Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96438Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陽毅平 | zh_TW |
| dc.contributor.advisor | Yee-Pien Yang | en |
| dc.contributor.author | 廖君明 | zh_TW |
| dc.contributor.author | Jyun-Ming Liao | en |
| dc.date.accessioned | 2025-02-13T16:28:16Z | - |
| dc.date.available | 2025-02-14 | - |
| dc.date.copyright | 2025-02-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-06 | - |
| dc.identifier.citation | [1] I. Rivas, P. Kumar, and A. Hagen-Zanker, "Exposure to air pollutants during commuting in London: Are there inequalities among different socio-economic groups?," Environment International, vol. 101, pp. 143–157, 2017
[2] 台北都會區進行通勤期間的空氣汙染物暴露調查, [Online]. Available: https://www.slideshare.net/epaslideshare/ss-99695099. [3] J. O. Anderson, J. G. Thundiyil, and A. Stolbach, "Clearing the air: a review of the effects of particulate matter air pollution on human health," Journal of Medical Toxicology, vol. 8, no. 2, pp. 166-175, 2012, doi: 10.1007/s13181-011-0203-1. [4] P. Thangavel, D. Park, and Y. C. Lee, "Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: an overview," International Journal of Environmental Research and Public Health, vol. 19, no. 12, p. 7511, 2022. [5] Y. S. Wang, L. C. Chang, and F. J. Chang, "Explore regional PM2.5 features and compositions causing health effects in Taiwan," Environmental Management, vol. 67, no. 1, pp. 176-191, 2021, doi: 10.1007/s00267-020-01391-5. [6] H. L. Karlsson, L. Nilsson, and L. Möller, "Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells," Chemical Research in Toxicology, vol. 18, pp. 19–23, 2005. [7] H. L. Karlsson, A. G. Ljungman, J. Lindbom, and L. Möller, "Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway," Toxicology Letters, vol. 165, pp. 203–211, 2006. [8] H. L. Karlsson, A. Holgersson, and L. Möller, "Mechanisms related to the genotoxicity of particles in the subway and from other sources," Chemical Research in Toxicology, vol. 21, pp. 726–731, 2008. [9] J. A. Bernstein, N. Alexis, C. Barnes, I. L. Bernstein, A. Nel, D. Peden, et al., "Health effects of air pollution," Journal of Allergy and Clinical Immunology, vol. 114, no. 5, pp. 1116-1123, 2004. [10] M. J. Chen, Y. Leon Guo, P. Lin, H. C. Chiang, P. C. Chen, and Y. C. Chen, "Air quality health index (AQHI) based on multiple air pollutants and mortality risks in Taiwan: Construction and validation," Environmental Research, vol. 231, no. Pt 2, p. 116214, 2023, doi: 10.1016/j.envres.2023.116214. [11] A. P. K. Tai, L. J. Mickley, and D. J. Jacob, "Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change," Atmospheric Environment, vol. 44, no. 32, p. 3976, 2010. [12] Hien, P. D., Bac, V. T., Thinh, N. T. H., Anh, H. L., and Thang, D. D., "A comparison study of chemical compositions and sources of PM1.0 and PM2.5 in Hanoi," Aerosol and Air Quality Research, vol. 21, no. 10, p. 210056, 2021. [13] Asimakopoulos, D. N., Flocas, H. A., Maggos, T., & Vasilakos, C., "The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5-10)," Science of the Total Environment, vol. 419, p. 124, 2012. [14] Martins, V., Moreno, T., Mendes, L., Eleftheriadis, K., Diapouli, E., Alves, C. A.,and Minguillón, M. C., "Factors controlling air quality in different European subway systems," Environmental Research, vol. 146, pp. 35–46, 2016. [15] H. A. Awad, "Environmental study in subway metro stations in Cairo, Egypt," Journal of Occupational Health, vol. 44, pp. 112–118, 2002. [16] C. Johansson and P. Å. Johansson, "Particulate matter in the underground of Stockholm," Atmospheric Environment, vol. 37, pp. 3–9, 2003. [17] K. Furuya, Y. Kudo, K. Okinagua, M. Yamuki, K. Takahashi, Y. Araki, and Y. Hisamatsu, "Seasonal variation and their characterization of suspended particulate matter in the air of subway stations," Journal of Trace Microprobe Technology, vol. 19, pp. 469–485, 2001. [18] X. Basagaña, M. Triguero-Mas, D. Agis, N. Pérez, C. Reche, A. Alastuey, and X. Querol, "Effect of public transport strikes on air pollution levels in Barcelona (Spain)," Science of The Total Environment, vol. 610, pp. 1076–1082, 2018. [19] P. Aarnio, T. Yli-Tuomi, A. Kousa, T. Mäkelä, A. Hirsikko, K. Hämeri, M. Päisänen, R. Hillamo, T. Koskentalo, and M. Jantunen, "The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system," Atmospheric Environment, vol. 39, pp. 5059–5066, 2005. [20] Y.-H. Cheng and J.-W. Yan, "Comparisons of particulate matter, CO, and CO2 levels in underground and ground-level stations in the Taipei mass rapid transit system," Atmospheric Environment, vol. 45, no. 28, pp. 4882–4891, 2011. [21] 陳穎逸, "地下捷運車站懸浮微粒特性研究," 博士論文, 國立陽明大學, 2017. [Online]. Available: https://hdl.handle.net/11296/j7rm89. [22] 伍宏能, "鐵道運輸系統地下場站室內空氣品質之PM10案例研究," 碩士論文, 國立臺北科技大學, 2016. [Online]. Available: https://hdl.handle.net/11296/scksus. [23] W. Ji, X. Li, and C. Wang, "Composition and exposure characteristics of PM2.5 on subway platforms and estimates of exposure reduction by protective masks," Environmental Research, vol. 197, p. 111042, 2021. [24] V. Martins, T. Moreno, L. Mendes, K. Eleftheriadis, E. Diapouli, C. A. Alves, M. Duarte, E. de Miguel, M. Capdevila, X. Querol, and M. C. Minguillón, "Factors controlling air quality in different European subway systems," Environmental Research, vol. 146, pp. 35–46, 2016. [25] T. Moreno, C. Reche, M. C. Minguillón, M. Capdevila, E. de Miguel, and X. Querol, "The effect of ventilation protocols on airborne particulate matter in subway systems," Science of The Total Environment, vols. 584–585, pp. 1317–1323, 2017. [26] M. J. Kim, R. D. Braatz, J. T. Kim, and C. K. Yoo, "Indoor air quality control for improving passenger health in subway platforms using an outdoor air quality dependent ventilation system," Building and Environment, vol. 92, pp. 407–417, 2015. [27] S. C. Lee, H. B. Liu, M. J. Kim, J. T. Kim, and C. K. Yoo, "Online monitoring and interpretation of periodic diurnal and seasonal variations of indoor air pollutants in a subway station using parallel factor analysis (PARAFAC)," Energy and Buildings, vol. 68, pp. 87–98, 2014. [28] B. Y. Kim, Y. K. Lim, and J. W. Cha, "Short-term prediction of particulate matter (PM10 and PM2.5) in Seoul, South Korea using tree-based machine learning algorithms," Atmospheric Pollution Research, vol. 13, no. 10, p. 101547, 2022, doi: 10.1016/j.apr.2022.101547. [29] S. Park, M. Kim, H. G. Namgung, K. T. Kim, K. H. Cho, and S. B. Kwon, "Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN)," Journal of Hazardous Materials, vol. 341, pp. 75–82, 2017. [30] A. Alimissis, K. Philippopoulos, C. G. Tzanis, and D. Deligiorgi, "Spatial estimation of urban air pollution with the use of artificial neural network models," Atmospheric Environment, vol. 191, pp. 205–213, 2018. [31] F. Mohammadi, H. Teiri, Y. Hajizadeh, A. Abdolahnejad, and A. Ebrahimi, "Prediction of atmospheric PM2.5 level by machine learning techniques in Isfahan, Iran," Scientific Reports, vol. 14, no. 1, p. 2109, 2024. [32] M. Cai, Y. Yin, and M. Xie, "Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach," Transportation Research Part D: Transport and Environment, vol. 14, no. 1, pp. 32–41, 2009. [33] Peng, J., Han, H., Yi, Y., Huang, H., and Xie, L., "Machine learning and deep learning modeling and simulation for predicting PM2.5 concentrations," Chemosphere, vol. 308, p. 136353, 2022. [34] S. Ausati and J. Amanollahi, "Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2.5," Atmospheric Environment, vol. 142, pp. 465–474, 2016. [35] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967, doi: 10.1109/TIT.1967.1053964. [36] T. K. Ho, "Random decision forests," in Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 1995, vol. 1, pp. 278–282, doi: 10.1109/ICDAR.1995.598994. [37] Neural Networks and Deep Learning, [Online]. Available:http://neuralnetworksanddeeplearning.com/index.html. [38] R. Hadsell, S. Chopra, and Y. LeCun, "Dimensionality reduction by learning an invariant mapping," in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), New York, NY, USA, 2006, pp. 1735–1742, doi: 10.1109/CVPR.2006.100. [39] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, "Efficient processing of deep neural networks: A tutorial and survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017. [40] J. T. Barron, "A general and adaptive robust loss function," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4331–4339. [41] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, "On empirical comparisons of optimizers for deep learning," ArXiv, vol. abs/1910.05446, 2019. [42] Understanding LSTM Networks, [Online]. Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/. [43] R. Pascanu, T. Mikolov, and Y. Bengio, "On the difficulty of training recurrent neural networks," in Proceedings of the International Conference on Machine Learning, 2013, pp. 1310–1318. [44] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [45] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," in NIPS 2014 Workshop on Deep Learning, Dec. 2014. [46] 臺北大眾捷運股份有限公司, [Online]. Available: https://web.metro.taipei/img/ALL/INFOPDF/039.pdf. [47] Python, [Online]. Available: https://www.python.org/. [48] scikit-learn, [Online]. Available: https://scikit-learn.org/. [49] PyTorch, [Online]. Available: https://pytorch.org. [50] S. Lundberg, "A unified approach to interpreting model predictions," ArXiv Preprint, vol. arXiv:1705.07874, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96438 | - |
| dc.description.abstract | 本研究探討了機器學習模型在預測台北捷運系統中的懸浮微粒(PM)濃度,特別是PM2.5和PM1.0的應用。這項研究的主要動機是由於人們對地鐵系統的依賴增加,並需要評估可能對通勤者造成重大影響的粉塵暴露危害。通過使用一個配備了PM和環境因素(如溫度、濕度和風速)傳感器的自製裝置,在捷運系統的不同位置(包括入口、售票口和月台)收集數據。
研究中使用並評估了四種機器學習模型——K-近鄰演算法(KNN)、隨機森林(RF)、深度神經網絡(DNN)和循環神經網絡(RNN),以均方根誤差(RMSE)作為衡量標準。在這些模型中,RNN模型表現最佳,具有最低的損失,四種模型預測PM2.5的RMSE為 RNN:0.51~1.53、DNN:1.14~3.38、RF: 1.54~4.12和 KNN:1.76~3.43,預測PM1.0的RMSE為 RNN:0.43~0.79、DNN:1.23~2.36、RF: 1.45~2.25和 KNN:1.53~2.83,證明了其在處理環境監測典型的時間序列數據時的有效性。 研究結果表明,RNN模型在地鐵環境中進行即時預測和監測PM濃度方面最為有效。展望未來,將該模型與自動控制系統相結合,可以實現地鐵站內空氣質量的主動管理。通過主動調節環境來維持安全的空氣質量標準,從而增強公共健康和安全。 | zh_TW |
| dc.description.abstract | This study investigates the application of machine learning models to predict particulate matter (PM) concentrations, specifically PM2.5 and PM1.0, in Taipei's Metro Rapid Transit (MRT) system. The primary motivation behind this research is the increased reliance on subway systems and the need to assess potential dust exposure hazards that significantly affect commuters. By utilizing a custom-made device equipped with sensors for PM and environmental factors such as temperature, humidity, and wind speed, data were collected at various station locations including entrances, ticket gates, and platforms.
Four machine learning models—K-Nearest Neighbors (KNN), Random Forest (RF), Deep Neural Networks (DNN), and Recurrent Neural Networks (RNN)—were employed and evaluated using Root Mean Square Error (RMSE) as the measurement criterion. Among these, the RNN model demonstrated superior performance with the lowest loss, proving its efficacy in handling the sequential nature of the time-series data typical of environmental monitoring. The study concludes that the RNN model is the most effective for real-time prediction and monitoring of PM levels in subway environments. Looking ahead, integrating this model with automated control systems could enable proactive management of air quality within subway stations. Such advancements hold the potential to enhance public health and safety by not only providing timely alerts to commuters when unsafe PM levels are detected but also by actively regulating the environment to maintain safe air quality standards. This research paves the way for future innovations in smart transportation systems, combining machine learning with environmental engineering to create safer, healthier public transit environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:28:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-13T16:28:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 目次 III 圖次 V 表次 VIII 符號表 IX 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 3 1.2.1粉塵對健康危害 3 1.2.2粉塵檢測中的因素 5 1.2.3捷運中懸浮微粒控制技術 9 1.3 本文貢獻 12 1.4 章節摘要 13 第二章 機器學習模型 14 2.1 K-近鄰演算法 14 2.1.1 K-近鄰演算法基本概念 14 2.1.2 K-近鄰演算法的基本流程 15 2.2 隨機森林演算法 16 2.2.1 隨機森林概念 16 2.2.2 隨機森林流程 17 2.3 深度神經網路 18 2.3.1深度神經網路概念 18 2.3.2 深度神經網路架構與原理 18 2.3.3 DNN前向傳播 22 2.3.4 DNN反向傳播 23 2.3.5損失函數 24 2.3.6 優化器 25 2.4 RNN的原理 29 2.4.1 RNN的定義 29 2.4.2 RNN的基本架構 29 2.4.3 RNN的數學模型 30 2.4.4 RNN的挑戰 30 2.5 LSTM的原理 31 2.5.1 LSTM概念 31 2.5.2 LSTM結構 31 2.5.3 LSTM數學模型 32 2.5.4 LSTM反向傳播 35 2.5.5 LSTM與RNN比較 36 2.6 本實驗的模型權重與偏置更新原理 37 第三章 實驗硬體與軟體 39 3.1實驗流程 39 3.2實驗硬體 41 3.3實驗軟體 42 3.4 資料來源與資料集 43 3.5 資料預處理 44 3.6資料正規化 45 3.7四種模型實驗流程圖 47 第四章 實驗結果 52 4.1捷運站內不同位置及高峰與離峰時段數據比較分析 52 4.2 各模型之RMSE表現差異比較 53 4.3 RNN模型中氣象因素與懸浮微粒相關性 57 4.3.1 3d plot 分析 58 4.3.2 SHAP 分析 68 4.4 不同數量的氣象因素對於RNN模型表現 75 4.5 使用RNN預測不同時段之結果 77 4.5.1 高峰與離峰時段的模型表現 77 4.5.2 跨站點預測的通用性探討 89 4.5.3 數據缺失時RNN模型表現 92 4.6結果討論 95 第五章 結果與討論 98 5.1結論 98 5.2未來展望 99 參考文獻 101 附錄 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 移動測量 | zh_TW |
| dc.subject | 神經網絡 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 懸浮微粒 | zh_TW |
| dc.subject | Mobile Measurement | en |
| dc.subject | Particulate Matter | en |
| dc.subject | Machine Learning | en |
| dc.subject | Neural Network | en |
| dc.title | 基於機器學習之臺北捷運粉塵檢測 | zh_TW |
| dc.title | Machine Learning-Based Dust Detection for Taipei Metro | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭重顯;陳家興;陸一平 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Hsien Kuo;Chia-Hsing Chen;Yih-Ping Luh | en |
| dc.subject.keyword | 懸浮微粒,機器學習,神經網絡,移動測量, | zh_TW |
| dc.subject.keyword | Particulate Matter,Machine Learning,Neural Network,Mobile Measurement, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202500423 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-1.pdf Restricted Access | 3.2 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
