請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96405完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝旭亮 | zh_TW |
| dc.contributor.advisor | Hsu-Liang Hsieh | en |
| dc.contributor.author | 江翊瑄 | zh_TW |
| dc.contributor.author | Yi-Hsuan Chaing | en |
| dc.date.accessioned | 2025-02-13T16:19:25Z | - |
| dc.date.available | 2025-02-14 | - |
| dc.date.copyright | 2025-02-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-08 | - |
| dc.identifier.citation | Balanzà, V., Martínez-Fernández, I., and Ferrándiz, C. (2014). Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. Journal of Experimental Botany 65, 1193-1203.
Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M.F., and Ferrándiz, C. (2019). Inflorescence Meristem Fate Is Dependent on Seed Development and FRUITFULL in Arabidopsis thaliana. Frontiers in Plant Science 10. Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M.F., Kaufmann, K., Angenent, G.C., Bemer, M., and Ferrándiz, C. (2018). Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nature Communications 9, 565. Ballaré, C.L. (2014). Light Regulation of Plant Defense. Annual Review of Plant Biology 65, 335-363. Bemer, M., van Mourik, H., Muiño, J.M., Ferrándiz, C., Kaufmann, K., and Angenent, G.C. (2017). FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. Journal of Experimental Botany 68, 3391-3403. Bemer, M., Karlova, R., Ballester, A.R., Tikunov, Y.M., Bovy, A.G., Wolters-Arts, M., Rossetto, P.d.B., Angenent, G.C., and de Maagd, R.A. (2012). The Tomato FRUITFULL Homologs TDR4/FUL1 and MBP7/FUL2 Regulate Ethylene-Independent Aspects of Fruit Ripening. The Plant Cell 24, 4437-4451. Campos, M.L., Yoshida, Y., Major, I.T., de Oliveira Ferreira, D., Weraduwage, S.M., Froehlich, J.E., Johnson, B.F., Kramer, D.M., Jander, G., Sharkey, T.D., and Howe, G.A. (2016). Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nature Communications 7, 12570. Castelán-Muñoz, N., Herrera, J., Cajero-Sánchez, W., Arrizubieta, M., Trejo, C., García-Ponce, B., Sánchez, M.d.l.P., Álvarez-Buylla, E.R., and Garay-Arroyo, A. (2019). MADS-Box Genes Are Key Components of Genetic Regulatory Networks Involved in Abiotic Stress and Plastic Developmental Responses in Plants. Frontiers in Plant Science 10. Chen, H.-J., Chen, C.-L., and Hsieh, H.-L. (2015). Far-red light-mediated seedling development in Arabidopsis involves FAR-RED INSENSITIVE 219/JASMONATE RESISTANT 1-dependent and-independent pathways. PloS one 10, e0132723. Chen, H.-J., Fu, T.-Y., Yang, S.-L., and Hsieh, H.-L. (2018). FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis. PLoS genetics 14, e1007248. Chen, J., Sonobe, K., Ogawa, N., Masuda, S., Nagatani, A., Kobayashi, Y., and Ohta, H. (2013). Inhibition of arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. Journal of Plant Research 126, 161-168. Chen, Y.-T., Chang, C.-C., Chen, C.-W., Chen, K.-C., and Chu, Y.-W. (2019). MADS-Box Gene Classification in Angiosperms by Clustering and Machine Learning Approaches. Frontiers in Genetics 9. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for -mediated transformation of. The Plant Journal 16, 735-743. Daszkowska-Golec, A. (2011). Arabidopsis Seed Germination Under Abiotic Stress as a Concert of Action of Phytohormones. OMICS: A Journal of Integrative Biology 15, 763-774. de Folter, S., Immink, R.G.H., Kieffer, M., Pařenicová, L., Henz, S.R., Weigel, D., Busscher, M., Kooiker, M., Colombo, L., Kater, M.M., Davies, B., and Angenent, G.C. (2005). Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. The Plant Cell 17, 1424-1433. de Wit, M., Keuskamp, D.H., Bongers, F.J., Hornitschek, P., Gommers, C.M.M., Reinen, E., Martínez-Cerón, C., Fankhauser, C., and Pierik, R. (2016). Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light. Current Biology 26, 3320-3326. Di Marzo, M., Herrera-Ubaldo, H., Caporali, E., Novák, O., Strnad, M., Balanzà, V., Ezquer, I., Mendes, M.A., de Folter, S., and Colombo, L. (2020). SEEDSTICK Controls Arabidopsis Fruit Size by Regulating Cytokinin Levels and FRUITFULL. Cell Reports 30, 2846-2857.e2843. Duan, S., Kim, J.H., Kim, C.K., and Eom, S.H. (2024). Role of Methyl Jasmonate on Flavonoid Pathway of UV-B-Irradiated Apple Fruit. Journal of Agricultural and Food Chemistry 72, 27139-27149. Ferrandiz, C., and Fourquin, C. (2014). Role of the FUL-SHP network in the evolution of fruit morphology and function. Journal of Experimental Botany 65, 4505-4513. Fu, X., Peng, B., Hassani, D., Xie, L., Liu, H., Li, Y., Chen, T., Liu, P., Tang, Y., Li, L., Zhao, J., Sun, X., and Tang, K. (2021). AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua. New Phytologist 231, 1858-1874. Führer, M., Gaidora, A., Venhuizen, P., Dobrogojski, J., Béziat, C., Feraru, M.I., Kleine-Vehn, J., Kalyna, M., and Barbez, E. (2020). FRUITFULL Is a Repressor of Apical Hook Opening in Arabidopsis thaliana. International Journal of Molecular Sciences 21, 6438. Giovannoni, J.J. (2004). Genetic Regulation of Fruit Development and Ripening. The Plant Cell 16, S170-S180. Granger, D., Tremblay, A., Boulanger, C., Chabot, B., Menard, H.A., and Boire, G. (1996). Autoantigenic epitopes on hY5 Ro RNA are distinct from regions bound by the 60-kDa Ro and La proteins. The Journal of Immunology 157, 2193-2200. Gu, Q., Ferrándiz, C., Yanofsky, M.F., and Martienssen, R. (1998). The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509-1517. He, C., Si, C., Teixeira da Silva, J.A., Li, M., and Duan, J. (2019). Genome-wide identification and classification of MIKC-type MADS-box genes in Streptophyte lineages and expression analyses to reveal their role in seed germination of orchid. BMC Plant Biology 19, 223. Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes & Development 14, 1958-1970. Huang, H., Liu, B., Liu, L., and Song, S. (2017). Jasmonate action in plant growth and development. Journal of Experimental Botany 68, 1349-1359. Huang, H., Chen, Y., Wang, S., Qi, T., and Song, S. (2022). Jasmonate action and crosstalk in flower development and fertility. Journal of Experimental Botany 74, 1186-1197. Ito, T., Ng, K.-H., Lim, T.-S., Yu, H., and Meyerowitz, E.M. (2007). The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in Arabidopsis. The Plant Cell 19, 3516-3529. Jia, H., Zhang, C., Pervaiz, T., Zhao, P., Liu, Z., Wang, B., Wang, C., Zhang, L., Fang, J., and Qian, J. (2016). Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea. Functional & Integrative Genomics 16, 79-94. José Ripoll, J., Bailey, L.J., Mai, Q.-A., Wu, S.L., Hon, C.T., Chapman, E.J., Ditta, G.S., Estelle, M., and Yanofsky, M.F. (2015). microRNA regulation of fruit growth. Nature Plants 1, 15036. Kim, J.Y., Song, J.T., and Seo, H.S. (2017). COP1 regulates plant growth and development in response to light at the post-translational level. Journal of Experimental Botany 68, 4737-4748. Kondo, S., Motoyama, M., Michiyama, H., and Kim, M. (2002). Roles of jasmonic acid in the development of sweet cherries as measured from fruit or disc samples. Plant Growth Regulation 37, 37-44. Lai, X., Vega-Léon, R., Hugouvieux, V., Blanc-Mathieu, R., van der Wal, F., Lucas, J., Silva, C.S., Jourdain, A., Muino, J.M., Nanao, M.H., Immink, R., Kaufmann, K., Parcy, F., Smaczniak, C., and Zubieta, C. (2021). The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nature Communications 12, 4760. Lau, O.S., and Deng, X.W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology 13, 571-577. Leivar, P., Monte, E., Oka, Y., Liu, T., Carle, C., Castillon, A., Huq, E., and Quail, P.H. (2008). Multiple Phytochrome-Interacting bHLH Transcription Factors Repress Premature Seedling Photomorphogenesis in Darkness. Current Biology 18, 1815-1823. Li, C., Yu, W., Xu, J., Lu, X., and Liu, Y. (2022). Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants. International Journal of Molecular Sciences 23, 11701. Li, S., Dong, Y., Li, D., Shi, S., Zhao, N., Liao, J., Liu, Y., and Chen, H. (2023a). Eggplant transcription factor SmMYB5 integrates jasmonate and light signaling during anthocyanin biosynthesis. Plant Physiology 194, 1139-1165. Li, Y., Chen, M., Khan, A.H., Ma, Y., He, X., Yang, J., Zhang, R., Ma, H., Zuo, C., Li, Y., Kong, J., Wang, M., Zhu, L., Zhang, X., and Min, L. (2023b). Histone H3 lysine 27 trimethylation suppresses jasmonate biosynthesis and signaling to affect male fertility under high temperature in cotton. Plant Communications 4, 100660. Liu, B., Long, H., Yan, J., Ye, L., Zhang, Q., Chen, H., Gao, S., Wang, Y., Wang, X., and Sun, S. (2021). A HY5-COL3-COL13 regulatory chain for controlling hypocotyl elongation in Arabidopsis. Plant Cell Environ 44, 130-142. Liu, H., and Timko, M.P. (2021). Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences 22, 2914. Liu, H., Li, L., Fu, X., Li, Y., Chen, T., Qin, W., Yan, X., Wu, Z., Xie, L., Kayani, S.-l., Hassani, D., Sun, X., and Tang, K. (2023). AaMYB108 is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in Artemisia annua. New Phytologist 237, 2224-2237. Luo, H., He, W., Li, D., Bao, Y., Riaz, A., Xiao, Y., Song, J., and Liu, C. (2020). Effect of methyl jasmonate on carotenoids biosynthesis in germinated maize kernels. Food Chemistry 307, 125525. Malcomber, S.T., and Kellogg, E.A. (2005). <em>SEPALLATA</em> gene diversification: brave new whorls. Trends in Plant Science 10, 427-435. Mandel, M.A., and Yanofsky, M.F. (1995). The Arabidopsis AGL8 MADS Box Gene Is Expressed in Inflorescence Meristems and Is Negatively Regulated by APETALA1. The Plant Cell 7, 1763-1771. Mawphlang, O.I.L., and Kharshiing, E.V. (2017). Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops. Frontiers in Plant Science 8. Mehra, P., Pandey, B.K., Verma, L., Prusty, A., Singh, A.P., Sharma, S., Malik, N., Bennett, M.J., Parida, S.K., Giri, J., and Tyagi, A.K. (2022). OsJAZ11 regulates spikelet and seed development in rice. Plant Direct 6, e401. Moreno Curtidor, C. (2021). Elucidating the molecular basis of enhanced growth in the Arabidopsis thaliana accession Bur-0. Nguyen, A.L. (2008). Transcriptional regulation of FRUITFULL : a MADS-box gene involved in Arabidopsis fruit development. . UC San