請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96396
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖泰慶 | zh_TW |
dc.contributor.advisor | Albert Taiching Liao | en |
dc.contributor.author | 林咏漩 | zh_TW |
dc.contributor.author | Yung-Hsuan Lin | en |
dc.date.accessioned | 2025-02-13T16:17:02Z | - |
dc.date.available | 2025-02-14 | - |
dc.date.copyright | 2025-02-13 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-07 | - |
dc.identifier.citation | Adan, A., Kiraz, Y., & Baran, Y. (2016). Cell proliferation and cytotoxicity assays. Current pharmaceutical biotechnology, 17(14), 1213-1221.
Albini, A. (1998). Tumor and endothelial cell invasion of basement membranes: the Matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathology & Oncology Research, 4, 230-241. Allen, S., & Mahaffey, E. (1989). Canine mammary neoplasia: prognostic indicators and response to surgical therapy. Assuncao Guimaraes, C., & Linden, R. (2004). Programmed cell deaths: apoptosis and alternative deathstyles. European journal of biochemistry, 271(9), 1638-1650. Banfalvi, G. (2017). Methods to detect apoptotic cell death. Apoptosis, 22(2), 306-323. Bialik, S., Zalckvar, E., Ber, Y., Rubinstein, A. D., & Kimchi, A. (2010). Systems biology analysis of programmed cell death. Trends Biochem Sci, 35(10), 556-564. Bishnupuri, K. S., Sainathan, S. K., Bishnupuri, K., Leahy, D. R., Luo, Q., Anant, S., Houchen, C. W., & Dieckgraefe, B. K. (2014). Reg4-induced mitogenesis involves Akt-GSK3β-β-Catenin-TCF-4 signaling in human colorectal cancer. Mol Carcinog, 53 Suppl 1(0 1), E169-180. Boh, B., Berovic, M., Zhang, J., & Zhi-Bin, L. (2007). Ganoderma lucidum and its pharmaceutically active compounds. Biotechnology annual review, 13, 265-301. Buchholz, J., Hagen, R., Leo, C., Ebling, A., Roos, M., KASER‐HOTZ, B., & Bley, C. R. (2009). 3D conformal radiation therapy for palliative treatment of canine nasal tumors. Veterinary Radiology & Ultrasound, 50(6), 679-683. Burrai, G. P., Gabrieli, A., Moccia, V., Zappulli, V., Porcellato, I., Brachelente, C., Pirino, S., Polinas, M., & Antuofermo, E. (2020). A statistical analysis of risk factors and biological behavior in canine mammary tumors: a multicenter study. Animals, 10(9), 1687. Cain, K., Bratton, S. B., & Cohen, G. M. (2002). The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie, 84(2-3), 203-214. Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296(5573), 1655-1657. Castellone, R. D., Leffler, N. R., Dong, L., & Yang, L. V. (2011). Inhibition of tumor cell migration and metastasis by the proton-sensing GPR4 receptor. Cancer letters, 312(2), 197-208. Chakraborty, P. K., Lee, W.-K., Molitor, M., Wolff, N. A., & Thévenod, F. (2010). Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells. Molecular cancer, 9, 1-16. Chavez-Dominguez, R., Perez-Medina, M., Lopez-Gonzalez, J. S., Galicia-Velasco, M., & Aguilar-Cazares, D. (2020). The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Frontiers in oncology, 10, 578418. Chehade, H., Fox, A., Mor, G. G., & Alvero, A. B. (2021). Determination of Caspase Activation by Western Blot. In A. B. Alvero & G. G. Mor (Eds.), Detection of Cell Death Mechanisms: Methods and Protocols (pp. 1-12). Springer US. Chen, F., Zhong, Z., Zhang, C., Lu, Y., Chan, Y. T., Wang, N., Zhao, D., & Feng, Y. (2022). Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci, 23(21). Clarke, P. G. (1990). Developmental cell death: morphological diversity and multiple mechanisms. Anatomy and embryology, 181, 195-213. Clemente, M., De Andrés, P., Peña, L., & Pérez‐Alenza, M. (2009). Survival time of dogs with inflammatory mammary cancer treated with palliative therapy alone or palliative therapy plus chemotherapy. Veterinary record, 165(3), 78-81. Clemente, M., Perez-Alenza, M., Illera, J., & Peña, L. (2010). Histological, immunohistological, and ultrastructural description of vasculogenic mimicry in canine mammary cancer. Veterinary Pathology, 47(2), 265-274. Clevers, H. (2006). Wnt/β-catenin signaling in development and disease. Cell, 127(3), 469-480. Cohen, J. J. (2003). Apoptosis: the molecular biology of programmed cell death. In: JSTOR. Coomer, A., Farese, J., Milner, R., Liptak, J., Bacon, N., & Lurie, D. (2009). Radiation therapy for canine appendicular osteosarcoma. Veterinary and comparative oncology, 7(1), 15-27. D’arcy, M. S. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell biology international, 43(6), 582-592. de Araújo, W. M., Vidal, F. C. B., de Souza, W. F., de Freitas Junior, J. C. M., de Souza, W., & Morgado-Diaz, J. A. (2010). PI3K/Akt and GSK-3β prevents in a differential fashion the malignant phenotype of colorectal cancer cells. Journal of cancer research and clinical oncology, 136(11), 1773-1782. Dobson, J. M. (2013). Breed‐predispositions to cancer in pedigree dogs. International Scholarly Research Notices, 2013(1), 941275. Docampo, M. J., Cabrera, J., Rabanal, R. M., & Bassols, A. (2011). Expression of matrix metalloproteinase-2 and -9 and membrane-type 1 matrix metalloproteinase in melanocytic tumors of dogs and canine melanoma cell lines. Am J Vet Res, 72(8), 1087-1096. Dominguez, P. A., Dervisis, N. G., Cadile, C. D., Sarbu, L., & Kitchell, B. (2009). Combined gemcitabine and carboplatin therapy for carcinomas in dogs. Journal of veterinary internal medicine, 23(1), 130-137. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161-174. Ejike, U. C., Chan, C. J., Okechukwu, P. N., & Lim, R. L. H. (2020). New advances and potentials of fungal immunomodulatory proteins for therapeutic purposes. Critical reviews in biotechnology, 40(8), 1172-1190. Elliot, K. M., & Mayer, M. N. (2009). Radiation therapy for tumors of the nasal cavity and paranasal sinuses in dogs. The Canadian Veterinary Journal, 50(3), 309. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495-516. Feitelson, M. A., Arzumanyan, A., Kulathinal, R. J., Blain, S. W., Holcombe, R. F., Mahajna, J., Marino, M., Martinez-Chantar, M. L., Nawroth, R., & Sanchez-Garcia, I. (2015). Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Seminars in cancer biology, Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Reviews Cancer, 3(5), 362-374. Fruman, D. A., Chiu, H., Hopkins, B. D., Bagrodia, S., Cantley, L. C., & Abraham, R. T. (2017). The PI3K Pathway in Human Disease. Cell, 170(4), 605-635. Fu, H.-Y., & Hseu, R.-S. (2022). Safety assessment of the fungal immunomodulatory protein from Ganoderma microsporum (GMI) derived from engineered Pichia pastoris: Genetic toxicology, a 13-week oral gavage toxicity study, and an embryo-fetal developmental toxicity study in Sprague-Dawley rats. Toxicology reports, 9, 1240-1254. Gavrieli, Y., Sherman, Y., & Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of cell biology, 119(3), 493-501. Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of pathology, 221(1), 3-12. Goldschmidt, M., Shofer, F., & Smelstoys, J. (2001). Neoplastic lesions of the mammary gland. Pathobiology of Aging Dogs. 1st ed. ISU Press/ILSI, Ames, Iowa, 168-178. Gordon, J. L., Brown, M. A., & Reynolds, M. M. (2018). Cell-Based Methods for Determination of Efficacy for Candidate Therapeutics in the Clinical Management of Cancer. Diseases, 6(4), 85. Green, D. R. (2005). Apoptotic pathways: ten minutes to dead. Cell, 121(5), 671-674. Guan, J. L. (2010). Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer. IUBMB life, 62(4), 268-276. Guo, J., Jiang, X., Lian, J., Li, H., Zhang, F., Xie, J., Deng, J., Hou, X., Du, Z., & Hao, E. (2024). Evaluation of the effect of GSK-3β on liver cancer based on the PI3K/AKT pathway. Frontiers in Cell and Developmental Biology, 12, 1431423. Hall, A. (2009). The cytoskeleton and cancer. Cancer and Metastasis Reviews, 28, 5-14. Hawker, J. R. (2003). Chemiluminescence-based BrdU ELISA to measure DNA synthesis. Journal of Immunological Methods, 274(1), 77-82. He, Y., Sun, M. M., Zhang, G. G., Yang, J., Chen, K. S., Xu, W. W., & Li, B. (2021). Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduction and Targeted Therapy, 6(1), 425. Howe, L. R., Crawford, H. C., Subbaramaiah, K., Hassell, J. A., Dannenberg, A. J., & Brown, A. M. (2001). PEA3 is up-regulated in response to Wnt1 and activates the expression of cyclooxygenase-2. Journal of Biological Chemistry, 276(23), 20108-20115. Hseu, R.-S., Chen, Z.-C., & Wang, H.-H. (1989). Ganoderma microsporum, a new species on weeping willow in Taiwan. Hsin, I.-L., Ou, C.-C., Wu, M.-F., Jan, M.-S., Hsiao, Y.-M., Lin, C.-H., & Ko, J.-L. (2015). GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells. Molecular pharmaceutics, 12(5), 1534-1543. Hsin, I.-L., Ou, C.-C., Wu, T.-C., Jan, M.-S., Wu, M.-F., Chiu, L.-Y., Lue, K.-H., & Ko, J.-L. (2011). GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells. Autophagy, 7(8), 873-882. Hsin, I. L., Hsu, J. C., Wu, W. J., Lu, H. J., Wu, M. F., & Ko, J. L. (2018). GMI, a fungal immunomodulatory protein from Ganoderma microsporum, induce apoptosis via β‐catenin suppression in lung cancer cells. Environmental toxicology, 33(9), 955-961. Hsin, I. L., Sheu, G. T., Jan, M. S., Sun, H. L., Wu, T. C., Chiu, L. Y., Lue, K. H., & Ko, J. L. (2012). Inhibition of lysosome degradation on autophagosome formation and responses to GMI, an immunomodulatory protein from Ganoderma microsporum. British journal of pharmacology, 167(6), 1287-1300. Huang, S. Y., Chien, C. C., Hseu, R. S., Huang, V. Y. J., Chiang, S. Y., Huang, C. J., Chen, S. K., Tsai, R. Y., Lin, H. T., & Cheng, Y. C. (2018). Ganoderma microsporum immunomodulatory protein induces apoptosis and potentiates mitomycin C‐induced apoptosis in urinary bladder urothelial carcinoma cells. Journal of cellular biochemistry, 119(6), 4592-4606. Justus, C. R., Leffler, N., Ruiz-Echevarria, M., & Yang, L. V. (2014). In vitro cell migration and invasion assays. J Vis Exp(88). Kanno, N., Asano, K., Teshima, K., Kutara, K., Seki, M., Edamura, K., Kano, R., Hasegawa, A., & Tanaka, S. (2009). Gene expression of adrenomedullin in canine normal tissues and diseased hearts. J Vet Med Sci, 71(6), 789-792. Karayannopoulou, M., Kaldrymidou, E., Constantinidis, T., & Dessiris, A. (2001). Adjuvant post‐operative chemotherapy in bitches with mammary cancer. Journal of Veterinary Medicine Series A, 48(2), 85-96. Kari, S., Subramanian, K., Altomonte, I. A., Murugesan, A., Yli-Harja, O., & Kandhavelu, M. (2022). Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis, 27(7), 482-508. Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. British Journal of Cancer, 26(4), 239-257. Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141(1), 52-67. Kim, J. H., Lee, S. Y., Oh, S. Y., Han, S. I., Park, H. G., Yoo, M., & Kang, H. S. (2004). Methyl jasmonate induces apoptosis through induction of Bax/Bcl-XS and activation of caspase-3 via ROS production in A549 cells. Oncology reports, 12(6), 1233-1238. Klionsky, D. J., & Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science, 290(5497), 1717-1721. Koopman, G., Reutelingsperger, C. P. M., Kuijten, G. A. M., Keehnen, R. M. J., Pals, S. T., & van Oers, M. H. J. (1994). Annexin V for Flow Cytometric Detection of Phosphatidylserine Expression on B Cells Undergoing Apoptosis. Blood, 84(5), 1415-1420. Kurzman, I. D., & Gilbertson, S. R. (1986). Prognostic factors in canine mammary tumors. Leist, M., & Jäättelä, M. (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nature Reviews Molecular Cell Biology, 2(8), 589-598. Li, K., Ma, Y. B., Zhang, Z., Tian, Y. H., Xu, X. L., He, Y. Q., Xu, L., Gao, Y., Pan, W. T., Song, W. J., He, X., & Wei, L. (2018). Upregulated IQUB promotes cell proliferation and migration via activating Akt/GSK3β/β-catenin signaling pathway in breast cancer. Cancer Med, 7(8), 3875-3888. Li, Q.-z., Wang, X.-f., & Zhou, X.-w. (2011). Recent status and prospects of the fungal immunomodulatory protein family. Critical reviews in biotechnology, 31(4), 365-375. Li, Q.-Z., Zheng, Y.-Z., & Zhou, X.-W. (2019). Fungal immunomodulatory proteins: characteristic, potential antitumor activities and their molecular mechanisms. Drug Discovery Today, 24(1), 307-314. Lin, C.-H., Hsiao, Y.-M., Ou, C.-C., Lin, Y.-W., Chiu, Y.-L., Lue, K.-H., Chang, J.-G., & Ko, J.-L. (2010). GMI, a Ganoderma immunomodulatory protein, down-regulates tumor necrosis factor α-induced expression of matrix metalloproteinase 9 via NF-κB pathway in human alveolar epithelial A549 cells. Journal of agricultural and food chemistry, 58(22), 12014-12021. Lin, T.-L. (2009). Immunomodulatory protein cloned from Ganoderma microsporum. In: Google Patents. Los, M., Rashedi, I., Panigrahi, S., Klonisch, T., & Schulze-Osthoff, K. (2009). Tumor Growth and Cell Proliferation. In M. Molls, P. Vaupel, C. Nieder, & M. S. Anscher (Eds.), The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies (pp. 19-37). Springer Berlin Heidelberg. Lustig, B., & Behrens, J. (2003). The Wnt signaling pathway and its role in tumor development. Journal of cancer research and clinical oncology, 129, 199-221. MacEwen, G. E., Harvey, J. H., Patnaik, A. K., Mooney, S., Hayes, A., Kurzman, I., & Hardy Jr, W. D. (1985). Evaluation of effects of levamisole and surgery on canine mammary cancer. Journal of Immunotherapy, 4(4), 418-426. Majtnerová, P., & Roušar, T. (2018). An overview of apoptosis assays detecting DNA fragmentation. Molecular Biology Reports, 45(5), 1469-1478. Marchenko, G. N., Marchenko, N. D., Leng, J., & Strongin, A. Y. (2002). Promoter characterization of the novel human matrix metalloproteinase-26 gene: regulation by the T-cell factor-4 implies specific expression of the gene in cancer cells of epithelial origin. Biochemical Journal, 363(2), 253-262. McMEEKIN, D. (2004). The perception of Ganoderma lucidum in Chinese and Western culture. Mycologist, 18(4), 165-169. Miller, B. A., & Kolonel, L. N. (1996). Racial/ethnic patterns of cancer in the United States, 1988-1992. US Department of Health and Human Services, National Institutes of Health. Minde, D. P., Anvarian, Z., Rüdiger, S. G., & Maurice, M. M. (2011). Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer? Molecular cancer, 10, 1-9. Minde, D. P., Radli, M., Forneris, F., Maurice, M. M., & Rüdiger, S. G. (2013). Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations. PLoS One, 8(10), e77257. Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728-741. Mizushima, N., & Levine, B. (2010). Autophagy in mammalian development and differentiation. Nature cell biology, 12(9), 823-830. Moghbeli, M. (2024). PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells. Cancer Cell International, 24(1), 165. Morris, J., Dobson, J., & Bostock, D. (1993). Use of tamoxifen in the control of canine mammary neoplasia. The Veterinary record, 133(22), 539-542. Nie, S., Zhang, H., Li, W., & Xie, M. (2013). Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioactive Carbohydrates and Dietary Fibre, 1(1), 10-20. Nikoletopoulou, V., Markaki, M., Palikaras, K., & Tavernarakis, N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(12), 3448-3459. Nosalova, N., Huniadi, M., Horňáková, Ľ., Valenčáková, A., Horňák, S., Nagoos, K., Vozar, J., & Cizkova, D. (2024). Canine mammary tumors: classification, biomarkers, traditional and personalized therapies. International Journal of Molecular Sciences, 25(5), 2891. Novosad, C. A. (2003). Principles of treatment for mammary gland tumors. Clinical techniques in small animal practice, 18(2), 107-109. Papazoglou, L., Basdani, E., Rabidi, S., Patsikas, M., & Karayiannopoulou, M. (2014). Current surgical options for mammary tumor removal in dogs. J Veter Sci Med, 2(1), 6. Porter, A. G., & Jänicke, R. U. (1999). Emerging roles of caspase-3 in apoptosis. Cell death & differentiation, 6(2), 99-104. Provenzano, P. P., & Keely, P. J. (2009). The role of focal adhesion kinase in tumor initiation and progression. Cell adhesion & migration, 3(4), 347-350. Qin, J., Tang, J., Jiao, L., Ji, J., Chen, W.-D., Feng, G.-K., Gao, Y.-H., Zhu, X.-F., & Deng, R. (2013). A diterpenoid compound, excisanin A, inhibits the invasive behavior of breast cancer cells by modulating the integrin β1/FAK/PI3K/AKT/β-catenin signaling. Life sciences, 93(18-19), 655-663. Qu, Z. W., Zhou, S. Y., Guan, S. X., Gao, R., Duan, Z. W., Zhang, X., Sun, W. Y., Fan, W. L., Chen, S. S., Chen, L. J., Lin, J. W., & Ruan, Y. Y. (2018). Recombinant Expression and Bioactivity Comparison of Four Typical Fungal Immunomodulatory Proteins from Three Main Ganoderma Species. BMC Biotechnol, 18(1), 80. Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., & Horwitz, A. R. (2003). Cell Migration: Integrating Signals from Front to Back. Science, 302(5651), 1704-1709. Riss, T. L., Moravec, R. A., Niles, A. L., Duellman, S., Benink, H. A., Worzella, T. J., & Minor, L. (2016). Cell viability assays. Assay guidance manual [Internet]. Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., & Riggins, G. J. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science, 304(5670), 554-554. Sanodiya, B. S., Thakur, G. S., Baghel, R. K., Prasad, G., & Bisen, P. (2009). Ganoderma lucidum: a potent pharmacological macrofungus. Current pharmaceutical biotechnology, 10(8), 717-742. Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098-1101. Schweichel, J. U., & Merker, H. J. (1973). The morphology of various types of cell death in prenatal tissues. Teratology, 7(3), 253-266. Slee, E. A., Adrain, C., & Martin, S. J. (2001). Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis. Journal of Biological Chemistry, 276(10), 7320-7326. Sleeckx, N., De Rooster, H., EJ, V. K., Van Ginneken, C., & Van Brantegem, L. (2011). Canine mammary tumours, an overview. Reproduction in domestic animals= Zuchthygiene, 46(6), 1112-1131. Sliva, D. (2006). Ganoderma lucidum in cancer research. Leukemia Research, 30(7), 767-768. Sorenmo, K. (2003). Canine mammary gland tumors. Veterinary Clinics: Small Animal Practice, 33(3), 573-596. Streeter, A., Menzies, F. M., & Rubinsztein, D. C. (2016). LC3-II Tagging and Western Blotting for Monitoring Autophagic Activity in Mammalian Cells. In J. I. Castrillo & S. G. Oliver (Eds.), Systems Biology of Alzheimer's Disease (pp. 161-170). Springer New York. Sulzmaier, F. J., Jean, C., & Schlaepfer, D. D. (2014). FAK in cancer: mechanistic findings and clinical applications. Nature Reviews Cancer, 14(9), 598-610. Tanida, I., Ueno, T., & Kominami, E. (2008). LC3 and Autophagy. In V. Deretic (Ed.), Autophagosome and Phagosome (pp. 77-88). Humana Press. Tavares, W. L., Lavalle, G. E., Figueiredo, M. S., Souza, A. G., Bertagnolli, A. C., Viana, F. A., Paes, P. R., Carneiro, R. A., Cavalcanti, G. A., & Melo, M. M. (2010). Evaluation of adverse effects in tamoxifen exposed healthy female dogs. Acta Veterinaria Scandinavica, 52, 1-6. Unlu, A., Nayir, E., Kirca, O., & Ozdogan, M. (2016). Ganoderma Lucidum (Reishi Mushroom) and cancer. J buon, 21(4), 792-798. Upton, R. (2000). American herbal pharmacopeia and therapeutic compendium: reishi mushroom, ganoderma lucidum. Standards of Analysis, Quality Control, and Therapeutics. USA Canada: Santa Cruz, 405-407. Vazquez, E., Lipovka, Y., Cervantes-Arias, A., Garibay-Escobar, A., Haby, M. M., Queiroga, F. L., & Velazquez, C. (2023). Canine mammary cancer: State of the art and future perspectives. Animals, 13(19), 3147. Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nature Reviews Cancer, 2(7), 489-501. Wang, T. Y., Yu, C. C., Hsieh, P. L., Liao, Y. W., Yu, C. H., & Chou, M. Y. (2017). GMI ablates cancer stemness and cisplatin resistance in oral carcinomas stem cells through IL-6/Stat3 signaling inhibition. Oncotarget, 8(41), 70422-70430. Wasser, S. P. (2005). Reishi or ling zhi (Ganoderma lucidum). Encyclopedia of dietary supplements, 1, 603-622. Wasser, S. P., & Weis, A. L. (1999). Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Critical Reviews™ in Immunology, 19(1). Wu, G.-S., Guo, J.-J., Bao, J.-L., Li, X.-W., Chen, X.-P., Lu, J.-J., & Wang, Y.-T. (2013). Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum–a review. Expert opinion on investigational drugs, 22(8), 981-992. Wu, M.-Y., Hsu, M.-F., Huang, C.-S., Fu, H.-Y., Wang, A., Hseu, R.-S., Huang, C.-T., & Yang, C.-S. (2007). A 2.0 Å Structure of the Fungal Immunomodulatory Protein GMI from Ganoderma microsporum. Protein crystallogr, 2, 132. Wyllie, A. H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 284(5756), 555-556. Xu, Z., Chen, X., Zhong, Z., Chen, L., & Wang, Y. (2011). Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. The American journal of Chinese medicine, 39(01), 15-27. Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28(1), 15-33. Zhang, X., Gaspard, J. P., & Chung, D. C. (2001). Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer research, 61(16), 6050-6054. Zhang, Y., Feng, Y., Justus, C. R., Jiang, W., Li, Z., Lu, J. Q., Brock, R. S., McPeek, M. K., Weidner, D. A., & Yang, L. V. (2012). Comparative study of 3D morphology and functions on genetically engineered mouse melanoma cells. Integrative Biology, 4(11), 1428-1436. Zheng, H.-H., Du, C.-T., Yu, C., Zhang, Y.-Z., Huang, R.-L., Tang, X.-Y., & Xie, G.-H. (2022). Epidemiological investigation of canine mammary tumors in Mainland China between 2017 and 2021. Frontiers in Veterinary Science, 9, 843390. Zhu, Y., Huang, S., Tan, B., Sun, J., Whiteman, M., & Zhu, Y.-C. (2004). Antioxidants in Chinese herbal medicines: a biochemical perspective. Natural product reports, 21(4), 478-489. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96396 | - |
