請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96402完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文方 | zh_TW |
| dc.contributor.advisor | Wen-Fang Wu | en |
| dc.contributor.author | 李廉強 | zh_TW |
| dc.contributor.author | Lian-Qiang Li | en |
| dc.date.accessioned | 2025-02-13T16:18:38Z | - |
| dc.date.available | 2025-02-14 | - |
| dc.date.copyright | 2025-02-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-08 | - |
| dc.identifier.citation | M. Wahid, B. Budiman, E. Joelianto, and M. Aziz, "A Review on Drive Train Technologies for Passenger Electric Vehicles," Energies, vol. 14, p. 6742, 10/16 2021.
K. T. Chau and Y. S. Wong, "Overview of power management in hybrid electric vehicles," Energy Conversion and Management, vol. 43, no. 15, pp. 1953-1968, 2002/10/01/ 2002. J. Liu, Y. Li, Z. Xu, and X. Xia, "Simulation for series-parallel hybrid electric vehicle powertrain system," in 2011 International Conference on Electric Information and Control Engineering, 15-17 April 2011 2011, pp. 2582-2586. Y. Yang, X. Hu, H. Pei, and Z. Peng, "Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach," Applied Energy, vol. 168, pp. 683-690, 2016/04/15/ 2016. Q. Wang, B. Mao, S. I. Stoliarov, and J. Sun, "A review of lithium ion battery failure mechanisms and fire prevention strategies," Progress in Energy and Combustion Science, vol. 73, pp. 95-131, 2019/07/01/ 2019. Z. Liu, C. Tan, and F. Leng, "A reliability-based design concept for lithium-ion battery pack in electric vehicles," Reliability Engineering & System Safety, vol. 134, pp. 169-177, 2015/02/01/ 2015. 歐明輝,"鋰離子電池之健康狀態預測與可靠度分析", 國立臺灣大學機械工程學研究所碩士論文, 2021. S. J. Rind, Y. Ren, Y. Hu, J. Wang, and L. Jiang, "Configurations and control of traction motors for electric vehicles: A review," Chinese Journal of Electrical Engineering, vol. 3, no. 3, pp. 1-17, 2017. A. Amini, M. KhajueeZadeh, and A. Vahedi, "Reliability and Lifetime Analysis on Permanent Magnet Motors in Elevator: Case Study PMA-SynRM & IPMSM," in 2023 3rd International Conference on Electrical Machines and Drives (ICEMD), 20-21, pp. 1-6, Dec. 2023. X. Shu, Y. Guo, W. Yang, K. Wei, Y. Zhu, and H. Zou, "A Detailed Reliability Study of the Motor System in Pure Electric Vans by the Approach of Fault Tree Analysis," IEEE Access, vol. 8, pp. 5295-5307, 2020. 馬維君,"符合ISO 26262之馬達動力系統可靠度分析", 國立臺灣大學機械工程學研究所碩士論文, 2016. D. Hirschmann, D. Tissen, S. Schroder, and R. W. D. Doncker, "Reliability Prediction for Inverters in Hybrid Electrical Vehicles," IEEE Transactions on Power Electronics, vol. 22, no. 6, pp. 2511-2517, 2007. M. A. Masrur, "Penalty for Fuel Economy— System Level Perspectives on the Reliability of Hybrid Electric Vehicles During Normal and Graceful Degradation Operation," IEEE Systems Journal, vol. 2, no. 4, pp. 476-483, 2008. H. Y. Tong and W. T. Hung, "A Framework for Developing Driving Cycles with On‐Road Driving Data," Transport Reviews, vol. 30, no. 5, pp. 589-615, 2010/09/01 2010. Q. Wang, H. Huo, K. He, Z. Yao, and Q. Zhang, "Characterization of vehicle driving patterns and development of driving cycles in Chinese cities," Transportation Research Part D: Transport and Environment, vol. 13, no. 5, pp. 289-297, 2008/07/01/ 2008. 陳映全,"油電混合車動力系統之可靠度分析", 國立臺灣大學機械工程學研究所碩士論文, 2016. J. M. Miller, "Hybrid electric vehicle propulsion system architectures of the e-CVT type," IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 756-767, 2006. 葉青柏,"車輛混合動力系統之動態分析與評估", 國立臺灣大學機械工程學研究所碩士論文, 2016. "中國汽車行駛工況", 中國國家標準化委員會, 2021. 沈鳴奇,"可獨立控制傳動機構於油電混合車之應用", 國立中山大學機械與機電工程學系研究所碩士論文, 2016. "自用小客車使用狀況調查報告" 交通部統計處, 2023. "NSWC-11_RELIABILITY_HDBK_MAY2011", Naval Surface Warfare Center, 2011. "Annual Report on the Big Data of New Energy Vehicle in China " Beijing Institute of Technology, China Machine Press, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96402 | - |
| dc.description.abstract | 隨著近年來新能源車輛產業與市場的不斷擴大,其相關研究也成為熱門。本論文旨在探討油電混合車輛動力系統的可靠度,研究過程中,先參照市場上常見的油電混合車輛,提煉出三種具有代表性的動力系統配置,一一區分其子系統構成,並將其繪製成系統方塊圖;而後,分別參照NEDC (New European Driving Cycle)以及CLTC (China Light-duty Vehicle Test Cycle)兩種行車型態(Driving Cycle),定義不同速度及加速度區間下動力系統的運作模式,確立不同模式下參與運作的子系統及其衰退情況;最後,依照電池容量衰減的半經驗模型,以及美國海軍可靠度手冊所載失效率資料,討論各子系統獨立運作時的可靠度,並結合不同子系統在不同運作模式下各自的衰退情況,探討油電混合車輛動力系統的可靠度。研究結果顯示,馬達及發電機等新能源車輛所採用的子系統可靠度較傳統車輛子系統可靠度低;本研究也發現,電池子系統可靠度會在一定區間內快速下降,其對整體動力系統可靠度的影響較為顯著。針對不同動力系統配置以及不同行車型態下的可靠度比較,本研究發現並聯式混合動力系統的可靠度相較於其他系統配置高,NEDC行車型態相對於CLTC下的可靠度也較高。 | zh_TW |
| dc.description.abstract | In recent years, the continuous expansion of the new energy vehicle industry and the market have made related research a popular topic. In this thesis, a method for evaluating the reliability of powertrain system of HEV is proposed. First, configurations of three typical powertrain systems are constructed based on HEVs commonly seen in nowady market, with their subsystem compositions identified and illustrated using system block diagrams. Subsequently, the reliability of individual subsystem is analyzed using a semi-empirical battery capacity degradation model and data from the U.S. Navy Reliability Handbook. Two driving modes are defined to reflect distinct driving characteristics across different regions by referencing the New European Driving Cycle (NEDC) and the China Light-duty Vehicle Test Cycle (CLTC). Based on these driving modes, the operational modes of the powertrain systems are defined, and the subsystems involved in each operational mode are identified. By assessing the impact of subsystem participation and degradation during each operation mode, the reliabilities of three powertrain systems are evaluated and compared under two driving modes that reflect cross-regional driving characteristics. The research results indicate that electric-involved subsystems, such as motors and generators, exhibit lower reliability than traditional mechanical subsystems. Furthermore, the battery subsystem’s reliability declines rapidly within a certain charge-and-discharge cycles, exerting a significant influence on the overall powertrain reliability. It is found that the powertrain arranged in parallel exhibited relatively higher reliability. Moreover, the driving mode of NEDC reflecting flat terrain driving characteristics resulted in higher reliability compared with that of CLTC. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:18:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-13T16:18:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract iv 目次 v 圖次 viii 表次 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文架構 4 第二章 可靠度工程概述 5 2.1 可靠度定義 5 2.1.1 可靠度函數(Reliability Function) 5 2.1.2 累積分佈函數(Cumulative Distribution Function) 5 2.1.3 機率密度函數(Probability Density Function) 6 2.1.4 失效率函數(Hazard Rate Function) 6 2.1.5 平均失效時間(Mean Time to Failure) 7 2.2 常見機率分佈函數 7 2.2.1 常態分佈(Normal Distribution) 7 2.2.2 指數分佈(Exponential Distribution) 8 2.3 系統可靠度 8 2.3.1 串聯系統(Series System) 9 2.3.2 並聯系統(Parallel System) 9 2.3.3 串並聯系統(Series-Parallel System) 11 第三章 油電混合動力車輛介紹 12 3.1 混合動力車輛 12 3.2 油電混合車的分類 13 3.2.1 以混合程度分類 14 3.2.2 以動力系統配置分類 14 3.2.3 串聯式油電混合車 15 3.2.4 串聯式油電混合車輛之運作模式 17 3.2.5 並聯式油電混合車 21 3.2.6 並聯式油電混合車輛之運作模式 23 3.2.7 混聯式油電混合車 25 3.2.8 混聯式油電混合車輛之運作模式 27 第四章 動力系統可靠度分析模型建構 31 4.1 行車型態 31 4.1.1 New European Driving Cycle 31 4.1.2 China Light-Duty Vehicle Test Cycle 34 4.2 油電混合車運作模式與行車型態之結合 35 4.3 動力系統可靠度模型 45 第五章 油電混合車輛動力系統可靠度分析 47 5.1 可靠度手冊 47 5.2 指數分佈模型子系統可靠度 48 5.2.1 馬達及發電機子系統可靠度 48 5.2.2 機械耦合子系統可靠度 59 5.2.3 變流器子系統可靠度 64 5.2.4 引擎子系統可靠度 66 5.3 電池子系統可靠度 68 5.3.1 電池健康狀態(state of health, SOH) 68 5.3.2 半經驗模型 68 5.3.3 單顆電池可靠度 71 5.3.4 電池組可靠度 71 5.4 動力系統可靠度分析 75 5.5 敏感度分析 79 第六章 結論 84 參考文獻 86 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 動力系統 | zh_TW |
| dc.subject | 行車型態 | zh_TW |
| dc.subject | 可靠度 | zh_TW |
| dc.subject | 馬達 | zh_TW |
| dc.subject | 電池 | zh_TW |
| dc.subject | 油電混合車輛 | zh_TW |
| dc.subject | motor | en |
| dc.subject | battery | en |
| dc.subject | powertrain | en |
| dc.subject | hybrid electric vehicle (HEV) | en |
| dc.subject | driving cycle | en |
| dc.subject | reliability | en |
| dc.title | 油電混合車輛動力系統之可靠度分析 | zh_TW |
| dc.title | Reliability Analysis of Hybrid Electric-Vehicle Powertrain Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉霆;江明哲 | zh_TW |
| dc.contributor.oralexamcommittee | Tyng Liu;Ming-Zhe Jiang | en |
| dc.subject.keyword | 油電混合車輛,動力系統,電池,馬達,可靠度,行車型態, | zh_TW |
| dc.subject.keyword | hybrid electric vehicle (HEV),powertrain,battery,motor,reliability,driving cycle, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202500510 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-02-14 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