Diego. Oblessuc, P.R., Obulareddy, N., DeMott, L., Matiolli, C.C., Thompson, B.K., and Melotto, M. (2020). JAZ4 is involved in plant defense, growth, and development in Arabidopsis. The Plant Journal 101, 371-383. Orozco-Arroyo, G., Paolo, D., Ezquer, I., and Colombo, L. (2015). Networks controlling seed size in Arabidopsis. Plant Reproduction 28, 17-32. Ortigosa, A., Fonseca, S., Franco-Zorrilla, J.M., Fernández-Calvo, P., Zander, M., Lewsey, M.G., García-Casado, G., Fernández-Barbero, G., Ecker, J.R., and Solano, R. (2020). The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. The Plant Journal 102, 138-152. Pan, J., Wang, H., You, Q., Cao, R., Sun, G., and Yu, D. (2022). Jasmonate-regulated seed germination and crosstalk with other phytohormones. Journal of Experimental Botany 74, 1162-1175. Peng, K.C., Siao, W., and Hsieh, H.L. (2023). FAR-RED INSENSITIVE 219 and phytochrome B corepress shade avoidance via modulating nuclear speckle formation. Plant Physiology 192, 1449-1465. Robson, F., Okamoto, H., Patrick, E., Harris, S.-R., Wasternack, C., Brearley, C., and Turner, J.G. (2010). Jasmonate and Phytochrome A Signaling in Arabidopsis Wound and Shade Responses Are Integrated through JAZ1 Stability The Plant Cell 22, 1143-1160. Roeder, A.H.K., and Yanofsky, M.F. (2006). Fruit development in Arabidopsis. The arabidopsis book 4, e0075-e0075. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676-682. Sehra, B., and Franks, R.G. (2017). Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development. Frontiers in Plant Science 8. Serrano-Bueno, G., de los Reyes, P., Chini, A., Ferreras-Garrucho, G., Sánchez de Medina-Hernández, V., Boter, M., Solano, R., and Valverde, F. (2022). Regulation of floral senescence in <em>Arabidopsis</em> by coordinated action of <em>CONSTANS</em> and jasmonate signaling. Molecular Plant 15, 1710-1724. Shang, J., Zhang, S., Du, J., Wang, W., Li, K., and Yang, W. (2023). Red and Blue Light Induce Soybean Resistance to Soybean Mosaic Virus Infection through the Coordination of Salicylic Acid and Jasmonic Acid Defense Pathways. Viruses 15. Smaczniak, C., Immink, R.G.H., Angenent, G.C., and Kaufmann, K. (2012). Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139, 3081-3098. Smaczniak, C., Muiño, J.M., Chen, D., Angenent, G.C., and Kaufmann, K. (2017). Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes. The Plant Cell 29, 1822-1835. Sun, Y., Zheng, Y., Yao, H., Ma, Z., Xiao, M., Wang, H., and Liu, Y. (2023). Light and jasmonic acid coordinately regulate the phosphate responses under shade and phosphate starvation conditions in Arabidopsis. Plant Direct 7, e504. Swain, S., Jiang, H.-W., and Hsieh, H.-L. (2017). FAR-RED INSENSITIVE 219/JAR1 Contributes to Shade Avoidance Responses of Arabidopsis Seedlings by Modulating Key Shade Signaling Components. Frontiers in Plant Science 8. Teper-Bamnolker, P., and Samach, A. (2005). The Flowering Integrator FT Regulates SEPALLATA3 and FRUITFULL Accumulation in Arabidopsis Leaves. The Plant Cell 17, 2661-2675. Thoris, K., Correa Marrero, M., Fiers, M., Lai, X., Zahn, Iris E., Jiang, X., Mekken, M., Busscher, S., Jansma, S., Nanao, M., de Ridder, D., van Dijk, Aalt D.J., Angenent, Gerco C., Immink, Richard G.H., Zubieta, C., and Bemer, M. (2024). Uncoupling FRUITFULL’s functions through modification of a protein motif identified by co-ortholog analysis. Nucleic Acids Research. Tripathi, S., Hoang, Q.T.N., Han, Y.