dc.description.abstract | 靈芝是以其多種生物活性化合物而聞名,包括多醣類、三萜類及真菌免疫調節蛋白(FIPs),長久以來一直被應用於中醫藥以促進健康。其中,小孢子靈芝免疫調節蛋白(GMI)是一種從小孢子靈芝中分離出的FIP,具有穩定的四聚體結構。在人類癌細胞的研究中,GMI已表現出顯著的抗癌效果,包括抑制細胞侵襲及遷移、與生長因子受體競爭,以及誘導細胞程序性死亡。犬乳腺腫瘤是母犬中最常見的腫瘤之一,其中約50%屬於惡性,對犬隻健康構成重大威脅。雖然手術切除是目前的主要治療方式,但由於高轉移率以及化療和放療等輔助治療的耐受性問題,迫切需要新型治療策略。儘管已有多篇關於GMI在人類癌細胞中的研究,目前尚無研究探討GMI對犬癌症的抗腫瘤效用。本研究旨在評估GMI在犬乳腺腫瘤細胞中的抗腫瘤作用及其潛在機制。本研究選用了三株犬乳腺腫瘤細胞株(CF41-Mg、CMT-1和MPG),結果顯示,GMI處理後的細胞出現了顯著的形態學改變,包括細胞脫落和收縮,並且細胞存活率以劑量和時間依賴性顯著降低。Annexin V-PI染色的流式細胞術分析顯示,細胞凋亡是GMI引起細胞死亡的主要機制。此外,與常用化療藥物阿黴素聯合使用時,GMI顯著增強其細胞毒性效果,大幅降低腫瘤細胞存活率。進一步細胞學試驗的結果顯示,GMI對CMT細胞的遷移和侵襲具有顯著的抑制作用。經由Western blot分析發現,GMI主要透過調節PI3K/AKT和FAK/Beta-catenin等關鍵信號通路來實現其抗腫瘤作用,其次透過Caspase-3及LC3B蛋白表現的分析,證實凋亡及自噬可能也參與GMI造成CMT細胞死亡的機制。此外,GMI對非腫瘤細胞(MDCK)的影響較小,表明其具有良好的選擇性毒性,可能具較低的副作用。這些結果表明,GMI具有成為犬乳腺腫瘤治療劑的潛力,值得進一步研究其臨床應用。 | zh_TW |
dc.description.abstract | Ganoderma, contains several bioactive compounds, including polysaccharides, triterpenoids, and fungal immunomodulatory proteins (FIPs), and has long been used in traditional Chinese medicine to promote health. Ganoderma microsporum immunomodulatory protein (GMI), a FIP isolated from Ganoderma microsporum, naturally exists as a stable tetramer structure. Studies on human cancer cells have demonstrated its significant anticancer effects, including inhibition of cell invasion and migration, competition with growth factor receptors, and induction of programmed cell death. Canine mammary tumors (CMTs) are among the most common tumors in female dogs, with approximately 50% being malignant, posing a significant health threat. While surgical resection remains the primary treatment, high metastatic rates and resistance to adjuvant therapies such as chemotherapy highlight the urgent need for novel therapeutic strategies. Currently, no studies have explored the antitumor effects of GMI on canine cancers, despite extensive research on human cancer cells. This study aimed to evaluate the antitumor effects of GMI on CMT cells and its underlying mechanisms. Three CMT cell lines (CF41-Mg, CMT-1, and MPG) were treated with GMI, resulting in significant morphological changes, including cell detachment and shrinkage. GMI treatment reduced cell viability in a dose- and time-dependent manner. Annexin V-PI staining analysis confirmed that apoptosis was the primary mechanism of GMI-induced cell death. Additionally, when combined with Doxorubicin, a commonly used chemotherapeutic agent, GMI significantly enhanced its cytotoxic effects, greatly reducing tumor cell viability. Further cellular assays revealed that GMI significantly inhibited the migration, and invasion of CMT cells. Western blot analysis showed that GMI exerted its antitumor effects primarily by modulating key signaling pathways, including PI3K/AKT and FAK/Beta-catenin. Next, the expression analysis of caspase 3 and LC3B revealed both apoptosis and autophagy may be involved in the mechanism of GMT cell death caused by GMI. Moreover, GMI demonstrated minimal effects on non-tumor MDCK cells, indicating its selective cytotoxicity and potential for reduced side effects. These findings suggest that GMI holds significant potential as a therapeutic agent for canine mammary tumors and warrant further investigation into its clinical applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:17:02Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-13T16:17:02Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 I
Abstract II Chapter 1. Background 1 1.1 Ganoderma microsporum immunomodulatory protein (GMI) 1 1.1.1 Historical and therapeutic uses of Ganoderma in traditional medicine 1 1.1.2 Bioactive components of Ganderma:Polysaccharides, Triterpenoids, and FIPs 1 1.1.3 Discovery and characteristics of Ganoderma microsporum immunomodulatory proteins (GMI) 2 1.1.4 Anticancer activities of GMI and associated pathways 3 1.2 Canine mammary tumor 5 1.2.1 Incidence and clinical features 5 1.2.2 Treatment options 6 1.3 Cellular and Molecular Mechanisms in Cancer Progression 8 1.3.1 Regulation of tumor cell growth and proliferation 8 1.3.2 Migration and invasion mechanisms 9 1.3.3 Key signaling pathway in cancer progression 10 1.4 Cell death 12 1.4.1 Apoptosis 13 1.4.2 Necrosis 14 1.4.3 Autophagy 14 1.4.4 Detection methods 16 1.5 Conclusion 17 Chapter 2 Introduction 19 Chapter 3. Materials and Methods 21 3.1 Cell cultures 21 3.2 Viability assay 21 3.3 Apoptosis assay 23 3.4 Transwell migration assay 23 3.5 Invasion assay 24 3.6 RNA extraction 25 3.7 RT-PCR 26 3.8 Western blotting 27 3.9 Statistical analysis 30 Chapter 4. Results 31 4.1 Morphological changes observed in CMT cells 31 4.2 Dose- and Time-Dependent Reduction in Cell Viability 31 4.3 Combination treatment of doxorubicin with GMI 32 4.4 Analysis of annexin V-PI staining on CMTs 33 4.5 Transwell migration assay 34 4.6 Invasion assay 34 4.7 RT-PCR 35 4.8 Cell signal pathway analysis 35 Chapter 5. Discussion 38 Tables 44 Table 1. Sequence of primers used in RT-PCR 44 Figures 45 Figure 1. Experimental design 45 Figure 2. GMI induces morphological changes on CMT cells 46 Figure 3. The effect of single GMI dosing on the viability of CMT cells and MDCK cells 47 Figure 4. The effect of daily GMI dosing on viability of CMT cells and MDCK cells. 48 Figure 5. GMI enhances cytotoxic effect of chemotherapeutic drugs on CMT cells. 49 Figure 6. Apoptosis analysis of CMT cells treated with single GMI dose. 50 Figure 7. Apoptosis analysis of CMT cells treated with daily GMI dosing. 51 Figure 8. Effects of GMI on cell migration of CMT cells. 52 Figure 9. Effects of GMI on cell invasion of CMT cells. 53 Figure 10. Expression of MMPs in CMT cells. 54 Figure 11. The effects of GMI on activities of AKT and ERK1/2 proteins in CMT cells. 55 Figure 12. The effects of GMI on cleaved caspase-3 protein levels. 56 Figure 13. The effects of GMI on PI3K/AKT and FAK/ Beta-catenin pathways in CMT cells. 57 Figure 14. The effects of GMI on LC3B protein levels in CMT cells 59 References 60 | - |
dc.language.iso | en | - |
dc.title | 探討小孢子靈芝免疫調節蛋白 (GMI) 對犬乳腺腫瘤細胞的作用 | zh_TW |
dc.title | To investigate the effects of Ganoderma Microsporum immunomodulatory protein (GMI) in canine mammary tumor cells | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李繼忠;林辰栖;詹昆衛 | zh_TW |
dc.contributor.oralexamcommittee | Jih-Jong Lee;Chen-Si Lin;Kun-Wei Chan | en |
dc.subject.keyword | 小孢子靈芝免疫調節蛋白(GMI),免疫調節蛋白,犬乳腺腫瘤細胞,細胞凋亡,PI3K/AKT,FAK/Beta-catenin, | zh_TW |
dc.subject.keyword | Ganoderma Microsporum immunomodulatory protein (GMI),Immunomodulatory protein,Canine mammary tumor (CMT) cells,Apoptosis,PI3K/AKT,FAK/Beta-catenin, | en |
dc.relation.page | 68 | - |
dc.identifier.doi | 10.6342/NTU202500465 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-02-07 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 獸醫學系 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。