請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96415完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 靳宗洛 | zh_TW |
| dc.contributor.advisor | Tsung-Luo Jinn | en |
| dc.contributor.author | 魏品萱 | zh_TW |
| dc.contributor.author | Pin-Xuan Wei | en |
| dc.date.accessioned | 2025-02-13T16:22:08Z | - |
| dc.date.available | 2025-02-14 | - |
| dc.date.copyright | 2025-02-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-10 | - |
| dc.identifier.citation | Anders, S., McCarthy, D.J., Chen, Y., Okoniewski, M., Smyth, G.K., Huber, W., and Robinson, M.D. (2013). Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocol 8, 1765-1786.
Andrási, N., Pettkó-Szandtner, A., and Szabados, L. (2020). Diversity of plant heat shock factors: regulation, interactions, and functions. Journal of Experimental Botany 72, 1558-1575. Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., and Nover, L. (2004). Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences 29, 471–487. Baniwal, S. K., Chan KY, Scharf KD, Nover L. (2007). Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. Journal of Biological Chemistry 282, 3605-13. Bita, C. E., and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4, 273. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143, 251-262. Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. (2010). Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology 61, 651–679. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., and Scheible, W.R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139, 5-17. Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis Book 11, e0166. Finkelstein R., Gampala S., and Rock C. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell 14 Suppl(Suppl):S15-45. Fragkostefanakis, S., Röth, S., Schleiff, E., and Scharf, K. D. (2015). Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant, Cell and Environment 38, 1881–1895. Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K., Lamke, J., Gorka, M., Kappel, C., Sokolowska, E., Skirycz, A., Graf, A., and Baurle, I. (2021). Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications 12, 3426. Fujita, Y., Yoshida, T., and Yamaguchi-Shinozaki, K. (2013). Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 147, 15–27. Guo, M., Liu, J.-H., Ma, X., Luo, D.-X., Gong, Z.-H., and Lu, M.-H. (2016). The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science 7, 114. Gupta, S. C., Sharma, A., Mishra, M., Mishra, R. K., and Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: How close and how far? Life Sciences 86, 377–384. Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., and Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14, 9643-9684. Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, and Laing WA. (2005). Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13. Huang, Y.C., Niu, C.Y., Yang, C.R., and Jinn, T.L. (2016). The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology 172, 1182-1199. Hwang, S.M., Kim, D.W., Woo, M.S., Jeong, H.S., Son, Y.S., Akhter, S., Choi, G.J., and Bahk, J.D. (2014). Functional characterization of A rabidopsis HsfA6a as a heat‐shock transcription factor under high salinity and dehydration conditions. Plant, Cell and Environment 37, 1202-1222. Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12, 357-360. Kotak, S., Vierling, E., Bäumlein, H., and Koskull-Döring, P.v. (2007). A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. The Plant Cell 19, 182-195. Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, and Schöffl F. (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Molecular Plant 2:152-65. Lesk, C., Rowhani, P., and Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature 529, 84–87. Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930. Lin, K.F., Tsai, M.Y., Lu, C.A., Wu, S.J., and Yeh, C.H. (2018). The roles of Arabidopsis HSFA2, HSFA4a, and HSFA7a in the heat shock response and cytosolic protein response. Botanical Studies 59, 15. Liu, H.C., Liao, H.T., and Charng, Y.Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell and Environment 34, 738-751. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550. Mittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences 37, 118-125. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498. Nishizawa-Yokoi, A., Nosaka, R., Hayashi, H., Tainaka, H., Maruta, T., Tamoi, M., and Shigeoka, S. (2011). HsfA1d and HsfA1e involved in the transcriptional activation of HsfA2 during the heat stress response in Arabidopsis. Plant and Cell Physiology, 52, 933–945. Nover, L., Bharti, K., Döring, P., Mishra, S.K., Ganguli, A., and Scharf, K.-D. (2001). Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell stress and chaperones 6, 177. Ohama, N., Sato, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends Plant Science 22, 53-65. Pérez-Salamó, I., Papdi, C., Rigó, G., Zsigmond, L., Vilela, B., Lumbreras, V., ... and Szabados, L. (2014). The Arabidopsis heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiology 165, 1293–1307. Qu, A. L., Ding, Y. F., Jiang, Q., and Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications 432, 203–207. Roy, S. J., Negrao, S., and Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology 26, 115–124. Schöffl, F., Prandl, R., and Reindl, A. (1998). Regulation of the heat-shock response. Plant Physiology 117(4), 1135–1141. Scharf, K. D., Berberich, T., Ebersberger, I., and Nover, L. (2012). The plant heat stress transcription factor (Hsf) family: Structure, function, and evolution. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1819, 104–119. Schramm, F., Ganguli, A., Kiehlmann, E., Englich, G., Walch, D., and von Koskull-Doring, P. (2006). The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Molecular Biology 60, 759-772. Sun, W., Van Montagu, M., and Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1577, 1–9. Ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH. (2019) Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences 20:5321. Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2010) Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport. Plant and Cell Physiology 51, 1821–1839 Usman, M. G., Rafii, M. Y., Ismail, M. R., Malek, M. A., and Latif, M. A. (2014). Heat shock proteins: Functions and response against heat stress in plants. International Journal of Scientific and Technology Research 2, 38–47. Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology 42, 579-620. von Koskull-Döring, P., Scharf, K.D., and Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends in Plant Science 12, 452-457. Wani, S. H., Kumar, V., Shriram, V., and Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal 4, 162–176. Wang, W., Vinocur, B., and Altman, A. (2004). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218, 1–14. Wahid, A., Gelani, S., Ashraf, M., and Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany 61, 199–223. Wang, Z.P., Xing, H.L., Dong, L., Zhang, H.Y., Han, C.Y., Wang, X.C., and Chen, Q.J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16, 144. Wu Z, Li T, Ding L, Wang C, Teng R, Xu S, Cao X and Teng N. (2024) Lily LlHSFC2 coordinates with HSFAs to balance heat stress response and improve thermotolerance. New Phytologist 241, 2124-2142. Yoshida, T., Mogami, J., and Yamaguchi-Shinozaki, K. (2014). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology 21, 133-139. Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., Maruyama, K., Kim, JM., Seki, M., Todaka, D., Osakabe, Y., Sakuma, Y., Schöffl, F., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics 286, 321-332. Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., Kidokoro, S., Fujita, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2008). Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochemical and Biophysical Research Communications 368, 515-521. Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284-287. Zang, D., Wang, J., Zhang, X., Liu, Z., and Wang, Y. (2019). Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression. Journal of Experimental Botany 70, 5355-5374. Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247-273. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96415 | - |
| dc.description.abstract | 氣候變化導致自然災害頻發,如高溫、洪水、土壤鹽鹼化和長期乾旱,給全球各地帶來了巨大挑戰。非生物逆境,包括乾旱、高鹽、極端溫度及水淹等因素,已成為全球農業生產的主要問題,影響植物生長和作物產量,並對糧食安全構成威脅。植物在非生物逆境的應對過程中,需要啟動調控機制來維持細胞穩定性。熱休克轉錄因子 (HSFs),在植物對多種非生物逆境反應中扮演重要角色。除了在高溫逆境中表現突出外,HSFs也廣泛參與植物應對乾旱、鹽鹼及低溫等多重逆境條件的反應,負責啟動下游逆境防禦基因的表達,促進植物的適應能力。為了更加了解HSFA7a/b在非生物逆境下扮演的角色,我們利用CRISPR-Cas9技術建立HSFA7a 與 HSFA7b的雙突變株。結果表明,HSFA7a 和 HSFA7b 在不同的非生物逆境條件下均被顯著誘導表達,顯示出它們可能參與植物多種非生物逆境反應。透過耐熱性、離層酸處理後的發芽狀況以及鹽處理後子葉綠化狀況試驗,證實 HSFA7a 負向調控逆境反應,而HSFA7b 扮演正向調控的角色。值得注意的是,兩者的單突變體呈現出相反的表現型,反映了這兩者在逆境反應中的功能差異。為了進一步解析HSFA7a/b的功能,我們透過雙分子螢光互補實驗以及冷光素酶互補成像分析確認了HSFA7a/b與 HSFA2 之間的蛋白質-蛋白質相互作用,並透過雙螢光素酶報導基因分析證實了它們在APX2基因表達調控中的協同作用。這些結果顯示,HSFA7a/b與HSFA2共同形成一個協同調控網路,幫助植物在非生物逆境中保持穩定,增強其適應能力。最後,RNA-seq分析中差異表達基因 (DEGs) 的重疊顯示,HSFA7a/b可能與植物清除活性氧反應有著密切相關。總結來說,我們的研究探討HSFA7a/b在植物應對多種非生物逆境中的調控機制,並識別出潛在的下游基因。 | zh_TW |
| dc.description.abstract | Climate change has resulted in more natural disasters, including higher temperatures, floods, soil salinization, and droughts, creating significant challenges for global communities. Abiotic stresses such as drought, high salinity, and extreme temperatures have a severe impact on agriculture and food security. Heat shock transcription factors (HSFs) are crucial in helping plants respond to these stresses by regulating defense gene expression. In our study, we used CRISPR-Cas9 to create double mutants of the HSFA7a and HSFA7b genes to explore their roles in abiotic stress responses. Our findings revealed that both genes are activated by heat, abscisic acid (ABA), salt stress, and cold stress. Specifically, HSFA7a negatively regulates responses to abiotic stress, while HSFA7b acts as a positive regulator. Protein interactions between HSFA7a/b and HSFA2 were confirmed using BiFC and LCI assays, and dual-luciferase reporter assays showed their involvement in regulating the APX2 gene. Additionally, RNA-seq analysis indicated their role in reactive oxygen species (ROS) scavenging. Overall, our research emphasizes the roles of HSFA7a/b in plant responses to abiotic stresses and identifies potential downstream genes involved. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:22:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-13T16:22:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii ABBREVIATIONS ix INTRODUCTION 1 Heat Stress/Shock (HS) 1 Heat shock factors (HSFs) 2 Heat shock proteins (HSPs) 5 Heat shock-related genes 5 Salt stress 6 Abscisic acid (ABA) response 7 OBJECTIVES 9 MATERIALS AND METHODS 10 Plant Materials and Growth Conditions 10 Generation of the HSFA7a/b-Overexpression (OE) and HSFA7b-Complementation (COM) Transgenic Plants 11 RNA Preparation, cDNA Synthesis and Real-Time Quantitative PCR 11 Protein Extraction 13 HSFA7a and HSFA7b Promoter::galactosidase (GUS) Expression in Transgenic Arabidopsis Plants 13 Thermotolerance Tests 14 Seed Germination, Post-germination Seedling Growth Assay 15 Dual-Luciferase Reporter (DLR) Assay 15 Bimolecular Fluorescence Complementation (BiFC) Assay and Firefly Luciferase Complementation Imaging (LCI) Assay 16 Western Blot Analysis 17 RNA-seq Analysis 18 Statistical Analysis 19 Primer and Accession Number 20 RESULTS 21 HSFA7a and HSFA7b were expressed in various tissues in Arabidopsis 21 HSFA7a and HSFA7b were induced by multiple abiotic stresses 21 HSFA7a and HSFA7b interacted with HSFA2 23 HSFA7a and HSFA7b existed self-interaction and heterologous interaction 24 Characterization of HSFA7a and HSFA7b T-DNA insertion mutant 24 Generation of HSFA7a and HSFA7b double mutant by CRISPR/Cas9 25 Generation of HSFA7a and HSFA7b over-expression transgenic plants 25 Short-term and long-term acquired thermotolerance analysis for mutants 26 The cotyledon greening rate of HSFA7a and HSFA7b mutants in response to salt stress 27 The seed germination rate of HSFA7a and HSFA7b mutants in response to ABA stress 28 Expression of HS-related genes in responses to HS in HSFA7a- and HSFA7b-mutant plants 28 HSFA7a and HSFA7b cooperated with HSFA2 to activate the transcription of APX2 29 Transcriptome analysis in response to HS in the hsfa7a mutant 29 Transcriptome analysis in response to HS in the hsfa7b mutant 30 Transcriptome analysis in response to HS in the Dou-IS mutant 31 DISCUSSION 32 HSFA7a/b are rapidly induced by HS 32 HSFA7a/b may be involved in various stress crosstalk 33 The phenotypical analysis for mutants in response to salt and ABA stress 36 HSFA7a/b may cooperate with HSFA2 to regulate the mechanism of HSR 39 RNA-seq analysis 40 Conclusions and Prospects 41 TABLE 43 FIGURES 45 SUPPLEMENTAL FIGURES 84 REFERENCES 93 | - |
| dc.language.iso | en | - |
| dc.subject | 核糖核酸定序 | zh_TW |
| dc.subject | 活性氧 | zh_TW |
| dc.subject | 非生物逆境 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 熱休克轉錄因子 | zh_TW |
| dc.subject | Reactive oxygen species | en |
| dc.subject | Heat shock transcription factor | en |
| dc.subject | Arabidopsis | en |
| dc.subject | Abiotic stress | en |
| dc.subject | RNA sequencing | en |
| dc.title | 阿拉伯芥熱休克因子HsfA7a/b在非生物逆境反應之功能性研究 | zh_TW |
| dc.title | Functional study on Arabidopsis heat shock factors HsfA7a/b in abiotic stress response | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉靖輝;楊健志;鄭秋萍;鄭石通 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Hui Yeh;Chien-Chih Yang;Chiu-Ping Cheng;Shih-Tong Jeng | en |
| dc.subject.keyword | 熱休克轉錄因子,阿拉伯芥,非生物逆境,核糖核酸定序,活性氧, | zh_TW |
| dc.subject.keyword | Heat shock transcription factor,Arabidopsis,Abiotic stress,RNA sequencing,Reactive oxygen species, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202500536 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-10 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| dc.date.embargo-lift | 2030-02-08 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 17.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
