. Advantages of TFT over LED arrays 20 2.1.3. TFT-based FP Microscopy 23 2.2. Algorithm of FP Microscopy 25 2.2.1. Forward Imaging Model 25 2.2.2. TFT Pixel Pattern Position 28 2.2.3. Recovery Process 30 2.3. Evaluation Matrix of FP Microscopy 36 2.3.1. Resolution Calculation and Improvement of FP Microscopy 36 2.3.2. Theoretical Phase Calculation of FP Microscopy 39 2.3.3. Space Bandwidth Product (SBP) of FP Microscopy 39 2.4. Automation System 40 2.4.1. Basic Software for FP Microscopy 40 2.4.2. Significance of Automation System for FP Microscopy 41 2.4.3. Automation System for FP Microscopy 42 2.5. Summary 49 Chapter 3 FP Microscopy Characteristics and in Diverse Application Fields 51 3.1. Results of FP Microscopy in Amplitude USAF Target 51 3.2. Results of FP Microscopy in Phase USAF Target 54 3.3. Results of FP Microscopy on Metasurface Sample 58 3.4. QPI of Biomedical Sample using FP Microscopy 61 3.5. Summary 69 Chapter 4 Deep Learning for FP Microscopy (DL-FP) 70 4.1. Residual Convolutional Neural Networks (RCNNs) 71 4.2. RCNNs Model for FP Microscopy (RCNNs DL-FP) 73 4.2.1. ResNet for FP Microscopy 74 4.2.2. RCNNs-FP Compared to Other Models 75 4.3. Architecture of RCNNs DL-FP Model 76 4.4. Functions of RCNNs DL-FP Model 79 4.5. Algorithm within RCNNs DL-FP Model 82 4.6. Datasets and Parameters for RCNNs DL-FP Model 85 4.7. QPI of Biomedical Sample using RCNNs DL-FP Model 87 4.8. Result Analysis for RCNNs DL-FP Model 91 4.9. Summary 98 Chapter 5 Meta-System for FP (Meta-FP) Microscopy 99 5.1. Principle of Matasurface 99 5.2. Experimental Setup of Meta-FP Microscopy 100 5.3. Automation System of Meta-FP Microscopy 102 5.4. Summary 103 Chapter 6 Meta-FP Microscopy Characteristics and in Diverse Application Fields 104 6.1. Results of Meta-FP Microscopy in Amplitude USAF Target 104 6.2. Results of Meta-FP Microscopy in Phase USAF Target 106 6.3. QPI of Biomedical Sample using Meta-FP Microscopy 108 6.4. Summary 108 Chapter 7 Deep Learning for Meta-System for FP Microscopy 110 7.1. Result Analysis for Meta-System RCNNs DL-FP Model 110 7.2. Summary 112 Chapter 8 Discussion and Conclusion 113 8.1. Discussion of FP Microscopy Designing and Automation 113 8.2. Discussion of FP Microscopy Characteristics and in Diverse Application Fields 116 8.3. Discussion of DL-FP Microscopy 119 8.4. Discussion of Meta-FP Microscopy 119 Chapter 9 Reference 121 | - |
dc.language.iso | en | - |
dc.title | 傅立葉疊層顯微術系統與先進影像技術結合應用於高解析度成像 | zh_TW |
dc.title | Integrating Fourier Ptychography with Advanced Imaging Techniques for High-Resolution Imaging | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃義侑;宋孔彬;黃光裕;陳惠文 | zh_TW |
dc.contributor.oralexamcommittee | Yi-You Huang;Kung-Bin Sung;Kuang-Yuh Huang;Huei-Wen Chen | en |
dc.subject.keyword | 傅立葉疊層顯微術,深度學習,超穎透鏡,相位重建,定量相位顯微術,薄膜電晶體液晶顯示器,生物醫學影像, | zh_TW |
dc.subject.keyword | Fourier ptychography microscopy,Deep learning,Metasurface,Image phase reconstruction,Quantitative phase imaging,Thin-film transistor,Biomedical Imaging, | en |
dc.relation.page | 132 | - |
dc.identifier.doi | 10.6342/NTU202404758 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-01-23 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 醫學工程學系 | - |
dc.date.embargo-lift | 2025-02-20 | - |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。