請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96395完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾嘉綾 | zh_TW |
| dc.contributor.advisor | Chia-Lin Chung | en |
| dc.contributor.author | 陳虹樺 | zh_TW |
| dc.contributor.author | Hong-Hua Chen | en |
| dc.date.accessioned | 2025-02-13T16:16:46Z | - |
| dc.date.available | 2025-02-14 | - |
| dc.date.copyright | 2025-02-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-06 | - |
| dc.identifier.citation | 江尚桓。2022。鑑定參與在水楊酸調節免疫路徑之水稻逆境相關蛋白。碩士論文。國立臺灣大學。臺北。
周浩平、王玉瑤、胡智傑。2021。水稻各品種 (系) 對稻熱病抗感性試驗。高雄區農業改良場年報 109:40-42。 林國清。2004。水稻新品種台南 11 號之育成。臺南區農業改良場研究彙報 45:1-25。 邱運全、吳志文。2005。水稻新品種-高雄 145 號 (晶鑽)。高雄區農業改良場研究彙報 16:1-14。 姚銘輝、陳守泓。2009。氣候變遷下水稻生長及產量之衝擊評估。作物、環境與生物資訊 6:141-156。 張芳瑜、胡智傑。2018。氣候變遷下水稻高雄 145 號之栽培調適。高雄區農業專訊:8-9。 張芳瑜、胡智傑。2023。廣幅抗稻熱病水稻新品種 ‘臺大高雄 1 號~情有獨鍾’ 。高雄區農技報導:3-11。 許晃雄、王俊寓、王柳臻、吳威德、李欣輯、李思瑩、李時雨、林子平、林靜君、侯清賢、凃柏安、施意敏、洪若雅、洪景山、紀佳法、張雅惠、陳正達、陳永明、陳保中、陳昭安、陳家琦、曾品涵、童裕翔、黃文亭、楊曜旭、劉曉薇、歐姿辰、蔡至恒、盧韻存、駱世豪、謝章生、關帝旺、羅姿婷。2024。暖化趨勢下的臺灣極端高溫與衝擊。2024臺灣氣候變遷分析系列報告。新北市:國家災害防救科技中心。 許龍欣、陳榮坤。2022。高溫對稻米白堊質的影響及因應對策。臺南區農業專訊:1-5。 陳韋綸、沈偉強、張芳瑜、張為斌、余宗學、賴明信、廖睿瑜、吳志文、鍾嘉綾。2015。應用於臺灣良質米品種改良之抗稻熱病基因座分析與分子標誌開發。植物病理學會刊 24:225-240。 陳勵勤、羅正宗。2016。漫談水稻臺南 11 號之貢獻。臺南區農業專訊:12-15。 陳繹年、陳珮臻。2020。被忽略的稻熱病初次感染源-『帶病秧苗』。植物醫學 62:13-16。 盧虎生。1999。溫度對水稻穀粒充實發育及稻米品質的影響。環境與稻作生產:105-119。 農業部農糧署。2024。農耕土地面積。檢自:'https://agrstat.moa.gov.tw/sdweb/public/official/OfficialInformation.aspx' (Jun 13, 2025). Abdullah, M., Furtado, A., Masouleh, A. K., Okemo, P., and Henry, R. J. 2024. An improved haplotype resolved genome reveals more rice genes. Trop. Plants 3:e009. Bisht, N., Anshu, A., Singh, P. C., and Chauhan, P. S. 2023. Comprehensive analysis of OsJAZ gene family deciphers rhizobacteria-mediated nutrient stress modulation in rice. Int. J. Biol. Macromol. 253:126832. Bruinsma, J. 2003. World Agriculture: Towards 201572030: An FAO Perspective, Earthscan, London and FAO, Rome. Bürger, M., and Chory, J. 2019. Stressed out about hormones: how plants orchestrate immunity. Cell Host Microbe 26:163-172. Cao, Y., Ding, X., Cai, M., Zhao, J., Lin, Y., Li, X., Xu, C., and Wang, S. 2007. The expression pattern of a rice disease resistance gene xa3/xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177:523-533. Chaloner, T. M., Gurr, S. J., and Bebber, D. P. 2021. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Chang. 11:710-715. Chen, D., M. Rojas, B.H. Samset, K. Cobb, A. Diongue Niang, P. Edwards, S. Emori, S.H. Faria, E. Hawkins, P. Hope, P. Huybrechts, M. Meinshausen, S.K. Mustafa, G. K. Plattner, and A. M. Tréguier. 2021. Framing, context, and methods. In climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 147-286. Chen, J., Xu, Y., Fei, K., Wang, R., He, J., Fu, L., Shao, S., Li, K., Zhu, K., Zhang, W., Wang, Z., and Yang, J. 2020. Physiological mechanism underlying the effect of high temperature during anthesis on spikelet-opening of photo-thermo-sensitive genic male sterile rice lines. Sci. Rep. 10:2210. Chen, Y. C., Hu, C. C., Chang, F. Y., Chen, C. Y., Chen, W. L., Tung, C. W., Shen, W. C., Wu, C. W., Cheng, A. H., Liao, D. J., Liao, C. Y., Liu, L. y. D., and Chung, C. L. 2021. Marker-assisted development and evaluation of monogenic lines of rice cv. Kaohsiung 145 carrying blast resistance genes. Plant Dis. 105:3858-3868. Chen, Y. N., Wu, D. H., Chen, M. C., Hsieh, M. T., Jwo, W. S., Lin, G. C., Chen, R. K., Chou, H. P., and Chen, P. C. 2023. Dynamics of spatial and temporal population structure of Pyricularia oryzae in Taiwan. Pest Manag. Sci. 79:4254-4263. Cheng, A. P., Chen, S. Y., Lai, M. H., Wu, D. H., Lin, S. S., Chen, C. Y., and Chung, C. L. 2020. Transcriptome analysis of early defenses in rice against Fusarium fujikuroi. Rice 13:65. Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., and He, P. 2013. Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 4:2530. Chiu, M. C., Chen, C. L., Chen, C. W., and Lin, H. J. 2022. Weather fluctuation can override the effects of integrated nutrient management on fungal disease incidence in the rice fields in Taiwan. Sci. Rep. 12:4273. Chung, C. L., Longfellow, J. M., Walsh, E. K., Kerdieh, Z., Van Esbroeck, G., Balint-Kurti, P., and Nelson, R. J. 2010. Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize-Setosphaeria turcica pathosystem. BMC Plant Bio. 10:103. Cohen, S. P., and Leach, J. E. 2019. Abiotic and biotic stresses induce a core transcriptome response in rice. Sci. Rep. 9:6273. de Jong, C. F., Takken, F. L. W., Cai, X., de Wit, P. J. G. M., and Joosten, M. H. A. J. 2002. Attenuation of Cf-mediated defense responses at elevated temperatures correlates with a decrease in elicitor-binding sites. Mol. Plant. Microbe. Interact. 15:1040-1049. De Vleesschauwer, D., Gheysen, G., and Höfte, M. 2013. Hormone defense networking in rice: tales from a different world. Trends Plant Sci. 18:555-565. Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. Devanna, B. N., Jain, P., Solanke, A. U., Das, A., Thakur, S., Singh, P. K., Kumari, M., Dubey, H., Jaswal, R., Pawar, D., Kapoor, R., Singh, J., Arora, K., Saklani, B. K., AnilKumar, C., Maganti, S. M., Sonah, H., Deshmukh, R., Rathour, R., and Sharma, T. R. 2022. Understanding the dynamics of blast resistance in rice-Magnaporthe oryzae interactions. J. Fungus 8:584. Du, H., Liu, H., and Xiong, L. 2013. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci. 4:397. El Refaei, M. 1977. Epidemiology of rice blast disease in tropics with special reference to the leaf wetness in relation to disease development. New Delhi. Ph. D. Thesis, Indian Agricultural Research Institute. Feng, B., Zhang, C., Chen, T., Zhang, X., Tao, L., and Fu, G. 2018. Salicylic acid reverses pollen abortion of rice caused by heat stress. BMC Plant Bio. 18:245. Gao, P., Li, M., Wang, X., Xu, Z., Wu, K., Sun, Q., Du, H., Younas, M. U., Zhang, Y., Feng, Z., Hu, K., Chen, Z., and Zuo, S. 2023. Identification of elite R-gene combinations against blast disease in geng rice varieties. Int. J. Mol. Sci. 24:3984. Garg, R., Tyagi, A. K., and Jain, M. 2012. Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice. Plant Signal. Behav. 7:951-956. Giri, J., Dansana, P. K., Kothari, K. S., Sharma, G., Vij, S., and Tyagi, A. K. 2013. SAPs as novel regulators of abiotic stress response in plants. BioEssays 35:639-648. Haq, M., Mia, M. T., Rabbi, M., and Ali, M. 2011. Incidence and severity of rice diseases and insect pests in relation to climate change. Climate change and food security in South Asia:445-457. Hassan, B., Peng, Y. T., Li, S., Yin, X. X., Chen, C., Gulzar, F., Zhou, S. X., Pu, M., Ji, Y. P., Wang, Y. P., Zhao, W., Huang, F., Peng, Y. L., Zhao, Z. X., and Wang, W. M. 2022. Identification of the blast resistance genes in three elite restorer lines of hybrid rice. Phytopathol. Res. 4:15. Ho, C. H., Yang, C. M., Hsiao, C. L., and Lai, M. H. 2013. Changes of climatic variables during grain-filling stage affect yield and quality of rice cultivars bred from different regions in Taiwan. J. Taiwan Agric. Res. 62:321-339. Hsu, H. H., and Lin, S. M. 2007. Asymmetry of the tripole rainfall pattern during the East Asian summer. J. Clim. 20:4443-4458. Hsuan, T. P., Jhuang, P. R., Wu, W. C., and Lur, H. S. 2019. Thermotolerance evaluation of Taiwan japonica type rice cultivars at the seedling stage. Bot. Stud. 60:1-18. Hua, J. 2013. Modulation of plant immunity by light, circadian rhythm, and temperature. Curr. Opin. Plant Biol. 16:406-413. Hudson, A., Mullens, A., Hind, S., Jamann, T., and Balint-Kurti, P. 2024. Natural variation in the pattern-triggered immunity response in plants: Investigations, implications and applications. Mol. Plant Pathol. 25:e13445. Hulbert, S. H., Webb, C. A., Smith, S. M., and Sun, Q. 2001. Resistance gene complexes: evolution and utilization. Annu. Rev. Phytopathol. 39:285-312. Huot, B., Castroverde, C. D. M., Velásquez, A. C., Hubbard, E., Pulman, J. A., Yao, J., Childs, K. L., Tsuda, K., Montgomery, B. L., and He, S. Y. 2017. Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat. Commun. 8:1808. Hwang, S. H., and Hwang, D. J. 2010. Isolation and characterization of the rice NPR1 promoter. Plant Biotechnol. Rep. 4:29-35. IMBE, T., and MATSUMOTO, S. 1985. Inheritance of resrstance of rice vanetles to the blast fungus strains virulent to the variety" Reiho". Jpn. J. Breed. 35:332-339. IRRI. 2013. Standard evaluation system for rice. 5th ed. International Rice Research Institute, Manila, Phillipines. Islam, M. R., Feng, B., Chen, T., Tao, L., and Fu, G. 2018. Role of abscisic acid in thermal acclimation of plants. J. Plant Biol. 61:255-264. Jain, P., Singh, P. K., Kapoor, R., Khanna, A., Solanke, A. U., Krishnan, S. G., Singh, A. K., Sharma, V., and Sharma, T. R. 2017. Understanding host-pathogen interactions with expression profiling of NILs carrying rice-blast resistance Pi9 gene. Front. Plant Sci. 8:93. Jiang, L., Zhang, X., Zhao, Y., Zhu, H., Fu, Q., Lu, X., Huang, W., Yang, X., Zhou, X., Wu, L., Yang, A., He, X., Dong, M., Peng, Z., Yang, J., Guo, L., Wen, J., Huang, H., Xie, Y., Zhu, S., Li, C., He, X., Zhu, Y., Friml, J., and Du, Y. 2024. Phytoalexin sakuranetin attenuates endocytosis and enhances resistance to rice blast. Nat. Commun. 15:3437. Kato, H. 2001. Rice blast disease. Pesticide outlook 12:23-25. Katsantonis, D., Kadoglidou, K., Dramalis, C., and Puigdollers, P. 2017. Rice blast forecasting models and their practical value: a review. Phytopathol. Mediterr. 56:187-216. Kaur, G., Guruprasad, K., Temple, B. R. S., Shirvanyants, D. G., Dokholyan, N. V., and Pati, P. K. 2018. Structural complexity and functional diversity of plant NADPH oxidases. Amino Acids 50:79-94. Kim, C. K., Min, H. S., and Yoshino, R. 1990. Epidemiological studies of rice blast disease caused by Pyricularia oryzae Cavara (III) diurnal pattern of conidial release and dispersal under the natural conditions. Jpn. J. Phytopathol. 56:315-321. Kim, J. H., Castroverde, C. D. M., Huang, S., Li, C., Hilleary, R., Seroka, A., Sohrabi, R., Medina-Yerena, D., Huot, B., Wang, J., Nomura, K., Marr, S. K., Wildermuth, M. C., Chen, T., MacMicking, J. D., and He, S. Y. 2022. Increasing the resilience of plant immunity to a warming climate. Nature 607:339-344. Kirtphaiboon, S., Humphries, U., Khan, A., and Yusuf, A. 2021. Model of rice blast disease under tropical climate conditions. Chaos Solition. Fract. 143:110530. Kodama, O., Miyakawa, J., Akatsuka, T., and Kiyosawa, S. 1992. Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31:3807-3809. Kothari, K. S., Dansana, P. K., Giri, J., and Tyagi, A. K. 2016. Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses. Front. Plant Sci. 7:1057. Kueh, M., Lin, C., Chuang, Y., Sheng, Y., and Chien, Y. 2017. Climate variability of heat waves and their associated diurnal temperature range variations in Taiwan. Environ. Res. Lett. 12:074017. Lee, A., Cho, K., Jang, S., Rakwal, R., Iwahashi, H., Agrawal, G. K., Shim, J., and Han, O. 2004. Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice. Biochem. Biophys. Res. Commun. 318:734-738. Lee, S. Y., Kim, Y. H., and Lee, G. S. 2017. Mapping QTLs associated to germination stability following dry-heat treatment in rice seed. 3 Biotech. 7:220. Lee, S., Lee, J., and Kwon, T. 2002. Varietal differences in seed germination and seedling vigor of Korean rice varieties following dry heat treatment. Seed Sci. Technol. 30:311–321. Li, Y., Cheah, B. H., Fang, Y. F., Kuang, Y. H., Lin, S. C., Liao, C. T., Huang, S. H., Lin, Y. F., and Chuang, W. P. 2021. Transcriptomics identifies key defense mechanisms in rice resistant to both leaf-feeding and phloem feeding herbivores. BMC Plant Biol. 21:306. Liang, B., Wang, H., Yang, C., Wang, L., Qi, L., Guo, Z., and Chen, X. 2022. Salicylic acid is required for broad-spectrum disease resistance in rice. Int. J. Mol. Sci. 23:1354. Lin, H. I., Yu, Y. Y., Wen, F. I., and Liu, P. T. 2022. Status of food security in East and Southeast Asia and challenges of climate change. Climate 10:40. Lin, Z., Jiang, W., Wang, J., and Lei, C. 2001. Research and utilization of universally susceptible property of japonica rice variety Lijiangxintuanheigu. Sci. Agric. Sin. 34:116-117. Liu, W., Zhou, X., Li, G., Li, L., Kong, L., Wang, C., Zhang, H., and Xu, J. R. 2011. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog. 7:e1001261. Lu, L., Wang, Q., Shi, Z., Li, C., Guo, Z., and Li, J. 2023. Emergence of rice blast AVR-Pi9 resistance breaking haplotypes in Yunnan province, China. Life 13:1320. Ma, J., Morel, J. B., Riemann, M., and Nick, P. 2022. Jasmonic acid contributes to rice resistance against Magnaporthe oryzae. BMC Plant Bio. 22:601. Madhusudhan, P., Sinha, P., Rajput, L. S., Bhattacharya, M., Sharma, T., Bhuvaneshwari, V., Gaikwad, K., Krishnan, S. G., and Singh, A. K. 2019. Effect of temperature on Pi54-mediated leaf blast resistance in rice. World J. Microbiol. Biotechnol. 35:148. Manosalva, P. M., Davidson, R. M., Liu, B., Zhu, X., Hulbert, S. H., Leung, H., and Leach, J. E. 2009. A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol. 149:286-296. Mei, C., Qi, M., Sheng, G., and Yang, Y. 2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol. Plant. Microbe. Interact. 19:1127-1137. Menna, A., Nguyen, D., Guttman, D. S., and Desveaux, D. 2015. Elevated temperature differentially influences effector-triggered immunity outputs in Arabidopsis. Front. Plant Sci. 6:995. Mentlak, T. A., Kombrink, A., Shinya, T., Ryder, L. S., Otomo, I., Saitoh, H., Terauchi, R., Nishizawa, Y., Shibuya, N., Thomma, B. P. H. J., and Talbot, N. J. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. The Plant Cell 24:322-335. Mitsuhara, I., Iwai, T., Seo, S., Yanagawa, Y., Kawahigasi, H., Hirose, S., Ohkawa, Y., and Ohashi, Y. 2008. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol. Genet. Genom. 279:415-427. Miyamoto, K., Enda, I., Okada, T., Sato, Y., Watanabe, K., Sakazawa, T., Yumoto, E., Shibata, K., Asahina, M., Iino, M., Yokota, T., Okada, K., and Yamane, H. 2016. Jasmonoyl-l-isoleucine is required for the production of a flavonoid phytoalexin but not diterpenoid phytoalexins in ultraviolet-irradiated rice leaves. Biosci. Biotechnol. Biochem. 80:1934-1938. Mukhopadhyay, A., Vij, S., and Tyagi, A. K. 2004. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 101:6309-6314. Nasir, F., Tian, L., Chang, C., Li, X., Gao, Y., Tran, L. S. P., and Tian, C. 2018. Current understanding of pattern-triggered immunity and hormone-mediated defense in rice (Oryza sativa) in response to Magnaporthe oryzae infection. Semin. Cell Biol. 83:95-105. Ogawa, S., Miyamoto, K., Nemoto, K., Sawasaki, T., Yamane, H., Nojiri, H., and Okada, K. 2017. OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci. Rep. 7:40175. Onaga, G., Wydra, K. D., Koopmann, B., Séré, Y., and von Tiedemann, A. 2012. Effects of high temperature on R gene mediated resistance to rice blast in two genetic backgrounds of rice. In: Tielkes E. (ed) Proceedings of annual conference on resilience of agricultural systems against crises, 19-21 September 2012. Tropentag, Hamburg, Germany. Onaga, G., Wydra, K. D., Koopmann, B., Séré, Y., and von Tiedemann, A. 2016. Elevated temperature increases in planta expression levels of virulence related genes in Magnaporthe oryzae and compromises resistance in Oryza sativa cv. Nipponbare. Funct. Plant Biol. 44:358-371. Onaga, G., Wydra, K., Koopmann, B., Chebotarov, D., Séré, Y., and Von Tiedemann, A. 2017. High temperature effects on Pi54 conferred resistance to Magnaporthe oryzae in two genetic backgrounds of Oryza sativa. J. Plant Physiol. 212:80-93. Park, H. L., Yoo, Y., Hahn, T. R., Bhoo, S. H., Lee, S. W., and Cho, M. H. 2014. Antimicrobial activity of UV-induced phenylamides from rice leaves. Molecules 19:18139-18151. Qiu, J., Xie, J., Chen, Y., Shen, Z., Shi, H., Naqvi, N. I., Qian, Q., Liang, Y., and Kou, Y. 2022. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. Mol. Plant 15:723-739. Qiu, Y., and Yu, D. 2009. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ. Exp. Bot. 65:35-47. Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., Han, B., and Wang, G. L. 2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901-1914. Rajput, L. S., Sharma, T., Madhusudhan, P., and Sinha, P. 2017a. Effect of temperature on growth and sporulation of rice leaf blast pathogen Magnaporthe oryzae. Int. J. Curr. Microbiol. Appl. Sci 6:394-401. Rajput, L. S., Sharma, T., Madhusudhan, P., and Sinha, P. 2017b. Effect of temperature on rice blast infection process with emphasis on appressoria formation by Magnaporthe oryzae. Int. J. Curr. Microbiol. App. Sci. 6:1931-1939. Ren, H., Bao, J., Gao, Z., Sun, D., Zheng, S., and Bai, J. 2023. How rice adapts to high temperatures. Front. Plant Sci. 14:1137923. Ritchie, H., Rosado, P., and Roser, M. 2023. Agricultural production. Published online at OurWorldinData.org. Retrieved from: 'https://ourworldindata.org/agricultural-production' (Jun 13, 2025). Sahu, A., Das, A., Saikia, K., and Barah, P. 2020. Temperature differentially modulates the transcriptome response in Oryza sativa to Xanthomonas oryzae pv. oryzae infection. Genomics 112:4842-4852. Sangwan, S., Shameem, N., Yashveer, S., Tanwar, H., