Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96418
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陽毅平zh_TW
dc.contributor.advisorYee-Pien Yangen
dc.contributor.author許文嘉zh_TW
dc.contributor.authorWen-Chia Hsuen
dc.date.accessioned2025-02-13T16:22:57Z-
dc.date.available2025-02-14-
dc.date.copyright2025-02-13-
dc.date.issued2025-
dc.date.submitted2025-02-08-
dc.identifier.citation[1] L. N. Virgin, T. F. Walsh, and J. D. Knight, “Nonlinear Behavior of a Magnetic Bearing System,” Journal of Engineering for Gas Turbines and Power, vol. 117, pp. 582–588, July 1995.
[2] X. Wang, Y. Zhang, and P. Gao, “Design and analysis of second-order sliding mode controller for active magnetic bearing,” Energies, vol. 13, no. 22, 2020.
[3] J. Y. Hung, N. G. Albritton, and F. Xia, “Nonlinear control of a magnetic bearing system,” Mechatronics, vol. 13, no. 6, pp. 621–637, 2003.
[4] T. Du, H. Geng, and B. Wang, “Nonlinear oscillation of active magnetic bearing–rotor systems with a time-delayed proportional–derivative controller.,” Nonlinear Dyn 109, May 2022.
[5] P. Yu, L. Hou, K. Jiang, Z. Jiang, and X. Tao, “Dynamic modeling and nonlinear analysis for lateral–torsional coupling vibration in an unbalanced rotor system,” Applied Mathematical Modelling, vol. 126, pp. 439–456, 2024.
[6] B. Nayek, A. Das, and J. Dutt, “Model based estimation of inertial parameters of a rigid rotor having dynamic unbalance on active magnetic bearings in presence of noise,” Applied Mathematical Modelling, vol. 97, pp. 701–720, 2021.
[7] G. Adiletta, A. Guido, and C. Rossi, “Nonlinear dynamics of a rigid unbalanced rotor in journal bearings,” Nonlinear Dynamics, September 1997.
[8] H. Phadatare and P. Barun, “Nonlinear frequencies and unbalanced response analysis of high speed rotor-bearing systems,” Procedia Engineering, vol. 144, pp. 801–809, 2016. International Conference on Vibration Problems 2015.
[9] J. Chen, Z. Chen, D. Wang, L. Wu, X. Zheng, F. Birnkammer, and D. Gerling, “In-fluence of temperature on magnetic properties of silicon steel lamination,” AIP Ad-vances, vol. 7, p. 056113, March 2017.
[10] C. Wu and S. Lin, “Temperature effects on the magnetic properties of silicon-steel sheets using standardized toroidal frame,” The Scientific World Journal, 2014.
[11] S. Balevičius, N. Žurauskienė, V. Stankevič, T. Herrmannsdörfer, S. Zherlitsyn, Y. Skourski, F. Wolff-Fabris, and J. Wosnitza, “Cmr-b-scalar sensor application for high magnetic field measurement in nondestructive pulsed magnets,” IEEE Trans-actions on Magnetics, vol. 49, no. 11, pp. 5480–5484, 2013.
[12] M. Wu, H. Zhu, H. Zhang, and W. Zhang, “Modeling and multilevel design op-timization of an ac–dc three-degree-of-freedom hybrid magnetic bearing,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 233–242, 2023.
[13] Z. Xia, G. Hu, R. Huang, X. Liu, A. Peyton, W. Yin, and W. Yang, “Bearing ball property estimation using multi-frequency eddy-current testing,” in 2023 IEEE Inter-national Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6, 2023.
[14] K. N. V. Prasad and G. Narayanan, “Electromagnetic bearings with power electronic control for high-speed rotating machines: Review, analysis, and design example,” IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 4946–4957, 2021.
[15] G. Li, Z. Lin, P. E. Allaire, and J. Luo, “Modeling of a High Speed Rotor Test Rig With Active Magnetic Bearings,” Journal of Vibration and Acoustics, vol. 128, pp. 269–281, December 2005.
[16] I. Ananth and M. Chidambaram, “Closed-loop identification of transfer function model for unstable systems,” Journal of the Franklin Institute, vol. 336, no. 7, pp. 1055–1061, 1999.
[17] C. Rao and M. Chidambaram, “Experimental application of subspace model identi-fication of an unstable system,” Int J Adv Eng Sci Appl Math, pp. 70–76, 2015.
[18] U. Forssell and L. Ljung, “Identification of unstable systems using output error and box-jenkins model structures,” IEEE Transactions on Automatic Control, vol. 45, no. 1, pp. 137–141, 2000.
[19] Y. Fujimoto and T. Sugie, “Joint input–output identification of unstable systems with kernel regularization,” Control Theory Technol., pp. 195–202, 2024.
[20] P. V. den Hof, “Closed-loop issues in system identification,” Annual Reviews in Con-trol, vol. 22, pp. 173–186, 1998.
[21] M. Kocur, S. Kozak, and B. Dvorscak, “Design and implementation of fpga - digi-tal based pid controller,” in Proceedings of the 2014 15th International Carpathian Control Conference (ICCC), pp. 233–236, 2014.
[22] T. Uzunović, E. Z̆ unic, A. Badnjević, I. Mioković, and S. Konjicija, “Implementation of digital pid controller,” in The 33rd International Convention MIPRO, pp. 1357–1361, 2010.
[23] H. Hanselmann, “Implementation of digital controllers—a survey,” Automatica, vol. 23, no. 1, pp. 7–32, 1987.
[24] S. Ben Othman, A. Braham, and S. Ben Saoud, “Hardware design and implementa-tion of digital controller for parallel active filters,” in International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006., pp. 331–334, 2006.
[25] C. E. Shannon, “A mathematical theory of communication,” The Bell System Tech-nical Journal, vol. 27, no. 3, pp. 379–423, 1948.
[26] A. Wyner, “Recent results in the shannon theory,” IEEE Transactions on Information Theory, vol. 20, no. 1, pp. 2–10, 1974.
[27] M. A. Siddiqui, M. Anwar, S. Laskar, and M. Mahboob, “A unified approach to design controller in cascade control structure for unstable, integrating, and stable processes,” ISA Transactions, vol. 114, pp. 331–346, 2021.
[28] A. Patra, U. Keuchel, U. Kiffmeier, and H. Unbehauen, “Identification for robust control of an unstable plant,” IFAC Proceedings Volumes, vol. 27, no. 8, pp. 1513–1518, 1994.
[29] N. M. Thibeault and R. S. Smith, “Magnetic Bearing Measurement Configurations and Associated Robustness and Performance Limitations,” Journal of Dynamic Sys-tems, Measurement, and Control, vol. 124, pp. 589–598, December 2002.
[30] X. K. Zhang, “New method on design of robust controller for unstable process,” in 2005 International Conference on Machine Learning and Cybernetics, vol. 1, pp. 643–648, 2005.
[31] V. Feliu-Batlle and F. J. Castillo-García, “On the robust control of stable minimum phase plants with large uncertainty in a time constant: A fractional-order control approach,” Automatica, vol. 50, no. 1, pp. 218–224, 2014.
[32] V. Oliveira, E. Tognetti, and D. Siqueira, “Robust controllers enhanced with design and implementation processes,” IEEE Transactions on Education, vol. 49, no. 3, pp. 370–382, 2006.
[33] Edwards, “Edwards stp200/ stp300/ stp400 [online].” Available:https://ptbsales.com/edwards-stp200-stp300-stp400-service.html.
[34] N. A.-S. I. C. Ltd., “Turbomolecular pump seven-stage impeller [online].” Available: https://en.island-tech.cn/product/225/.
[35] Indiamart, “Radial magnetic bearing [online].” Available: https://www.indiamart.com/proddetail/magnetic-bearing-24344237312. html.
[36] Waukasha, “Radial magnetic bearing [online].” Available: https://www.waukbearing.com/en/products/magnetic-bearings/amb-hardware.html.
[37] GMN, “Touchdown bearing [online].” Available: https://www.gmn.de/en/ball-bearings/special-bearings/safety-bearings/.
[38] S. LYNC, “Construction of single-phase induction motor [online].” Available: https://sklc-tinymce-2021.s3.amazonaws.com/comp/2022/09/2%20(5) _1662559684.png.
[39] Prosol, “Development of magnetic levitation system [online].” Available: https://www.prosol.com.tw/.
[40] Micro-Episilon, “Eddy-current sensor [online].” Available:https://www.micro-epsilon.co.uk/distance-sensors/inductive-sensors-eddy-current/.
[41] ISO 1940-1:2003(E), Mechanical vibration —Balance quality requirements for ro-tors in a constant (rigid) state. ISO 2003, 2003.
[42] A. Conn, N. Gould, and P. Toint, “A globally convergent lagrangian barrier algo-rithm for optimization with general inequality constraints and simple bounds,” Math. Comput., vol. 66, pp. 261–288, January 1997.
[43] N. S. Nise, Control Systems Engineering 7th Ed. Wiley, February 2015.
[44] P. J. Huber, “Robust Estimation of a Location Parameter,” The Annals of Mathemat-ical Statistics, vol. 35, no. 1, pp. 73 – 101, 1964.
[45] M. Mckay, R. Beckman, and W. Conover, “A comparison of three methods for se-lecting vales of input variables in the analysis of output from a computer code,” Technometrics, vol. 21, pp. 239–245, May 1979.
[46] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Conference on Learning Representations, December 2014.
[47] Y. C. Tsai, “Online tunning adaptive control of active magnetic bearings,” Master’s thesis, National Taiwan University, January 2025.
[48] C. J. Lu, “Course of advanced dynamics.” National Taiwan University, September 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96418-
dc.description.abstract本論文旨在建構主動式磁浮軸承(AMB)運行過程中動態不平衡之時變模型,並以可適應多種需求的強健數位控制器取代類比控制器。同時,實驗整合了AMB 系統與電腦連接的數位信號處理器(DSP),可進行即時監測,以確保最佳響應與安全性。
為了使轉子在高速運轉時保持穩定,建立一個含帶質量偏心的模型至關重要。由於渦輪分子幫浦的運行環境極為嚴苛,持續監測以降低成本維護對於預防嚴重故障至關重要。從類比控制轉換為數控制帶來許多優勢,例如提升適用性、降低成本以及實現多功能人機介面操作。然而,數位控制器的實現也面臨挑戰,尤其需要精準的系統建模,以減少計算延遲對系統穩定性的影響。
本論文著重於系統識別與強健控制,以開發適用於磁浮軸承的高效數位控制系統。首先,透過前級控制器對本質上不穩定的系統進行初步穩定控制,以此為基礎進行閉迴路系統識別,從以建立準確反映 AMB 動態特性的模型。此識別模型隨後整合至控制架構,以加深對受控系統的理解。
在建立精確模型的基礎上,設計進階強健控制器,以應對系統的高度非線性、時變特性與時間延遲的影響,並確保在各種運行條件下滿足穩定性需求。改進後的數位控制器將在估算模型的模擬環境中進行驗證,為未來實際應用提供高效能與高可靠度的保證。本研究展現了數位控制相較於類比控制的顯著優勢,特別是在提升生產效能、降低成本與增強適用性方面。
zh_TW
dc.description.abstractThis thesis aims to construct a time-variant model for dynamic unbalance in active magnetic bearings (AMBs) during operation, replacing the analog controller with a robust digital controller adaptable to diverse requirements. Integrated with a digital signal processor (DSP) connected to a computer, the AMB system can be monitored in real time to ensure optimal performance and safety.

To stabilize the rotor during high-speed operation, a feasible model focusing on eccentricity is essential. Given the pump a severe operating circumstance, continuous monitoring and straightforward maintenance are crucial to prevent fatal failures. Transitioning from analog to digital control introduces benefits such as enhanced applicability, reduced costs, and human-computer interface access. However, implementing a digital controller also presents challenges, particularly the need for precise system modeling to mitigate calculation delays that could affect stability.

This thesis emphasizes system identification and robust control for developing an effective digital control system for magnetic bearings. Initial stabilization of the inherently unstable system is achieved using a primary controller, after which system identification can proceed to construct an accurate model that reflects the dynamic characteristics of AMBs. This identified model is then integrated into the control framework to enhance the understanding of the plant.

With a refined model established, a robust controller is designed to manage the highly nonlinear and time-varying dynamics of the system and effects of time delay, meeting specified stability requirements across various conditions. The improved digital controller is implemented in the simulation of the estimation model, ensuring high performance and reliability in practical implementation in the future. This approach showcases the substantial advantages of digital control over analog, particularly in improving production, cost, and applicability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:22:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-13T16:22:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
ListofTables xvii
Denotation xix
Chapter1 Introduction 1
1.1 Background and Problem Formulation . . . . . . . . . . . . . . . . . 1
1.2 Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Active Magnetic Bearing Model Derivation . . . . . . . . . . . . . 3
1.2.2 Unstable System Identification . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Control Algorithm via Digital Controller . . . . . . . . . . . . . . . 12
1.2.4 Review Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Thesis Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Chapter2 TMP Architecture and AMB Control System 23
2.1 Turbomolecular Pump Architecture . . . . . . . . . . . . . . . . . . 23
2.1.1 Mechanical Hardware Composition . . . . . . . . . . . . . . . . . 24
2.1.2 Electrical Hardware Composition . . . . . . . . . . . . . . . . . . . 27
2.1.3 Software Composition . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Active Magnetic Bearings Control System. . . . . . . . . . . . . . . 32
2.2.1 Sensing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Control Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Digital Control Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Flowchart of Digital Control Circuit . . . . . . . . . . . . . . . . . 37
2.3.2 Digital Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 Functions and Applications of Digital Signal Processor . . . . . . . 40
Chapter3 Magnetic Bearings Model Derivation 51
3.1 Electrical Model of Levitation System . . . . . . . . . . . . . . . . . 51
3.2 Mechanical Model of Levitation System . . . . . . . . . . . . . . . . 55
3.2.1 Tait-Bryan Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2 Translational Velocity Derivation of Rotor . . . . . . . . . . . . . . 60
3.2.3 Angular Velocity Derivation of Rotor. . . . . . . . . . . . . . . . . 61
3.2.4 Euler-Lagrange Equations of Rotor . . . . . . . . . . . . . . . . . . 63
3.3 Model Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Linearization of Electrical Model . . . . . . . . . . . . . . . . . . . 69
3.3.2 Linearization of Kinetic Model . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Taylor Expansion at Operating Point . . . . . . . . . . . . . . . . . 77
3.3.4 State Vector With Practical Measurement . . . . . . . . . . . . . . 84
3.4 Overall Linear System Integration . . . . . . . . . . . . . . . . . . . 89
3.5 Levitation System Analytic. . . . . . . . . . . . . . . . . . . . . . . 93
Chapter4 Robust Controller and System Identification 101
4.1 Primary Controller For System Identification . . . . . . . . . . . . . 103
4.1.1 Design Specification of Primary Controller . . . . . . . . . . . . . 104
4.1.2 Primary Controller Design Logic . . . . . . . . . . . . . . . . . . . 105
4.1.3 Implementation of Primary Controller . . . . . . . . . . . . . . . . 114
4.2 System Identification Using Parameter Estimation . . . . . . . . . . 118
4.2.1 Data Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.2 Parameters Estimation Algorithm . . . . . . . . . . . . . . . . . . . 120
4.2.3 Configurations of Estimation Process . . . . . . . . . . . . . . . . . 126
4.2.4 Comparison of Sampled Responseand Estimated Model . . . . . . 128
4.3 Improved Robust Controller Design . . . . . . . . . . . . . . . . . . 130
4.3.1 Improved Robust Controller Algorithm. . . . . . . . . . . . . . . . 131
4.3.2 Simulation of Improved Robust Controller . . . . . . . . . . . . . . 136
Chapter5 Conclusion and Future Development 143
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2 Future Development . . . . . . . . . . . . . . . . . . . . . . . . . . 144
References 147
Appendix A—Model derivation 153
A.1 Rotation About An Axis . . . . . . . . . . . . . . . . . . . . . . . . 153
A.2 Angular Velocity Tensor . . . . . . . . . . . . . . . . . . . . . . . . 156
A.3 Lagrange Equations with Generalized Coordinates . . . . . . . . . . 158
A.4 Standardization of Dynamic Unbalance . . . . . . . . . . . . . . . . 168
-
dc.language.isoen-
dc.subject磁浮軸承zh_TW
dc.subject強健數位控制器zh_TW
dc.subject高轉速動態不平衡zh_TW
dc.subject系統不確定性zh_TW
dc.subject閉路不穩定系統鑑別zh_TW
dc.subjectdigital robust controlleren
dc.subjectsystem uncertaintiesen
dc.subjectmagnetic bearingsen
dc.subjecthigh-speed dynamic unbalanceen
dc.subjectunstable system identificationen
dc.title強健控制器設計於動態不平衡之渦輪分子真空泵浦zh_TW
dc.titleRobust Controller Design for Dynamic Unbalance in a Turbomolecular Pumpen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李宇修;陳世樂zh_TW
dc.contributor.oralexamcommitteeShyh-Leh Chen;Yu-Hsiu Leeen
dc.subject.keyword磁浮軸承,高轉速動態不平衡,閉路不穩定系統鑑別,強健數位控制器,系統不確定性,zh_TW
dc.subject.keywordmagnetic bearings,high-speed dynamic unbalance,unstable system identification,digital robust controller,system uncertainties,en
dc.relation.page170-
dc.identifier.doi10.6342/NTU202500448-
dc.rights.note未授權-
dc.date.accepted2025-02-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
24.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved