請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96475完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃人則 | zh_TW |
| dc.contributor.advisor | Joseph Jen-Tse Huang | en |
| dc.contributor.author | 迪 莎 | zh_TW |
| dc.contributor.author | Diksha Agnihotri | en |
| dc.date.accessioned | 2025-02-18T16:18:45Z | - |
| dc.date.available | 2025-02-19 | - |
| dc.date.copyright | 2025-02-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-01-20 | - |
| dc.identifier.citation | 1. Keon, M., Musrie, B., Dinger, M., Brennan, S.E., Santos, J., and Saksena, N.K. (2021). Destination Amyotrophic Lateral Sclerosis. Front Neurol 12, 596006. 10.3389/fneur.2021.596006.
2. Masrori, P., and Van Damme, P. (2020). Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol 27, 1918-1929. 10.1111/ene.14393. 3. Brown, R.H., Jr., and Al-Chalabi, A. (2017). Amyotrophic Lateral Sclerosis. N Engl J Med 377, 1602. 10.1056/NEJMc1710379. 4. Longinetti, E., and Fang, F. (2019). Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 32, 771-776. 10.1097/WCO.0000000000000730. 5. Renton, A.E., Chio, A., and Traynor, B.J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17, 17-23. 10.1038/nn.3584. 6. Brown, R.H., and Al-Chalabi, A. (2017). Amyotrophic Lateral Sclerosis. N Engl J Med 377, 162-172. 10.1056/NEJMra1603471. 7. Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H.X., and et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62. 10.1038/362059a0. 8. Ticozzi, N., Silani, V., LeClerc, A.L., Keagle, P., Gellera, C., Ratti, A., Taroni, F., Kwiatkowski, T.J., Jr., McKenna-Yasek, D.M., Sapp, P.C., et al. (2009). Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort. Neurology 73, 1180-1185. 10.1212/WNL.0b013e3181bbff05. 9. Barmada, S.J., Skibinski, G., Korb, E., Rao, E.J., Wu, J.Y., and Finkbeiner, S. (2010). Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30, 639-649. 10.1523/JNEUROSCI.4988-09.2010. 10. Renton, A.E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257-268. 10.1016/j.neuron.2011.09.010. 11. Yun, Y., and Ha, Y. (2020). CRISPR/Cas9-Mediated Gene Correction to Understand ALS. Int J Mol Sci 21. 10.3390/ijms21113801. 12. Juarez, J.C., Manuia, M., Burnett, M.E., Betancourt, O., Boivin, B., Shaw, D.E., Tonks, N.K., Mazar, A.P., and Donate, F. (2008). Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc Natl Acad Sci U S A 105, 7147-7152. 10.1073/pnas.0709451105. 13. Nomura, T., Watanabe, S., Kaneko, K., Yamanaka, K., Nukina, N., and Furukawa, Y. (2014). Intranuclear aggregation of mutant FUS/TLS as a molecular pathomechanism of amyotrophic lateral sclerosis. J Biol Chem 289, 1192-1202. 10.1074/jbc.M113.516492. 14. Mackenzie, I.R.A., and Neumann, M. (2017). Fused in Sarcoma Neuropathology in Neurodegenerative Disease. Cold Spring Harb Perspect Med 7. 10.1101/cshperspect.a024299. 15. de Boer, E.M.J., Orie, V.K., Williams, T., Baker, M.R., De Oliveira, H.M., Polvikoski, T., Silsby, M., Menon, P., van den Bos, M., Halliday, G.M., et al. (2020). TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 92, 86-95. 10.1136/jnnp-2020-322983. 16. Babic Leko, M., Zupunski, V., Kirincich, J., Smilovic, D., Hortobagyi, T., Hof, P.R., and Simic, G. (2019). Molecular Mechanisms of Neurodegeneration Related to C9orf72 Hexanucleotide Repeat Expansion. Behav Neurol 2019, 2909168. 10.1155/2019/2909168. 17. Levine, T.P., Daniels, R.D., Gatta, A.T., Wong, L.H., and Hayes, M.J. (2013). The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 29, 499-503. 10.1093/bioinformatics/bts725. 18. Marat, A.L., Dokainish, H., and McPherson, P.S. (2011). DENN domain proteins: regulators of Rab GTPases. J Biol Chem 286, 13791-13800. 10.1074/jbc.R110.217067. 19. McAlpine, W., Sun, L., Wang, K.W., Liu, A., Jain, R., San Miguel, M., Wang, J., Zhang, Z., Hayse, B., McAlpine, S.G., et al. (2018). Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function. Proc Natl Acad Sci U S A 115, E11523-E11531. 10.1073/pnas.1814753115. 20. Burberry, A., Suzuki, N., Wang, J.Y., Moccia, R., Mordes, D.A., Stewart, M.H., Suzuki-Uematsu, S., Ghosh, S., Singh, A., Merkle, F.T., et al. (2016). Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci Transl Med 8, 347ra393. 10.1126/scitranslmed.aaf6038. 21. Sudria-Lopez, E., Koppers, M., de Wit, M., van der Meer, C., Westeneng, H.J., Zundel, C.A., Youssef, S.A., Harkema, L., de Bruin, A., Veldink, J.H., et al. (2016). Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathol 132, 145-147. 10.1007/s00401-016-1581-x. 22. Pang, W., and Hu, F. (2021). Cellular and physiological functions of C9ORF72 and implications for ALS/FTD. J Neurochem 157, 334-350. 10.1111/jnc.15255. 23. DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245-256. 10.1016/j.neuron.2011.09.011. 24. Waite, A.J., Baumer, D., East, S., Neal, J., Morris, H.R., Ansorge, O., and Blake, D.J. (2014). Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol Aging 35, 1779 e1775-1779 e1713. 10.1016/j.neurobiolaging.2014.01.016. 25. Belzil, V.V., Bauer, P.O., Prudencio, M., Gendron, T.F., Stetler, C.T., Yan, I.K., Pregent, L., Daughrity, L., Baker, M.C., Rademakers, R., et al. (2013). Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol 126, 895-905. 10.1007/s00401-013-1199-1. 26. Frick, P., Sellier, C., Mackenzie, I.R.A., Cheng, C.Y., Tahraoui-Bories, J., Martinat, C., Pasterkamp, R.J., Prudlo, J., Edbauer, D., Oulad-Abdelghani, M., et al. (2018). Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers. Acta Neuropathol Commun 6, 72. 10.1186/s40478-018-0579-0. 27. Xi, Z., Zinman, L., Moreno, D., Schymick, J., Liang, Y., Sato, C., Zheng, Y., Ghani, M., Dib, S., Keith, J., et al. (2013). Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet 92, 981-989. 10.1016/j.ajhg.2013.04.017. 28. Shao, Q., Liang, C., Chang, Q., Zhang, W., Yang, M., and Chen, J.F. (2019). C9orf72 deficiency promotes motor deficits of a C9ALS/FTD mouse model in a dose-dependent manner. Acta Neuropathol Commun 7, 32. 10.1186/s40478-019-0685-7. 29. Ciura, S., Lattante, S., Le Ber, I., Latouche, M., Tostivint, H., Brice, A., and Kabashi, E. (2013). Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol 74, 180-187. 10.1002/ana.23946. 30. Deng, Z., Lim, J., Wang, Q., Purtell, K., Wu, S., Palomo, G.M., Tan, H., Manfredi, G., Zhao, Y., Peng, J., et al. (2020). ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 16, 917-931. 10.1080/15548627.2019.1644076. 31. Webster, C.P., Smith, E.F., Grierson, A.J., and De Vos, K.J. (2018). C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases 9, 399-408. 10.1080/21541248.2016.1240495. 32. Beckers, J., and Van Damme, P. (2024). Toxic gain-of-function mechanisms in C9orf72 ALS-FTD neurons drive autophagy and lysosome dysfunction. Autophagy 20, 2102-2104. 10.1080/15548627.2024.2340415. 33. Haeusler, A.R., Donnelly, C.J., Periz, G., Simko, E.A., Shaw, P.G., Kim, M.S., Maragakis, N.J., Troncoso, J.C., Pandey, A., Sattler, R., et al. (2014). C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507, 195-200. 10.1038/nature13124. 34. Kendrick, S., and Hurley, L.H. (2010). The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. Pure Appl Chem 82, 1609-1621. 10.1351/PAC-CON-09-09-29. 35. Brooks, T.A., Kendrick, S., and Hurley, L. (2010). Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J 277, 3459-3469. 10.1111/j.1742-4658.2010.07759.x. 36. Ash, P.E., Bieniek, K.F., Gendron, T.F., Caulfield, T., Lin, W.L., Dejesus-Hernandez, M., van Blitterswijk, M.M., Jansen-West, K., Paul, J.W., 3rd, Rademakers, R., et al. (2013). Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639-646. 10.1016/j.neuron.2013.02.004. 37. Mori, K., Weng, S.M., Arzberger, T., May, S., Rentzsch, K., Kremmer, E., Schmid, B., Kretzschmar, H.A., Cruts, M., Van Broeckhoven, C., et al. (2013). The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335-1338. 10.1126/science.1232927. 38. Zhang, Y.J., Gendron, T.F., Grima, J.C., Sasaguri, H., Jansen-West, K., Xu, Y.F., Katzman, R.B., Gass, J., Murray, M.E., Shinohara, M., et al. (2016). C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci 19, 668-677. 10.1038/nn.4272. 39. Mori, K., Arzberger, T., Grasser, F.A., Gijselinck, I., May, S., Rentzsch, K., Weng, S.M., Schludi, M.H., van der Zee, J., Cruts, M., et al. (2013). Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 126, 881-893. 10.1007/s00401-013-1189-3. 40. Mann, D.M., Rollinson, S., Robinson, A., Bennion Callister, J., Thompson, J.C., Snowden, J.S., Gendron, T., Petrucelli, L., Masuda-Suzukake, M., Hasegawa, M., et al. (2013). Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol Commun 1, 68. 10.1186/2051-5960-1-68. 41. Wen, X., Tan, W., Westergard, T., Krishnamurthy, K., Markandaiah, S.S., Shi, Y., Lin, S., Shneider, N.A., Monaghan, J., Pandey, U.B., et al. (2014). Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 84, 1213-1225. 10.1016/j.neuron.2014.12.010. 42. Lee, K.H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin, M., Messing, J., Molliex, A., et al. (2016). C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 167, 774-788 e717. 10.1016/j.cell.2016.10.002. 43. Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., and Taylor, J.P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133. 10.1016/j.cell.2015.09.015. 44. Shi, K.Y., Mori, E., Nizami, Z.F., Lin, Y., Kato, M., Xiang, S., Wu, L.C., Ding, M., Yu, Y., Gall, J.G., and McKnight, S.L. (2017). Toxic PR(n) poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc Natl Acad Sci U S A 114, E1111-E1117. 10.1073/pnas.1620293114. 45. Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18, 285-298. 10.1038/nrm.2017.7. 46. Mitrea, D.M., and Kriwacki, R.W. (2016). Phase separation in biology; functional organization of a higher order. Cell Commun Signal 14, 1. 10.1186/s12964-015-0125-7. 47. Boeynaems, S., Alberti, S., Fawzi, N.L., Mittag, T., Polymenidou, M., Rousseau, F., Schymkowitz, J., Shorter, J., Wolozin, B., Van Den Bosch, L., et al. (2018). Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol 28, 420-435. 10.1016/j.tcb.2018.02.004. 48. Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T.M., et al. (2015). A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 1066-1077. 10.1016/j.cell.2015.07.047. 49. Hyman, A.A., Weber, C.A., and Julicher, F. (2014). Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30, 39-58. 10.1146/annurev-cellbio-100913-013325. 50. Shin, Y., and Brangwynne, C.P. (2017). Liquid phase condensation in cell physiology and disease. Science 357. 10.1126/science.aaf4382. 51. van Leeuwen, W., and Rabouille, C. (2019). Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells. Traffic 20, 623-638. 10.1111/tra.12669. 52. Banani, S.F., Rice, A.M., Peeples, W.B., Lin, Y., Jain, S., Parker, R., and Rosen, M.K. (2016). Compositional Control of Phase-Separated Cellular Bodies. Cell 166, 651-663. 10.1016/j.cell.2016.06.010. 53. Martin, E.W., Holehouse, A.S., Peran, I., Farag, M., Incicco, J.J., Bremer, A., Grace, C.R., Soranno, A., Pappu, R.V., and Mittag, T. (2020). Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694-699. 10.1126/science.aaw8653. 54. Pak, C.W., Kosno, M., Holehouse, A.S., Padrick, S.B., Mittal, A., Ali, R., Yunus, A.A., Liu, D.R., Pappu, R.V., and Rosen, M.K. (2016). Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein. Mol Cell 63, 72-85. 10.1016/j.molcel.2016.05.042. 55. Bremer, A., Farag, M., Borcherds, W.M., Peran, I., Martin, E.W., Pappu, R.V., and Mittag, T. (2022). Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat Chem 14, 196-207. 10.1038/s41557-021-00840-w. 56. Lin, Y., Protter, D.S., Rosen, M.K., and Parker, R. (2015). Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell 60, 208-219. 10.1016/j.molcel.2015.08.018. 57. Gao, C., Gu, J., Zhang, H., Jiang, K., Tang, L., Liu, R., Zhang, L., Zhang, P., Liu, C., Dai, B., and Song, J. (2022). Hyperosmotic-stress-induced liquid-liquid phase separation of ALS-related proteins in the nucleus. Cell Rep 40, 111086. 10.1016/j.celrep.2022.111086. 58. Nakagawa, S., Yamazaki, T., and Hirose, T. (2018). Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biol 8. 10.1098/rsob.180150. 59. Wang, Y., and Chen, L.L. (2020). Organization and function of paraspeckles. Essays Biochem 64, 875-882. 10.1042/EBC20200010. 60. Latonen, L. (2019). Phase-to-Phase With Nucleoli - Stress Responses, Protein Aggregation and Novel Roles of RNA. Front Cell Neurosci 13, 151. 10.3389/fncel.2019.00151. 61. Guillen-Chable, F., Bayona, A., Rodriguez-Zapata, L.C., and Castano, E. (2021). Phase Separation of Intrinsically Disordered Nucleolar Proteins Relate to Localization and Function. Int J Mol Sci 22. 10.3390/ijms222313095. 62. McGurk, L., Gomes, E., Guo, L., Mojsilovic-Petrovic, J., Tran, V., Kalb, R.G., Shorter, J., and Bonini, N.M. (2018). Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. Mol Cell 71, 703-717 e709. 10.1016/j.molcel.2018.07.002. 63. Odeh, H.M., and Shorter, J. (2020). Arginine-rich dipeptide-repeat proteins as phase disruptors in C9-ALS/FTD. Emerg Top Life Sci 4, 293-305. 10.1042/ETLS20190167. 64. Boeynaems, S., Bogaert, E., Kovacs, D., Konijnenberg, A., Timmerman, E., Volkov, A., Guharoy, M., De Decker, M., Jaspers, T., Ryan, V.H., et al. (2017). Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Mol Cell 65, 1044-1055 e1045. 10.1016/j.molcel.2017.02.013. 65. Li, Y.R., King, O.D., Shorter, J., and Gitler, A.D. (2013). Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201, 361-372. 10.1083/jcb.201302044. 66. White, M.R., Mitrea, D.M., Zhang, P., Stanley, C.B., Cassidy, D.E., Nourse, A., Phillips, A.H., Tolbert, M., Taylor, J.P., and Kriwacki, R.W. (2019). C9orf72 Poly(PR) Dipeptide Repeats Disturb Biomolecular Phase Separation and Disrupt Nucleolar Function. Mol Cell 74, 713-728 e716. 10.1016/j.molcel.2019.03.019. 67. Kwon, I., Xiang, S., Kato, M., Wu, L., Theodoropoulos, P., Wang, T., Kim, J., Yun, J., Xie, Y., and McKnight, S.L. (2014). Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345, 1139-1145. 10.1126/science.1254917. 68. Suzuki, H., Shibagaki, Y., Hattori, S., and Matsuoka, M. (2019). C9-ALS/FTD-linked proline-arginine dipeptide repeat protein associates with paraspeckle components and increases paraspeckle formation. Cell Death Dis 10, 746. 10.1038/s41419-019-1983-5. 69. Chien, H.M., Lee, C.C., and Huang, J.J. (2021). The Different Faces of the TDP-43 Low-Complexity Domain: The Formation of Liquid Droplets and Amyloid Fibrils. Int J Mol Sci 22. 10.3390/ijms22158213. 70. Zacco, E., Martin, S.R., Thorogate, R., and Pastore, A. (2018). The RNA-Recognition Motifs of TAR DNA-Binding Protein 43 May Play a Role in the Aberrant Self-Assembly of the Protein. Front Mol Neurosci 11, 372. 10.3389/fnmol.2018.00372. 71. Francois-Moutal, L., Perez-Miller, S., Scott, D.D., Miranda, V.G., Mollasalehi, N., and Khanna, M. (2019). Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Front Mol Neurosci 12, 301. 10.3389/fnmol.2019.00301. 72. Acharya, K.K., Govind, C.K., Shore, A.N., Stoler, M.H., and Reddi, P.P. (2006). cis-requirement for the maintenance of round spermatid-specific transcription. Dev Biol 295, 781-790. 10.1016/j.ydbio.2006.04.443. 73. Buratti, E., and Baralle, F.E. (2001). Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276, 36337-36343. 10.1074/jbc.M104236200. 74. Ayala, Y.M., Zago, P., D'Ambrogio, A., Xu, Y.F., Petrucelli, L., Buratti, E., and Baralle, F.E. (2008). Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 121, 3778-3785. 10.1242/jcs.038950. 75. Shiina, Y., Arima, K., Tabunoki, H., and Satoh, J. (2010). TDP-43 dimerizes in human cells in culture. Cell Mol Neurobiol 30, 641-652. 10.1007/s10571-009-9489-9. 76. D'Ambrogio, A., Buratti, E., Stuani, C., Guarnaccia, C., Romano, M., Ayala, Y.M., and Baralle, F.E. (2009). Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res 37, 4116-4126. 10.1093/nar/gkp342. 77. Wang, H.Y., Wang, I.F., Bose, J., and Shen, C.K. (2004). Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83, 130-139. 10.1016/s0888-7543(03)00214-3. 78. Lagier-Tourenne, C., Polymenidou, M., and Cleveland, D.W. (2010). TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19, R46-64. 10.1093/hmg/ddq137. 79. Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M., et al. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133. 10.1126/science.1134108. 80. Guenther, E.L., Cao, Q., Trinh, H., Lu, J., Sawaya, M.R., Cascio, D., Boyer, D.R., Rodriguez, J.A., Hughes, M.P., and Eisenberg, D.S. (2018). Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat Struct Mol Biol 25, 463-471. 10.1038/s41594-018-0064-2. 81. Collins, M., Riascos, D., Kovalik, T., An, J., Krupa, K., Krupa, K., Hood, B.L., Conrads, T.P., Renton, A.E., Traynor, B.J., and Bowser, R. (2012). The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients. Acta Neuropathol 124, 717-732. 10.1007/s00401-012-1045-x. 82. Dammer, E.B., Fallini, C., Gozal, Y.M., Duong, D.M., Rossoll, W., Xu, P., Lah, J.J., Levey, A.I., Peng, J., Bassell, G.J., and Seyfried, N.T. (2012). Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. PLoS One 7, e38658. 10.1371/journal.pone.0038658. 83. Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., Mann, D., Tsuchiya, K., Yoshida, M., Hashizume, Y., and Oda, T. (2006). TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351, 602-611. 10.1016/j.bbrc.2006.10.093. 84. Wang, C., Duan, Y., Duan, G., Wang, Q., Zhang, K., Deng, X., Qian, B., Gu, J., Ma, Z., Zhang, S., et al. (2020). Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43 Nuclear Bodies via Paraspeckle LncRNA NEAT1-Mediated Liquid-Liquid Phase Separation. Mol Cell 79, 443-458 e447. 10.1016/j.molcel.2020.06.019. 85. Yu, H., Lu, S., Gasior, K., Singh, D., Vazquez-Sanchez, S., Tapia, O., Toprani, D., Beccari, M.S., Yates, J.R., 3rd, Da Cruz, S., et al. (2021). HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371. 10.1126/science.abb4309. 86. Wang, A., Conicella, A.E., Schmidt, H.B., Martin, E.W., Rhoads, S.N., Reeb, A.N., Nourse, A., Ramirez Montero, D., Ryan, V.H., Rohatgi, R., et al. (2018). A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J 37. 10.15252/embj.201797452. 87. Gopal, P.P., Nirschl, J.J., Klinman, E., and Holzbaur, E.L. (2017). Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc Natl Acad Sci U S A 114, E2466-E2475. 10.1073/pnas.1614462114. 88. Hallegger, M., Chakrabarti, A.M., Lee, F.C.Y., Lee, B.L., Amalietti, A.G., Odeh, H.M., Copley, K.E., Rubien, J.D., Portz, B., Kuret, K., et al. (2021). TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184, 4680-4696 e4622. 10.1016/j.cell.2021.07.018. 89. Streit, L., Kuhn, T., Vomhof, T., Bopp, V., Ludolph, A.C., Weishaupt, J.H., Gebhardt, J.C.M., Michaelis, J., and Danzer, K.M. (2022). Stress induced TDP-43 mobility loss independent of stress granules. Nat Commun 13, 5480. 10.1038/s41467-022-32939-0. 90. Khalfallah, Y., Kuta, R., Grasmuck, C., Prat, A., Durham, H.D., and Vande Velde, C. (2018). TDP-43 regulation of stress granule dynamics in neurodegenerative disease-relevant cell types. Sci Rep 8, 7551. 10.1038/s41598-018-25767-0. 91. Babinchak, W.M., Haider, R., Dumm, B.K., Sarkar, P., Surewicz, K., Choi, J.K., and Surewicz, W.K. (2019). The role of liquid-liquid phase separation in aggregation of the TDP-43 low-complexity domain. J Biol Chem 294, 6306-6317. 10.1074/jbc.RA118.007222. 92. Tamaki, Y., and Urushitani, M. (2022). Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 23. 10.3390/ijms232012508. 93. Carey, J.L., and Guo, L. (2022). Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases. Front Mol Biosci 9, 826719. 10.3389/fmolb.2022.826719. 94. Li, J., Zhang, M., Ma, W., Yang, B., Lu, H., Zhou, F., and Zhang, L. (2022). Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Mol Biomed 3, 13. 10.1186/s43556-022-00075-2. 95. Hennig, S., Kong, G., Mannen, T., Sadowska, A., Kobelke, S., Blythe, A., Knott, G.J., Iyer, K.S., Ho, D., Newcombe, E.A., et al. (2015). Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210, 529-539. 10.1083/jcb.201504117. 96. Yamazaki, T., Souquere, S., Chujo, T., Kobelke, S., Chong, Y.S., Fox, A.H., Bond, C.S., Nakagawa, S., Pierron, G., and Hirose, T. (2018). Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation. Mol Cell 70, 1038-1053 e1037. 10.1016/j.molcel.2018.05.019. 97. Nishimoto, Y., Nakagawa, S., Hirose, T., Okano, H.J., Takao, M., Shibata, S., Suyama, S., Kuwako, K., Imai, T., Murayama, S., et al. (2013). The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain 6, 31. 10.1186/1756-6606-6-31. 98. Tollervey, J.R., Curk, T., Rogelj, B., Briese, M., Cereda, M., Kayikci, M., Konig, J., Hortobagyi, T., Nishimura, A.L., Zupunski, V., et al. (2011). Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14, 452-458. 10.1038/nn.2778. 99. Patel, A., Malinovska, L., Saha, S., Wang, J., Alberti, S., Krishnan, Y., and Hyman, A.A. (2017). ATP as a biological hydrotrope. Science 356, 753-756. 10.1126/science.aaf6846. 100. Mogk, A., Bukau, B., and Kampinga, H.H. (2018). Cellular Handling of Protein Aggregates by Disaggregation Machines. Mol Cell 69, 214-226. 10.1016/j.molcel.2018.01.004. 101. Udan-Johns, M., Bengoechea, R., Bell, S., Shao, J., Diamond, M.I., True, H.L., Weihl, C.C., and Baloh, R.H. (2014). Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones. Hum Mol Genet 23, 157-170. 10.1093/hmg/ddt408. 102. Gu, J., Wang, C., Hu, R., Li, Y., Zhang, S., Sun, Y., Wang, Q., Li, D., Fang, Y., and Liu, C. (2021). Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Res 31, 1024-1027. 10.1038/s41422-021-00526-5. 103. He, R.Y., Lai, X.M., Sun, C.S., Kung, T.S., Hong, J.Y., Jheng, Y.S., Liao, W.N., Chen, J.K., Liao, Y.F., Tu, P.H., and Huang, J.J. (2020). Nanoscopic Insights of Amphiphilic Peptide against the Oligomer Assembly Process to Treat Huntington's Disease. Adv Sci (Weinh) 7, 1901165. 10.1002/advs.201901165. 104. Duan, Y., Du, A., Gu, J., Duan, G., Wang, C., Gui, X., Ma, Z., Qian, B., Deng, X., Zhang, K., et al. (2019). PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res 29, 233-247. 10.1038/s41422-019-0141-z. 105. Stanek, D., and Fox, A.H. (2017). Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol 46, 94-101. 10.1016/j.ceb.2017.05.001. 106. Lam, Y.W., Lamond, A.I., Mann, M., and Andersen, J.S. (2007). Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17, 749-760. 10.1016/j.cub.2007.03.064. 107. Recasens-Alvarez, C., Alexandre, C., Kirkpatrick, J., Nojima, H., Huels, D.J., Snijders, A.P., and Vincent, J.P. (2021). Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition. Nat Cell Biol 23, 127-135. 10.1038/s41556-020-00626-1. 108. Clerico, E.M., Tilitsky, J.M., Meng, W., and Gierasch, L.M. (2015). How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 427, 1575-1588. 10.1016/j.jmb.2015.02.004. 109. Gu, J., Liu, Z., Zhang, S., Li, Y., Xia, W., Wang, C., Xiang, H., Liu, Z., Tan, L., Fang, Y., et al. (2020). Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proc Natl Acad Sci U S A 117, 31123-31133. 10.1073/pnas.2002437117. 110. Pedley, A.M., Boylan, J.P., Chan, C.Y., Kennedy, E.L., Kyoung, M., and Benkovic, S.J. (2022). Purine biosynthetic enzymes assemble into liquid-like condensates dependent on the activity of chaperone protein HSP90. J Biol Chem 298, 101845. 10.1016/j.jbc.2022.101845. 111. Warraich, S.T., Yang, S., Nicholson, G.A., and Blair, I.P. (2010). TDP-43: a DNA and RNA binding protein with roles in neurodegenerative diseases. Int J Biochem Cell Biol 42, 1606-1609. 10.1016/j.biocel.2010.06.016. 112. Polymenidou, M., Lagier-Tourenne, C., Hutt, K.R., Huelga, S.C., Moran, J., Liang, T.Y., Ling, S.C., Sun, E., Wancewicz, E., Mazur, C., et al. (2011). Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14, 459-468. 10.1038/nn.2779. 113. Duan, L., Zaepfel, B.L., Aksenova, V., Dasso, M., Rothstein, J.D., Kalab, P., and Hayes, L.R. (2022). Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export. Cell Rep 40, 111106. 10.1016/j.celrep.2022.111106. 114. Rengifo-Gonzalez, J.C., El Hage, K., Clement, M.J., Steiner, E., Joshi, V., Craveur, P., Durand, D., Pastre, D., and Bouhss, A. (2021). The cooperative binding of TDP-43 to GU-rich RNA repeats antagonizes TDP-43 aggregation. Elife 10. 10.7554/eLife.67605. 115. Modic, M., Grosch, M., Rot, G., Schirge, S., Lepko, T., Yamazaki, T., Lee, F.C.Y., Rusha, E., Shaposhnikov, D., Palo, M., et al. (2019). Cross-Regulation between TDP-43 and Paraspeckles Promotes Pluripotency-Differentiation Transition. Mol Cell 74, 951-965 e913. 10.1016/j.molcel.2019.03.041. 116. Shan, Q., Ma, F., Wei, J., Li, H., Ma, H., and Sun, P. (2020). Physiological Functions of Heat Shock Proteins. Curr Protein Pept Sci 21, 751-760. 10.2174/1389203720666191111113726. 117. Freibaum, B.D., Chitta, R.K., High, A.A., and Taylor, J.P. (2010). Global Analysis of TDP-43 Interacting Proteins Reveals Strong Association with RNA Splicing and Translation Machinery. J Proteome Res 9, 1104-1120. 10.1021/pr901076y. 118. Young, J.C. (2010). Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88, 291-300. 10.1139/o09-175. 119. Powers, M.V., Jones, K., Barillari, C., Westwood, I., van Montfort, R.L., and Workman, P. (2010). Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle 9, 1542-1550. 10.4161/cc.9.8.11204. 120. Wen, W., Liu, W., Shao, Y., and Chen, L. (2014). VER-155008, a small molecule inhibitor of HSP70 with potent anti-cancer activity on lung cancer cell lines. Exp Biol Med (Maywood) 239, 638-645. 10.1177/1535370214527899. 121. Gasset-Rosa, F., Lu, S., Yu, H., Chen, C., Melamed, Z., Guo, L., Shorter, J., Da Cruz, S., and Cleveland, D.W. (2019). Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death. Neuron 102, 339-357 e337. 10.1016/j.neuron.2019.02.038. 122. Kaminski Schierle, G.S., Bertoncini, C.W., Chan, F.T.S., van der Goot, A.T., Schwedler, S., Skepper, J., Schlachter, S., van Ham, T., Esposito, A., Kumita, J.R., et al. (2011). A FRET sensor for non-invasive imaging of amyloid formation in vivo. Chemphyschem 12, 673-680. 10.1002/cphc.201000996. 123. Tseng, Y.L., Lu, P.C., Lee, C.C., He, R.Y., Huang, Y.A., Tseng, Y.C., Cheng, T.R., Huang, J.J., and Fang, J.M. (2023). Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera. J Biomed Sci 30, 27. 10.1186/s12929-023-00921-7. 124. Guaglianone, G., Torrado, B., Lin, Y.F., Watkins, M.C., Wysocki, V.H., Gratton, E., and Nowick, J.S. (2022). Elucidating the Oligomerization and Cellular Interactions of a Trimer Derived from Abeta through Fluorescence and Mass Spectrometric Studies. ACS Chem Neurosci 13, 2473-2482. 10.1021/acschemneuro.2c00313. 125. Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., and Glabe, C.G. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486-489. 10.1126/science.1079469. 126. Fang, Y.S., Tsai, K.J., Chang, Y.J., Kao, P., Woods, R., Kuo, P.H., Wu, C.C., Liao, J.Y., Chou, S.C., Lin, V., et al. (2014). Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 5, 4824. 10.1038/ncomms5824. 127. Chunhui, H., Dilin, X., Ke, Z., Jieyi, S., Sicheng, Y., Dapeng, W., Qinwen, W., and Wei, C. (2018). A11-positive beta-amyloid Oligomer Preparation and Assessment Using Dot Blotting Analysis. J Vis Exp. 10.3791/57592. 128. Mann, J.R., Gleixner, A.M., Mauna, J.C., Gomes, E., DeChellis-Marks, M.R., Needham, P.G., Copley, K.E., Hurtle, B., Portz, B., Pyles, N.J., et al. (2019). RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43. Neuron 102, 321-338 e328. 10.1016/j.neuron.2019.01.048. 129. Perez-Berlanga, M., Wiersma, V.I., Zbinden, A., De Vos, L., Wagner, U., Foglieni, C., Mallona, I., Betz, K.M., Clery, A., Weber, J., et al. (2023). Loss of TDP-43 oligomerization or RNA binding elicits distinct aggregation patterns. EMBO J 42, e111719. 10.15252/embj.2022111719. 130. Malik, A.M., and Barmada, S.J. (2020). TDP-43 Nuclear Bodies: A NEAT Response to Stress? Mol Cell 79, 362-364. 10.1016/j.molcel.2020.07.018. 131. Zhang, Y.J., Guo, L., Gonzales, P.K., Gendron, T.F., Wu, Y., Jansen-West, K., O'Raw, A.D., Pickles, S.R., Prudencio, M., Carlomagno, Y., et al. (2019). Heterochromatin anomalies and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity. Science 363. 10.1126/science.aav2606. 132. Hutten, S., Usluer, S., Bourgeois, B., Simonetti, F., Odeh, H.M., Fare, C.M., Czuppa, M., Hruska-Plochan, M., Hofweber, M., Polymenidou, M., et al. (2020). Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions. Cell Rep 33, 108538. 10.1016/j.celrep.2020.108538. 133. An, H., de Meritens, C.R., and Shelkovnikova, T.A. (2021). Connecting the "dots": RNP granule network in health and disease. Biochim Biophys Acta Mol Cell Res 1868, 119058. 10.1016/j.bbamcr.2021.119058. 134. Sun, H., Chen, W., Chen, L., and Zheng, W. (2021). Exploring the molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43 using molecular dynamics simulation and free energy calculation. J Comput Chem 42, 1670-1680. 10.1002/jcc.26704. 135. McCluggage, F., and Fox, A.H. (2021). Paraspeckle nuclear condensates: Global sensors of cell stress? Bioessays 43, e2000245. 10.1002/bies.202000245. 136. Lin, Y., Schmidt, B.F., Bruchez, M.P., and McManus, C.J. (2018). Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res 46, 3742-3752. 10.1093/nar/gky046. 137. Van Treeck, B., and Parker, R. (2018). Emerging Roles for Intermolecular RNA-RNA Interactions in RNP Assemblies. Cell 174, 791-802. 10.1016/j.cell.2018.07.023. 138. Baborie, A., Griffiths, T.D., Jaros, E., Perry, R., McKeith, I.G., Burn, D.J., Masuda-Suzukake, M., Hasegawa, M., Rollinson, S., Pickering-Brown, S., et al. (2015). Accumulation of dipeptide repeat proteins predates that of TDP-43 in frontotemporal lobar degeneration associated with hexanucleotide repeat expansions in C9ORF72 gene. Neuropathol Appl Neurobiol 41, 601-612. 10.1111/nan.12178. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96475 | - |
| dc.description.abstract | 肌萎縮性脊髓側索硬化症(ALS)是一種致命的神經退化性疾病,運動神經元的退化最終會導致癱瘓,患者自疾病發作後的壽命僅剩 3 到 5 年。ALS 的一個重要遺傳原因是 C9ORF72 基因中的六核苷酸重複擴增。C9ORF72 基因中的 GGGGCC 序列擴增會轉譯為五種重複雙肽(DPR),包括甘胺酸-丙胺酸(poly-GA)、脯胺酸-精胺酸(poly-PR)、甘胺酸-精胺酸(poly-GR)。在這五種 DPR 中,富含精胺酸的雙肽被認為是最具毒性的。特別是poly-PR 二肽的毒性與其擾亂無膜胞器液體狀性質的能力高度相關。富含低複雜度區域(LCD)的蛋白質進行的液-液相分離(LLPS)是形成與維持無膜胞器(如核仁與側核斑)的基本機制。與 ALS 相關的蛋白質(如 TDP-43)中的 LLPS 失調被認為與 ALS 的致病機制有關。具體來說,LLPS 的改變可能會導致 TDP-43 在細胞質中凝膠化,並在延長壓力下聚集。然而,poly-PR 壓力對 TDP-43 在細胞核中 LLPS 的影響仍不清楚。
本研究中,我們探討了 poly-PR 壓力對 TDP-43 核凝聚的短期與長期影響。我們的研究結果顯示,暫時 poly-PR 壓力會誘導形成流動性降低的 TDP-43 核凝聚體 (NCs)。值得注意的是,長鏈非編碼 RNA NEAT1 與 HSP70 分子伴護蛋白在短期 poly-PR 壓力下與 TDP-43 核凝聚體顯著共位。藉由 siRNA造成減少,發現 NEAT1 其對於 TDP-43 核凝聚體(NC)形成是必要的。此外,以藥物抑制 HSP70 顯示其維持凝聚體流動性中的作用。在長期 poly-PR 壓力下,NEAT1 繼續作為 TDP-43 核凝聚體形成的支架;然而,HSP70 從這些凝聚體中脫離,導致流動性進一步降低並最終凝膠化。 利用基於螢光壽命的成像顯微鏡結合免疫螢光染色,發現在凝膠狀核凝聚物(NCs)中存在 TDP-43 寡聚物。此外,長期暴露於 poly-PR 壓力下導致了 TDP-43 蛋白病變,其特徵包括 TDP-43 磷酸化、錯位以及 C 末端 TDP-43 片段的出現,並伴隨著細胞毒性的增加。這項研究闡明了poly-PR通過干擾TDP-43核內LLPS以及典型TDP-43蛋白病變可能導致的毒性機制,並揭示了NEAT1和HSP70在這一過程中的作用。 | zh_TW |
| dc.description.abstract | Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron degeneration that leads to paralysis, typically resulting in a life expectancy of 3-5 years after onset. A significant genetic factor in ALS is the hexanucleotide repeat expansion (GGGGCC) in the C9ORF72 gene, which results in the translation of five dipeptide repeats (DPRs). Among these, arginine-rich dipeptides toxicity is highly associated with their ability to disrupt liquid-like properties of membraneless organelles (such as the nucleolus and paraspeckles). Liquid-liquid phase separation (LLPS) of low-complexity domain (LCD)-rich proteins is crucial for the formation of these organelles. Dysregulated LLPS in ALS-related proteins like TAR DNA-binding protein 43 (TDP-43) has been linked to ALS pathogenesis, with alterations in LLPS potentially leading to TDP-43 gelation and aggregation under stress. However, the impact of arginine-rich dipeptides on TDP-43 LLPS in the nucleus is still unclear.
In this study, we investigated the transient and prolonged effects of poly-PR and poly-GR dipeptide on TDP-43 nuclear condensation. Our findings indicate that only transient poly-PR stress induces the formation of TDP-43 nuclear condensates (NCs) with decreased fluidity. Of note, the long non-coding RNA NEAT1 and the HSP70 chaperones demonstrated significant colocalization with TDP-43 NCs under transient poly-PR stress. Through siRNA-mediated depletion, NEAT1 was found necessary for TDP-43 NCs formation. In addition, pharmacological inhibition of HSP70 suggested its role in maintaining condensate fluidity. Following prolonged exposure to poly-PR stress, NEAT1 continued to function as a scaffold for TDP-43 NC formation. However, HSP70 delocalized from these condensates, resulting in further reduced fluidity and subsequent gelation. By combining fluorescence lifetime-based imaging microscopy and immunofluorescence staining, the presence of TDP-43 oligomers were detected within gel-like NCs. In addition, prolonged poly-PR stress induced TDP-43 proteinopathy including TDP-43 phosphorylation, mislocalization and C-terminal TDP-43 fragments, along with the increased cytotoxicity. This study elucidates a potential toxicity mechanism of poly-PR dipeptide via perturbation of TDP-43 nuclear LLPS along with canonical TDP-43 proteinopathy, and shedding light on the roles of NEAT1 and HSP70 in the process. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-18T16:18:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-18T16:18:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement I
Abstract III Table of Content VII List of Figures XI List of Supplementary Figures XIII List of Tables XIV 1. Introduction 1 1.1 Amyotrophic Lateral Sclerosis 1 1.1.1 C9ORF72 genetic mutation in ALS 3 1.1.2 Toxic loss-of-function mechanism in C9ORF72 ALS 4 1.1.3 Toxic gain-of-function mechanism in C9ORF72 ALS 5 1.1.4 Dipeptide Repeats (DPRs) toxicity mechanism in ALS 5 1.1.5 Liquid-Liquid Phase Separation (LLPS) 6 1.1.6 Disruption of LLPS by arginine-rich dipeptides 8 1.2 TAR-DNA binding protein (TDP-43) is a pathological protein in ALS which also contains LCD 9 1.2.1 TDP-43 undergoes phase-separation 11 1.2.2 Role of NEAT1 in TDP-43 LLPS 12 1.2.3 HSP70 Chaperones TDP-43 LLPS 13 1.3 Motivation of this study: TDP-43 Nuclear Condensation in C9ORF72 ALS 14 2. Materials and Methods 15 2.1 Cell culture 15 2.2 Plasmid construction 15 2.3 Cell seeding and plasmid transfection.. 16 2.4 Establishment and validation of stable N2a cell line expressing eGFP-TDP-43.. 17 2.5 Synthesis of arginine-rich dipeptides 17 2.6 Dipeptide and inhibitor treatment 18 2.7 Antibodies 19 2.8 Immunocytochemistry and Confocal imaging 19 2.9 Proteosome activity assay 20 2.10 Immunofluorescence followed by RNA fluorescence in-site hybridization (IFRNA-FISH)… 20 2.11 Fluorescence recovery after photobleaching (FRAP) analysis 21 2.12 Time-Lapse imaging 21 2.13 RNA isolation and quantitiative real-time polymerase chain reaction (qPCR) 22 2.14 Time domain fluorescence life-time imaging 23 2.15 FLIM-FRET data analysis 23 2.16 Cell viability assay 24 2.17 Filter Trap assay 25 2.18 Western blot analysis 26 2.19 Image quantification and statistical analysis 26 3. Results 28 3.1 Transient poly-PR stress induce TDP-43 nuclear condensation 28 3.2 Transient poly-PR stress fails to induce FUS and GFP-NLS nuclear condensation …………………………………………………………………………………...31 3.3 Random peptide did not induce TDP-43 NCs 32 3.4 Nucleolar localized poly-PR indirectly induce TDP-43 nuclear condensation 33 3.5 Longer length dipeptides show similar TDP-43 NCs induction 35 3.6 Nucleolar occupied poly-PR dipeptide did not induce proteasomal stress 36 3.7 Transient Poly-PR induced TDP-43 NCs colocalize with NEAT1 RNA and HSP70 Chaperone 37 3.8 HSP40 and HSP90 did not colocalize with poly-PR induced TDP-43 NCs 39 3.9 NEAT1 promotes TDP-43 nuclear condensation and HSP70 recruitment to NCs upon transient poly-PR stress……………………………………… 42 3.10 HSP70 maintains fluidity of TDP-43 NCs under transient poly-PR stress 45 3.11 Delocalization of HSP70 from TDP-43 NCS upon prolonged poly-PR stress induce phase-transition of the condensates 47 3.12 NEAT1 participate in TDP-43 NCs formation even upon prolonged poly-PR stress but no longer involved in HSP70 recruitment 50 3.13 Localization of NEAT1 and HSP70 in TDP-43 NCs is consistent in neuronal cell-line under poly-PR stress duration 52 3.14 Prolonged poly-PR stress induced gel-like TDP-43 NCs are rich in TDP-43 oligomers 54 3.15 Prolonged poly-PR stress induces TDP-43 proteinopathy and cell death 57 4. Discussion 61 5. Summary 64 6. Supplementary Figures 66 7. Supplementary Tables 69 8. References 71 | - |
| dc.language.iso | en | - |
| dc.subject | TDP-43 | zh_TW |
| dc.subject | C9ORF72 | zh_TW |
| dc.subject | 肌萎縮性側索硬化症 | zh_TW |
| dc.subject | 熱休克蛋白70 | zh_TW |
| dc.subject | NEAT1 | zh_TW |
| dc.subject | NEAT1 | en |
| dc.subject | TDP-43 | en |
| dc.subject | HSP70 | en |
| dc.subject | C9ORF72 | en |
| dc.subject | ALS | en |
| dc.title | 研究C9ORF72漸凍人症中富含精胺酸雙胜肽所造成的細胞核TDP-43蛋白凝集現象 | zh_TW |
| dc.title | The study of TDP-43 nuclear condensation under C9ORF72 ALS-associated arginine-rich dipeptides | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 黃憲松 | zh_TW |
| dc.contributor.coadvisor | Hsien-Sung Huang | en |
| dc.contributor.oralexamcommittee | 陳俊安;郭紘志;譚婉玉 | zh_TW |
| dc.contributor.oralexamcommittee | Jun-An Chen;Hung-Chih Kuo;Woan-Yuh Tarn | en |
| dc.subject.keyword | C9ORF72,肌萎縮性側索硬化症,NEAT1,TDP-43,熱休克蛋白70, | zh_TW |
| dc.subject.keyword | C9ORF72,ALS,NEAT1,TDP-43,HSP70, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202500138 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-21 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 跨領域神經科學國際研究生博士學位學程 | - |
| dc.date.embargo-lift | 2025-02-19 | - |
| 顯示於系所單位: | 跨領域神經科學國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 3.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
