Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96439
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐濟泰zh_TW
dc.contributor.advisorJih-Tay Hsuen
dc.contributor.author王思涵zh_TW
dc.contributor.authorSzu-Han Wangen
dc.date.accessioned2025-02-13T16:28:31Z-
dc.date.available2025-02-14-
dc.date.copyright2025-02-13-
dc.date.issued2025-
dc.date.submitted2025-01-20-
dc.identifier.citation行政院農業委員會農業統計年報。2021。110年農業生產之牧草。https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx.
王紓愍、陳嘉昇、成游貴。1999。盤固草品系 Survenola 與 A254 青貯品質比較。畜產研究 32:305 - 312。
王紓愍、陳嘉昇、成游貴。2003。割期、季節及地區對狼尾草粗蛋白質、中洗纖維及酸洗纖維的影響。畜產研究35: 69 - 75。
李春芳、卜瑞雄、施意敏、陳茂墻。1991。盤固草 A254 (Digitaria decumbens, A254) 不同生長期之營養價值。畜產研究 24: 59 - 65。
李春芳、陳吉斌、蕭宗法。1999。盤固草與百慕達草對荷蘭種泌乳牛飼養價值比較。畜產研究 32: 353 - 364。
李春芳。2010。反芻動物(乳牛、肉牛)。畜牧要覽飼料與營養篇。
陳嘉昇、王紓愍。2005。盤固草試管真消化率的變動與預測。畜產研究38: 197 - 206。
陳嘉昇、王紓愍、顏素芬、成游貴。2000。盤固草品系水溶性碳水化合物與植體緩衝能力變異性之探討。畜產研究 33:252 - 262。
許晃雄、王嘉琪、陳正達、李明旭、詹士樑。2024。國家氣候變遷科學報告2024:現象、衝擊與調適。國家科學及技術委員會與環境部聯合出版。
黃英豪。2011。臺灣飼料成分手冊。行政院農業委員會畜產試驗所。臺南市。
楊价民。1997。瘤胃生態系統與反芻動物對養分的利用。藝軒圖書出版社。臺北市。
顏宏達,1992。動物營養學。華香園出版社,臺北市。
Allen, M. S. 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80: 1447 - 1462.
Allore H. G., P. A. Oltenacu, and H. N. Erb. 1997. Effects of season, hard size, and geographic region on the composition and quality of milk in the Northeast. J. Dairy Sci. 80: 3040 - 3049.
Ali A. I. M., S. E. Wassie, D. Korir , J. P. Goopy, L. Merbold, K. Butterbach-Bahl, U. Dickhoefer, and E. Schlecht. 2019. Digesta passage and nutrient digestibility in Boran steers at low feed intake levels. J. Anim. Physiol. Anim. Nutr. 103: 1325 - 1337.
AOAC (Association of Official Analytical Chemists International). 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists International, Arlington, VA. USA.
Aschalew, N. D., T. Wang, T, Q. Gui-xin, Z. Yu-guo, Z. Xue-feng, X. Chen, E. M. Atiba, and A. Seidu. 2020. Effects of physically effective fiber on rumen and milk parameters in dairy cows: A review. Indian J. Anim. Res. 54: 1317 - 1323.
Bainbridge M. L., L. M. Cersosimo, A. D. G. Wright, and J. Kraft. 2016. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters. FEMS Microbiol. Ecol. 92: 1 - 14.
Barbano, D. M., C. Melilli, and T. R. Overton. 2014. Advanced use of FTIR spectra of milk for feeding and health management. Pages 105 - 113 in Proc. Cornell Nutrition Conf., Syracuse, NY. Cornell University, Ithaca, NY.
Bauman, D. E. and A. L. Lock. 2006. Concepts in lipid digestion and metabolism in dairy cows. In: Proceedings of the 2006 Tri-State Dairy Nutrition Conference, Ohio USA. pp. 1-14.
Bauman, D. E., and J. M. Griinari. 2001. Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livest. Prod. Sci. 70: 15 - 29.
Beckman, J. L., and W. P. Weiss. 2005. Nutrient digestibility of diets with different fiber to starch ratios when fed to lactating dairy cows. J. Dairy Sci. 88: 1015 - 1023.
Belanche A., M. Doreau, J. E. Edwards, J. M. Moorby, E. Pinloche, and C. J. Newbold. 2012. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J. Nutr. 142: 1684 - 1692.
Berman A., Y. Folman, M. Kaim, M. Mamen, Z. Herz, D. Wolfenson, A. Arieli, and Y. Graber. 1985. Upper critical temperatures forced ventilation effects for high-yielding dairy cows in a subtropical climate. J. Dairy Sci. 68: 1488 - 1495.
Bremmer, D. R., L. D. Ruppert, J. H. Clark, and J. K. Drackley. 1998. Effects of chain length and unsaturation of fatty acid mixtures infused into the abomasum of lactating dairy cows. J. Dairy Sci. 81: 176 - 188.
Buxton D. R., and D. D. Redfearn. 1997. Plant limitations to fiber digestion and utilisation. J. Nutr. 127: 814S - 818S.
Cant J. P., F. Qiao, C. A. Toerien, G. E. Lobley, A. White A, and J. C. MacRae. 1999. Regulation of mammary metabolism. In ‘Proceedings of the VIIIth International Symposium on Protein Metabolism and Nutrition’. pp. 203 - 219.
Cao, Z., W. Huang, T. Wang, Y. Wang, W. Wen, M. Ma, and S. Li. 2010. Effects of parity, days in milk, milk production and milk compositions on milk urea nitrogen in Chinese Holstein. J. Anim. Vet. Adv. 9: 688 - 695.
Castillo-Gonzalez, A. R., M. E. Burrola-Barraza, J. Dominguez-Viveros, A. Chavez-Martinez. 2014. Rumen microorganisms and fermentation. Arch Med Vet. 46: 349 -361.
Chen, L., V. M. Thorup, A. B. Kudahl, and S. Østergaard. 2024. Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. J. Dairy Sci. 107: 3207 - 3218.
Chilliard Y., F. Glasser, A. Ferlay, L. Bernard, J. Rouel, and M. Doreau. 2007. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lip. Sci Tech. 109: 828 - 855.
Cleale, R. M., and L. S. Bull. 1986. Effect of forage maturity on ration digestibility and production by dairy cows. J. Dairy Sci. 69: 1587 - 1594.
Coppock, C. E. 1985. Energy nutrition and metabolism of the lactating dairy cow. J. Dairy Sci. 68: 3403 - 3500.
Cowley, F. C., D. G. Barber, A. V. Houlihan, and D. P. Poppi. 2015. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J. Dairy Sci. 98: 2356 - 2368.
Dewhurst, R. J., W. J. Fisher, J. K. S. Tweed, and R. J. Wilkins. 2003. Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. J. Dairy Sci. 86: 2598 - 2611.
Drackley, J. K., A. D. Beaulieu, and J. P. Elliott. 2001. Responses of milk fat composition to dietary fat or nonstructural carbohydrates in Holstein and Jersey cows. J. Dairy Sci. 84: 1231 - 1237.
Emery, R. S. 1978. Feeding for increased milk protein. J. Dairy Sci. 61: 825.
French, N., and J. J. Kennelly. 1990. Effects of feeding frequency on ruminal parameters, plasma insulin, milk yield, and milk composition in Holstein cows. J. Dairy Sci. 73: 1857 - 1863.
Garnsworthy, P. C., L. L. Masson, A. L. Lock, and T. T. Mottram. 2006. Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. J. Dairy Sci. 89: 1604 - 1612.
Giannone, C., M. Bovo, M. Ceccarelli, D. Torreggiani, and P. Tassinari. 2023. Review of the heat stress-induced responses in dairy cattle. Animals. 13: 3451.
Gibson, J. P. 1984. The effects of feeding frequency on milk production of dairy cattle: an analysis of published results. Anim. Prod. 38: 181 - 189.
Gross J. J. 2022. Limiting factors for milk production in dairy cows: perspectives from physiology and nutrition. J. Ani. Sci. 100: 1-11.
Grummer, R. R., D. G. Mashek, and A. Hayirli. 2004. Dry matter intake and energy balance in the transition period. Vet. Clin. North Am. Food Anim. Pract. 20: 447-470.
Hammami, H., J. Vandenplas, M. L. Vanrobays, B. Brekik, C. Bastin, and N. Gengler. 2015. Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. J. Dairy Sci. 98: 4956 - 4968.
Harvatine, K. J., and D. E. Bauman. 2011. Characterization of the acute lactational response to trans-10, cis-12 conjugated linoleic acid. J. Dairy Sci. 94: 6047 - 6056.
Henderson, G., F. Cox, S. Ganesh, A. Jonker, W. Young, and P. H. Janssen. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5: 14567.
Holter, J. B., and W. E. Urban, Jr. 1992. Water partitioning and intake prediction in dry and lactating Holstein cows. J. Dairy Sci. 75: 1472 - 1479.
Hsu F. H. 2006. Forage production and utilization in Taiwan. In: Symposium COA/INRA scientific cooperation in Agriculture; Nov 7-10, Tainan, Taiwan, R.O.C; 2006. p 249-52.
Indugu, N., B. Vecchiarelli, L. D. Baker, J. D. Ferguso, J. K. P. Vanamala, and D. W. Pitta. 2017. Comparison of rumen bacterial communities in dairy herds of different production. BMC Microbiol. 17: 190.
Islam, M., S. H. Kim, A. R. Son, S. C. Ramos, C. D. Jeong, Z. Yu, H. K. Kang, Y. I. Cho, S. S. Lee, K. K. Cho, and S. S. Lee. 2021. Seasonal influence on rumen microbiota, rumen fermentation, and enteric methane emissions of Holstein and Jersey steers under the same total mixed ration. Animals. 11: 1184.
Jami, E. B., A. White, and I. Mizrahi. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One. 9: e85423.
Jensen, R. G. 2002. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85: 295 - 350.
Jerred, M. J., D. J. Carroll, D. K. Combs, and R. R. Grummer. 1990. Effects of fat supplementation and immature alfalfa to concentrate ratio on nutrient utilization and lactation performance of dairy cattle. J. Dairy Sci. 73: 2842 - 2854.
Johnson, H. D., A. C. Ragsdale, I. L. Berry, and M. D. Shanklin. 1963. Temperature-humidity effects including influence of acclimation in feed and water consumption of Holstein cattle. Agricultural Experiment Station Research Bulletin, No. 846, University of Missouri, Columbia.
Kaylegian, K. E., G. E. Houghton, J. M. Lynch, J. R. Fleming, and D. M. Barbano. 2006. Calibration of infrared milk analyzers: Modified milk versus producer milk. J. Dairy Sci. 89: 2817 - 2832.
Karlsson, M. A., M. Langton, F. Innings, M. Wikström, and Å. S. Lundh. 2017. Short communication: Variation in the composition and properties of Swedish raw milk for ultra-high-temperature processing. J. Dairy Sci. 100: 2582 - 2590.
Koike, S., and Y. Kobayashi. 2009. Fibrolytic rumen bacteria: their ecology and functions. Asian-Australasian J. Anim. Sci. 22: 131 - 138.
Lindmark-Mansson, H., R. Fonden, and H. E. Pettersson. 2003. Composition of Swedish dairy milk. Int. Dairy J. 13: 409 - 425.
Liu, Z., V. Ezernieks, J. Wang, N. W. Arachchillage, J. B. Garner, W. J. Wales, B. G. Cocks, and S. Rochfort. 2017. Heat stress in dairy cattle alters lipid composition of milk. Scientific Reports. 7: 961.
Loften, J. R., J. G. Linn, J. K. Drackley, T. C. Jenkins, C. G. Soderholm, and A. F. Kertz. 2014. Invited review: Palmitic and steric acid metabolism in lactating dairy cows. J. Dairy Sci. 97: 4661 - 4674.
Martinsson, K. 1992. Effects of conservation method and access time on silage intake and milk production in dairy cows. Grass and Forage Sci. 47: 161 - 168.
McCann, J.C., T. A. Wickersham, and J. J. Loor. 2014. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights. 8: 109 - 25.
McGuire, M. A., D. K. Beede, M. A. DeLorenzo, C. J. Wilcox, G. B. Huntington, C. K. Reynolds, and R. J. Collier. 1989. Effects of thermal stress and level of feed intake on portal plasma flow and net fluxes of metabolites in lactating Holstein cows. J. Anim. Sci., 67: 1050 – 1060.
Morton, J. M., M. J. Auldist, M. L. Douglas, K. L. Macmillan. 2016. Associations between milk protein concentration at various stages of lactation and reproductive performance in dairy cows. J. Dairy Sci. 99: 10044 - 10056.
NRC (National Research Council). 2001. Nutrient Requirements of Dairy Cattle. 7th Edition. National Academy Press, Washington DC.
Ozcan, T., E. Yaslioglu. I. Kilic, and E. Simsek. 2015. The influence of the season and milking time on the properties and the fatty acid composition of the milk in different dairy cattle farms. Mljekarstvo. 65: 9 - 17.
Palmquist D. L., A. D. Beaulieu, and D. M. Barbano. 1993. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 76: 1753 - 1771.
Paster, B. J., and E. Canale-Parola. 1982. Physiological diversity of rumen spirochetes. Appl. Environ. Microbiol. 43: 686 - 693.
Pitta D. W., N. Indugu, B. Vecchiarelli, M. Hennessy, M. Baldin, and K. J. Harvatine. 2020. Effect of 2-hydroxy-4-(methylthio) butanoate (hmtba) supplementation on rumen bacterial populations in dairy cows when exposed to diets with risk for milk fat depression. J. Dairy Sci. 103: 2718 - 2730
Priyashantha, H., P. A. Lundh, A. Höjer, G. Bernes, D. Nilsson, M. K. Hetta, H. A. Saedén, H. Gustafsson, and M. Johansson. 2021. Composition and properties of bovine milk: A study from dairy farms in northern Sweden; Part II. Effect of monthly variation. J. Dairy Sci. 104: 8595 - 8609.
Quist, M. A., S. J. LeBlanc, K. J. Hand, D. Lazenby, F. Miglior, and D. F. Kelton. 2008. Milking-to-milking variability for milk yield, fat and protein percentage, and somatic cell count. J. Dairy Sci. 91: 3412 - 3423.
Ravagnolo, O., I. Misztal, and G. Hoogenboom. 2000. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci. 83: 2120 - 2125.
Russell, J. B. 2002. Rumen microbiology and its role in ruminant nutrition. Ithaca, NY: Cornell University.
Sarkar, S., A. Sharma, H. Tariq, D. Satapathy, R. P. Pal, L. Ohja, H. Sharma, and M. K. Ahirwar. 2022. Role of Rumen Bypass Nutrients in Dairy Animal’s Health and Productivity: A Review. Indian J. Anim. Res. DOI: 10.18805/IJAR.B-4787.
Sanjorjo, R. A., T. Tseten, M. K. Kang, M. Kwon, and S. W. Kim. 2023. In pursuit of understanding the rumen microbiome. Fermentation. 9: 114.
SAS. SAS User’s guide: Basics, 2002 edition. SAS institute Inc., Cary, NC.
Schwarz, D., M. R. Bak, and P. W. Hansen. 2018. The new FOSS fatty acid origin package - Basics behind the prediction models. FOSS White Paper.
Schwarz D. 2018. Fatty acid profiling according to origin for optimizing feeding and management of dairy cows – a new approach. FOSS White Paper. 9 - 10.
Schingoethe, D. J., and D. P. Casper. 1991. Total lactational response to added fat during early lactation. J. Dairy Sci. 74: 2617 - 2622.
Sharma, A. K., L. A. Rodriguez, G. Mekonnen, C. J. Wilcox, K. C. Bachman, and R. J. Collier. 1983. Climatological and genetic effects on milk composition and yield. J. Dairy Sci. 66: 119 - 126.
Sniffen, C. J., and P. H. Robinson. 1984. Nutritional strategy. Can. J. Anim. Sci. 64: 529 - 542.
Sova, A. D., S. J. LeBlanc, B. W. McBride, and T. J. DeVries. 2013. Associations between farm-level feeding management practices, feed sorting, and milk production in freestall dairy farms. J. Dairy Sci. 96: 4759 - 4770.
Stevenson, D. M., P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75: 165 - 174.
Sterk, A., H. Z. H. Taweel, A. M. van Vuuren, and J. Dijkstra. 2011. Effects of supplementation of crushed linseed in combination with varying forage type and forage to concentrate ratio on milk fatty acid profile in lactating dairy cows. J. Dairy Sci. 94: 6078 - 6091.
Stoop, W. M., H. Bovehuis, J. M. Heck, and J. A. van Arendonk. 2009. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 92: 1469 - 1478.
Stoffel, C. M., P. M. Crump, and L. E. Armentano. 2015. Effect of dietary FA supplements, varying in FA composition, on milk fat secretion in dairy cattle fed diets supplemented to less than 3% total FA. J. Dairy Sci. 98: 431 - 442.
Thomas, P. C. 1980. Influence of nutrition on the yield and content of protein in milk. Dietary protein and energy supply. Int. Dairy Fed. Bull. Doc. 125: 142.
Toral, P. G., L. Bernard, Y. Chilliard, and F. Glasser. 2013. Short communication: Diet-induced variations in milk fatty acid composition have minor effects on the estimated melting point of milk fat in cows, goatss, and ewes: Insights from a meta-analysis. J. Dairy Sci. 96: 1232 - 1236.
Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant (2nd ed.). Ithaca, NY: Cornell University Press.
Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583 - 3597.
Van Soest, P. J., D. R. Mertens, B. Dienum. 1978. Preharvest factors influencing quality of conserved forages. J. Anim. Sci. 47: 712 - 720.
Wang, L., Y. Li, Y. Zhang, and L. Wang. 2020. The effects of different concentrate-to-forage ratio diets on rumen bacterial microbiota and the structures of Holstein cows during the feeding cycle. Animals. 10: 957.
Wallace, R. J. 2008. Gut microbiology – broad genetic diversity, yet specific metabolic niches. Animal. 2: 661 - 668.
West, J. W. 2003. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86: 2131 - 2144.
White, S. L., J. A. Bertrand, M. R. Wade, S. P. Washburn, J. T. Green, and T. C. Jenkins. 2001. Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 84: 2295 - 2301.
Weiss, W. P., and W. L. Shockey. 1991. Value of orchardgrass and alfalfa silages fed with varying amounts of concentrates to dairy cows. J. Dairy Sci. 74: 1933 - 1943.
Woolpert, M. E., H. M. Dann, K. W. Cotanch, C. Melilli, L. E. Chase, R. J. Grant, and D. M. Barbano. 2016. Management, nutrition, and lactation performance are related to bulk tank milk de novo fatty acid concentration on north-eastern US dairy farms. J. Dairy Sci. 99: 8486 - 8497.
Xue, M., H. Sun, X. Wu, L. L. Guan, and J. Liu. 2018. Assessment of rumen microbiota from a large dairy cattle cohort reveals the pan and core bacteriomes contributing to varied phenotypes. Appl. Environ. Microbiol. 84: e00970-18.