-J., and Kim, J.-I. (2019). Regulation of Photomorphogenic Development by Plant Phytochromes. International Journal of Molecular Sciences 20, 6165. Tuan, P.A., Nguyen, T.-N., Toora, P.K., and Ayele, B.T. (2023). Temporal and spatial transcriptional regulation of phytohormone metabolism during seed development in barley (Hordeum vulgare L.). Frontiers in Plant Science 14. van Mourik, H., Chen, P., Smaczniak, C., Boeren, S., Kaufmann, K., Bemer, M., Angenent, G.C., and Muino, J.M. (2023). Dual specificity and target gene selection by the MADS-domain protein FRUITFULL. Nature Plants 9, 473-485. Wang, J.-G., Chen, C.-H., Chien, C.-T., and Hsieh, H.-L. (2011). FAR-RED INSENSITIVE219 Modulates CONSTITUTIVE PHOTOMORPHOGENIC1 Activity via Physical Interaction to Regulate Hypocotyl Elongation in Arabidopsis. Plant Physiology 156, 631-646. Wang, J., Wang, Y., Lü, T., Yang, X., Liu, J., Dong, Y., and Wang, Y. (2022). An Efficient and Universal Protoplast Isolation Protocol Suitable for Transient Gene Expression Analysis and Single-Cell RNA Sequencing. International Journal of Molecular Sciences 23, 3419. Woods, J.C. (2010). Analysis of FRUITFULL promoter motifs and their influence on valve expression during fruit development (UC San Diego). Wu, Y., Shi, L., Li, L., Fu, L., Liu, Y., Xiong, Y., and Sheen, J. (2019). Integration of nutrient, energy, light, and hormone signalling via TOR in plants. Journal of Experimental Botany 70, 2227-2238. Yadav, A., Singh, D., Lingwan, M., Yadukrishnan, P., Masakapalli, S.K., and Datta, S. (2020). Light signaling and UV-B-mediated plant growth regulation. Journal of Integrative Plant Biology 62, 1270-1292. Yue, P., Jiang, Z., Sun, Q., Wei, R., Yin, Y., Xie, Z., Larkin, R.M., Ye, J., Chai, L., and Deng, X. (2022). Jasmonate activates a CsMPK6-CsMYC2 module that regulates the expression of β-citraurin biosynthetic genes and fruit coloration in orange (Citrus sinensis). The Plant Cell 35, 1167-1185. Zhang, J., Zhang, X., Liu, X., Pai, Q., Wang, Y., and Wu, X. (2023). Molecular Network for Regulation of Seed Size in Plants. International Journal of Molecular Sciences 24, 10666. Zhao, L., Li, X., Chen, W., Xu, Z., Chen, M., Wang, H., and Yu, D. (2021). The emerging role of jasmonate in the control of flowering time. Journal of Experimental Botany 73, 11-21. Zhu, F., Luo, T., Liu, C., Wang, Y., Yang, H., Yang, W., Zheng, L., Xiao, X., Zhang, M., Xu, R., Xu, J., Zeng, Y., Xu, J., Xu, Q., Guo, W., Larkin, R.M., Deng, X., and Cheng, Y. (2017). An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytologist 216, 178-192. 丁士甫. (2023). 阿拉伯芥中bHLH27及FIN219的交互作用參與遠紅光及茉莉酸訊息傳遞之功能性研究. In 植物科學研究所 (國立臺灣大學), pp. 1-52. 傅子祐. (2008). 阿拉伯芥FIN219在藍光及遠紅光訊息傳遞交互關係中的功能性研究. In 植物科學研究所 (國立臺灣大學), pp. 1-78. 吳佩芸. (2009). 阿拉伯芥FIN219基因表現的分析以及與COI1之間調控關係之研究 (國立臺灣大學), pp. 1-77. 吳金龍. (2012). 番茄果實中轉錄因子TDR4調控茄紅素累積之分子機制研究. In 植物科學研究所 (台北市: 國立臺灣大學), pp. 62. 廖薇婷. (2020). 阿拉伯芥C2-domain ABA-related protein family (CAR) 在光與茉莉酸訊息傳遞中之功能性探討. In 植物科學研究所 (台北市: 國立臺灣大學), pp. 103. 張紫煥. (2015). 阿拉伯芥FAR-RED INSENSITIVE219與Cryptochrome2 的交互作用對藍光和茉莉酸訊息傳遞之整合的功能性研究 (國立臺灣大學), pp. 1-54. 徐韻茹. (2018). 阿拉伯芥中的去磷酸酶調控FIN219/JAR1在光和茉莉酸訊息傳遞中的鑑定與功能性研究 (國立臺灣大學), pp. 1-48. 曾鈺媛. (2010). 受光調控因子TDR4影響番茄果實中茄紅素含量之功能性研究 (國立臺灣大學), pp. 1-74. 朱彥樺. (2020). 阿拉伯芥中透過去磷酸酶調節FIN219/JAR1活性並影響藍光及茉莉酸訊息傳遞之功能性研究 (國立臺灣大學), pp. 1-74. 李德政. (2006). 選殖番茄果實中受藍光誘導而影響茄紅素累積之相關基因 (國立臺灣大學), pp. 1-83. 杜信杰. (2005). FIN219在藍光與乙烯訊息傳遞交感作用之研究. In 植物科學研究所 (台北市: 國立臺灣大學), pp. 66. 林言翰. (2020). 阿拉伯芥中FIN219與FHY1交互作用調控光與茉莉酸訊息傳遞的研究. In 植物科學研究所 (台北市: 國立臺灣大學), pp. 61. 王志恭. (2011). 阿拉伯芥FIN219在遠紅光與茉莉酸訊息傳遞間交互作用之功能性研究. In 植物科學研究所 (台北市: 國立臺灣大學), pp. 192. 鄭貿允. (2015). 番茄TDR4在藍光和茉莉酸訊息傳遞中之整合功能性研究. In 植物科學研究所 (台北市: 國立臺灣大學), pp. 66. 陳語安. (2012). 阿拉伯芥中 FIN219 與 COI1 的交互作用在遠紅光與茉莉酸訊息傳遞中的功能性研究. In 植物科學研究所 (台北市: 國立臺灣大學), pp. 53. 顧聞喆. (2017). 阿拉伯芥中FIN219與Cryptochrome 2在藍光及茉莉酸訊息傳遞途徑中之功能性探討 (國立臺灣大學), pp. 1-54. 黃子瀚. (2023). 阿拉伯芥中bHLH51轉錄因子與FIN219間交互作用對於吉貝素和茉莉酸介導的信息調控之研究. In 植物科學研究所 (國立臺灣大學), pp. 1-85. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96405 | - |
| dc.description.abstract | 植物對環境因子像光和植物激素的刺激做出反應,以維持生長的恆定性並調節其發育。光是植物的重要環境訊息,而茉莉酸(jasmonates, JA)也參與在生長發育調控,包括光形態發生(photomorphogenesis)。儘管了解光與茉莉酸訊息傳遞途徑的調控網絡相當重要,但關於兩者的整合機制仍有待深入研究。FAR-RED INSENSITIVE 219/JASMONIC ACID RESISTANT 1 (FIN219/JAR1)被發現不僅參與phyA和CRY1的光訊息傳遞途徑中,還可將JA與異亮氨酸(isoleucine)結合而參與在JA反應。先前研究發現番茄中,藍光和JRL1 (JAR1-like)能上調MADS-box轉錄因子TDR4/FUL1,以促進JA反應和果實成熟。然而,關於FIN219與其在阿拉伯芥中的同源基因FRUITFULL (FUL)的關係研究偏少。本研究發現,FIN219和FUL對開花時間、果莢延長及種子發育有相反的調控方式。光和茉莉酸介導的下胚軸抑制實驗顯示FUL可能是光形態發生的負調控因子,而FIN219在調控下胚軸延長的抑制性方面對FUL具有上位性(epistasis)的關係。雙分子螢光互補實驗證實,FUL與FIN219在MeJA和不同光處理下都有交互作用,且FIN219和MeJA會影響FUL形成二聚體。此外,雙冷光素酶報告基因轉錄活性測試顯示,FUL可以通過活化FIN219啟動子來上調它的表達,而JAZ1則在果莢發育過程中受到FUL抑制。總之,本研究揭示了FUL與FIN219通過相互作用及轉錄調控,實現光與JA訊息傳遞途徑之間的潛在分子機制,從而協同調控幼苗和生殖階段的生長與發育。 | zh_TW |
| dc.description.abstract | Plants respond to environmental stimuli like light and phytohormones to maintain homeostasis and regulate development. Light is a crucial environmental signal, while jasmonates (JAs) also contribute to developmental regulation, including photomorphogenesis. Despite the importance of understanding the upstream regulation networks of light and JA signaling pathways, their integration remains underexplored. FAR-RED INSENSITIVE 219/JASMONIC ACID RESISTANT 1 (FIN219/JAR1) participates in both phyA and CRY1 light signaling and JA responses because of its enzymatic function to conjugate JA-Ile. Previously, blue light and JRL1 (JAR1-like) activated TDR4/FUL1, a MADS-box transcription factor, to promote JA responses and fruit ripening in tomato. However, little research has elucidated the relationship between FIN219 and FRUITFULL (FUL), a TDR4 homolog in Arabidopsis. Here, FIN219 and FUL present opposite effects on flowering, silique elongation, and seed development. Meanwhile, hypocotyl inhibition suggests that FUL might act as a negative regulator in photomorphogenesis, with FIN219 being epistatic to FUL. Bimolecular Fluorescence Complementation (BiFC) and Luciferase complementation imaging (LCI) assays confirm that the interaction between FUL and FIN219 happened under MeJA and different light treatments, while FIN219 and MeJA influence FUL dimerization. Furthermore, Dual-LUC transactivation assays reveal that FUL upregulates FIN219 expression by activating its promoter, and JAZ1 is suppressed in the silique. In summary, this study unveils possible crosstalk between light and JA signaling pathways through FUL and FIN219 interactions and transcriptional regulation, thus collaborating to govern seedling and reproductive development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:19:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-13T16:19:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract III Contents V List of Figures IX List of Tables XII Abbreviations XIII Introduction 1 1. Photomorphogenesis and light signaling pathway 1 2. Jasmonate biosynthesis and signaling pathway 3 3. The characterization and functions of FIN219 5 4. The crosstalk between light and JA signaling 7 5. The classification of the MADS-box gene family and the physiological functions of FUL 10 6. The motivation and objectives of this study 13 Materials and Methods 15 1. Plant materials 15 2. Plasmids construction and plant transformation 15 3. Growth conditions 16 4. Measurement of hypocotyl length 17 5. Flowering time measurement 18 6. Quantification of silique and seed traits 18 7. Seed germination assay 18 8. Biomolecular fluorescence complementation (BiFC) assay 19 9. Luciferase complementation imaging (LCI) assay 21 10. Dual-LUC transactivation assay 21 11. Genomic DNA extraction and genotyping 22 12. RNA extraction, RT-PCR and RT-qPCR 23 13. Protein extraction and western blot 24 14. Statistical analysis 25 15. Gene accession numbers 25 Results 27 1. The loss-of-function of FIN219 could affect the overexpression of FUL in transgenic lines 27 2. FUL regulates floral transition, reproductive development, and seed morphology 29 3. FUL and FIN219 antagonistically regulate light-mediated inhibition of hypocotyl elongation in an FIN219 working downstream of signaling pathway 33 4. Light and MeJA affect the transition between FUL-FIN219 heterodimer and FUL homodimer 37 5. FUL positively regulates FIN219 expression and inactivates other JA-response genes 41 Discussions 45 1. FUL OE and FUL-AS need to be further elucidated for understanding the multiple functions of FUL 45 2. FIN219 might be involved in JA-regulated flowering and seed development collaborating with MADS-box gene FUL 46 3. FUL and FIN219 antagonistically regulate hypocotyl length in photomorphogenesis 48 4. FUL interacts with FIN219, whereas the preference of homodimer or heterodimer differs under different light conditions 50 5. FUL regulates the expression of FIN219 and JAZ1 in an opposite manner 51 Conclusion 54 Figures 56 Tables 76 References 79 Supplemental figures 86 | - |
| dc.language.iso | en | - |
| dc.subject | FUL | zh_TW |
| dc.subject | FIN219 | zh_TW |
| dc.subject | 訊息傳遞路徑 | zh_TW |
| dc.subject | 茉莉酸 | zh_TW |
| dc.subject | 光形態發生 | zh_TW |
| dc.subject | FIN219 | en |
| dc.subject | photomorphogenesis | en |
| dc.subject | jasmonates | en |
| dc.subject | signaling pathway | en |
| dc.subject | FUL | en |
| dc.title | 阿拉伯芥FIN219與MADS-box轉錄因子FUL間交互作用對參與在光與茉莉酸訊息傳遞路徑中的功能性探討 | zh_TW |
| dc.title | Functional studies on FIN219 and MADS-box transcription factor FUL interaction in response to light and jasmonates in Arabidopsis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭梅君;蔡皇龍;吳克強;蕭蔚 | zh_TW |
| dc.contributor.oralexamcommittee | Mei-Chun Cheng;Huang-Lung Tsai;Ke-Qiang Wu;Wei Siao | en |
| dc.subject.keyword | 光形態發生,茉莉酸,訊息傳遞路徑,FUL,FIN219, | zh_TW |
| dc.subject.keyword | photomorphogenesis,jasmonates,signaling pathway,FUL,FIN219, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202500488 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-10 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| dc.date.embargo-lift | 2027-02-07 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2027-02-07 | 6.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