Zhou, M., A. J. A. Aarnink, T. T. T. Huynh, I. D. E. van Dixhoorn, and P. W.G. Groot Koerkamp. 2022. Effects of increasing air temperature on physiological and productive responses of dairy cows at different relative humidity and air velocity levels. J. Dairy Sci. 105: 1701 - 1716.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96439-
dc.description.abstract本研究旨在探討芻料與季節變化對臺灣荷蘭種乳牛瘤胃微生物群、產乳性能和乳脂肪酸組成之影響。
國內總乳脂肪酸組成的季節性變化及其與飼糧間的關聯性資訊仍然不完整。本研究連續兩年每月收集國內90個乳牛場的總乳樣品,以了解乳成分的季節性變化。此外,自2022年8月至2023年7月,每月從三個乳牛場採集共計36個總乳樣品進行乳成分分析。冷季總乳之產乳量(公斤/天)、乳脂肪(%)、乳粗蛋白質(CP %)、乳真蛋白(%)、乳糖(%)及無脂固形物(SNF %)顯著高於熱季和與暖季(p < 0.05)。相反的,冷季的體細胞數顯著低於熱季與暖季(p < 0.05)。冷季總乳中飽和脂肪酸及肉豆酸(C14:0)濃度顯著高於熱季與暖季(p < 0.05)。而熱季與暖季總乳中油酸(C18:1)濃度顯著高於冷季(p < 0.05)。在不同季節期間,乳牛場A總乳中飽和脂肪酸、新合成型脂肪酸、混合型脂肪酸與棕櫚酸(C16:0)濃度最高(p < 0.05),推測可能與乳牛場A飼糧中脂肪含量較低以及使用乾草代替新鮮飼料或青貯飼料有關。乳牛場 C 總乳中預製型脂肪酸與油酸濃度最高(p < 0.05),則可能與其飼糧中脂肪含量較高有關。採用不同的芻料種類與比例調製相等能量和蛋白質的日糧,並透過兩個試驗評估上述兩個變因對乳牛瘤胃微生物群和產乳性能之影響。試驗一,30頭泌乳牛(產後235 ± 13天;產乳量29.1 ± 1.0公斤/天)分為盤固草組和百慕達草組;試驗二,20頭泌乳牛(產後79.9 ± 8.1天;產乳量34.7 ± 0.6公斤/天)分為盤固草組和燕麥草組。結果顯示,試驗一盤固草組瘤胃微生物Simpson指數顯著高於百慕達草組(p < 0.05)。Weighted UniFrac分析結果指出,兩個試驗中盤固草組、百慕達草組及燕麥草組之間的瘤胃微生物群Beta多樣性群落組成存在顯著差異(p < 0.001)。試驗二盤固草組短普氏菌(Prevotella brevis)相對豐度顯著高於燕麥草組(p < 0.05)。試驗一百慕達草組牛乳中的體細胞數(SCC)、硬脂酸(C18:0)和油酸(C18:1)顯著高於盤固草組(p < 0.05)。試驗二燕麥草組的牛群乳中SNF %顯著高於盤固草組(p < 0.05);然而,盤固草組牛群乳中尿素氮(MUN)顯著較高(p < 0.05)。
乳牛完全混合日糧中不同的芻料來源與比例會影響瘤胃微生物群和產乳性能。在高纖維含量之完全混合日糧前提下(試驗一),較低比例的芻料替換(盤固草與百慕達草)僅導致瘤胃微生物群多樣性(Beta多樣性或Simpson指數)及產乳性能(乳中SCC、C18:0 及C18:1 濃度)些微的改變。但較高比例的芻料替換時(試驗二盤固草與燕麥草)會導致瘤胃微生物群多樣性(Beta多樣性、微生物群相對豐度與Prevotella brevis)發生更多變化,並且產乳性能表現也受到影響(乳中CP、SNF及MUN)。
總而言之,國內乳牛場之總乳產乳量、乳成分與乳脂肪酸組成皆受到季節變化的影響而且有顯著的差異,而就個別乳牛場的資料可知,完全混合日糧配方中選用之芻料種類或脂肪含量則是造成乳牛群間乳脂肪酸組成差異的可能原因。另外,不同芻料與比例的完全混合日糧,會造成牛群瘤胃微生物群組成及乳成分之改變。本研究結果可提供國內不同季節總乳乳成分與脂肪酸變化基礎值,且為首篇比較國產與進口芻料為主之飼糧配方對瘤胃菌相與產乳性能之影響,期為未來相關研究提供參考依據。
zh_TW
dc.description.abstractThis study explores the effects of forage, seasonal variation, and their combined influence on rumen microbiota, milk production performance, and fatty acid (FA) composition of Holstein dairy cows in Taiwan.
Information about seasonal variation in the fatty acid (FA) composition of bulk tank milk and its relationship with dietary factors in Taiwan remains incomplete. Bulk tank milk samples were collected monthly from 90 dairy farms across Taiwan for two years to capture seasonal variations. Additionally, 36 bulk tank milk samples from three farms were collected monthly from August 2022 to July 2023. Milk production (kg/day), fat (%), crude protein (%), true protein (%), lactose (%), and solids-not-fat (%) were significantly higher in the cold season than in the hot and warm seasons (p < 0.05) over the studied period. In contrast, somatic cell counts were significantly lower in the cold season than in the hot and warm seasons (p < 0.05). Total saturated FA and C14:0 concentrations were significantly higher in the cold season than in the hot and warm seasons (p < 0.05). In contrast, the C18:1 concentration was significantly higher in the hot and warm seasons than in the cold season (p < 0.05). However, the C18:0 concentration did not differ significantly by season. Fat and FA concentrations varied significantly among three selected dairy farms (p < 0.05). Milk fat only differed significantly between the three farms in the hot season, with Farm B having the lowest milk fat concentration (p < 0.05). FA concentrations showed significant seasonal effects at all three farms. These results provide an overview of milk FA variation and identify the critical factors influencing variation in bulk tank milk fat and individual farm FA concentrations: dietary ether extract content and forage choice.
Different forage sources and proportions were used to formulate rations containing equal energy and protein, and their effects on dairy cows’ rumen microbiota and milk production performance were evaluated in two experiments. In experiment 1, thirty lactating cows (235 ± 13 d postpartum; milk production 29.1 ± 1.0 kg/day) were divided into Pangola and Bermuda groups. In experiment 2, twenty lactating cows (79.9 ± 8.1 d postpartum; milk production 34.7 ± 0.6 kg/day) were divided into Pangola and Oat groups. In experiment 1, the Simpson index for rumen microbiota of the Pangola group was significantly higher than the Bermuda group (p < 0.05). Analysis of the weighted UniFrac distances indicated significant differences in the beta diversity community composition of rumen microbiota between Pangola, Bermuda and Oat groups in both experiments (p < 0.001). The relative abundance of Prevotella brevis was significantly higher in the Pangola than Oat group in experiment 2 (p < 0.05). The somatic cell counts (SCCs), C18:0, and C18:1 in milk were significantly higher in the Bermuda group than Pangola group (p < 0.05) in experiment 1. On the other hand, milk crude protein (CP) and solids-not-fat (SNF) were significantly higher in the Oat group than Pangola group (p < 0.05) in experiment 2; however, milk urea nitrogen (MUN) was significantly higher in the Pangola group (p < 0.05).
A switch of forage (Pangola vs Bermuda) at lower proportion of diet under the high total dietary fiber level condition (experiment 1) only caused minor changes in rumen microbiota diversity (Simpson index, beta diversity) and milk production performance (milk SCCs, C18:0 and C18:1). On the other hand, a switch of forage (Pangola vs Oat) at higher proportion of diet under the low total dietary fiber level condition (experiment 2) resulted in more changes in rumen microbiota diversity (beta diversity, relative abundances of bacterial taxa, Prevotella brevis relative abundance) and milk production performance (milk CP, SNF, and MUN).
In conclusion, the bulk tank milk production, milk composition, and milk fatty acid composition are all affected by seasonal changes and have significant differences. The data of individual dairy farms shows that the source of forage used in the total mixed ration formula or EE content is a possible cause of differences in milk fatty acid composition between dairy herds. In addition, a total mixed ration with different forage and proportions will cause changes in cattle's rumen microbiota and milk composition. The results of this study provide fundamental values for changes in bulk tank milk composition and fatty acids in different seasons in Taiwan. This thesis is the first study to compare the effects of domestic and imported forage on rumen bacteria and milk production performance and provide a reference for future related research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:28:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-13T16:28:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書……………………………………………………………………Ι
誌謝……………………………………………………………………………………Π
中文摘要………………………………………………………………………………Ⅲ
英文摘要………………………………………………………………………………Ⅴ
第一章 文獻探討
第一節 乳脂肪之組成與合成來源…………………………………………1
第二節 以FT-MIR分析乳脂肪酸之技術與驗證………………………….4
第三節 營養與飼養管理對產乳量之影響…………………………………8
第四節 營養與飼養管理對乳成分與乳脂肪酸組成之影響………………9
第五節 臺灣氣候變化現況與熱緊迫對乳牛產乳量及乳品質之影響…...11
第六節 乳脂肪與脂肪酸及蛋白質的相關性……………………………...13
第七節 瘤胃微生物組成與乳成分之關聯性……………………………...15
第八節 瘤胃微生物發酵對產乳量、乳成分及乳脂肪酸之影響………...17
第九節 臺灣乳牛產業使用芻料現況與品質……………………………...17
第十節 研究目標…………………………………………………………...20
第二章 試驗研究(一)
第一節 前言………………………………………………………………..21
第二節 材料與方法
第一項 試驗設計與樣品收集……………………………………21
第二項 乳成分分析………………………………………………24
第三項 統計分析…………………………………………………25
第三節 結果
第一項 國內總乳之脂肪率與脂肪酸間的關聯性………………26
第二項 季節變化與產乳性能表現………………………………28
第三項 季節與飼糧變動對產乳性能表現之影響………………..31
第四節 討論
第一項 季節變化對90家乳牛場產乳量及乳成分之影響………34
第二項 季節與飼糧變動對三個乳牛場產乳量及乳成分之影響..36
第五節 結論…………………………………………………………………39
第三章 試驗研究(二)
第一節 前言…………………………………………………………………41
第二節 材料與方法
第一項 試驗動物與試驗設計……………………………………..42
第二項 瘤胃液樣品收集…………………………………………..45
第三項 生乳與芻料樣品分析……………………………………..46
第四項 統計分析…………………………………………………..47
第三節 結果
第一項 瘤胃菌相………………………………………………….47
第二項 產乳性能表現…………………………………………….53
第四節 討論
第一項 瘤胃微生物群多樣性和細菌類群的相對豐度………….56
第二項 產乳量、乳成分與乳脂肪酸組成……………………….58
第五節 結論………………………………………………………………...61
第四章 總結………………………………………………………………………….62
第五章 附錄………………………………………………………………………….63
第六章 參考文獻…………………………………………………………………….68
-
dc.language.isozh_TW-
dc.subject瘤胃微生物多樣性zh_TW
dc.subject乳成分zh_TW
dc.subject芻料zh_TW
dc.subject季節zh_TW
dc.subject乳牛zh_TW
dc.subjectmilk compositionen
dc.subjectbovineen
dc.subjectseasonen
dc.subjectforagesen
dc.subjectrumen microbiota diversityen
dc.title季節與芻料變動對乳牛瘤胃菌相與產乳性能之影響zh_TW
dc.titleThe effect of season and forage variation on rumen microbiota and milk production performance of dairy cowsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳靜宜;王翰聰;莊士德;陳淵國zh_TW
dc.contributor.oralexamcommitteeChing-Yi Chen;Han-Tsung Wang;Shih-Te Chuang;Yuan-Kuo Chenen
dc.subject.keyword乳牛,季節,芻料,瘤胃微生物多樣性,乳成分,zh_TW
dc.subject.keywordbovine,season,forages,rumen microbiota diversity,milk composition,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202500219-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-01-21-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2025-02-14-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved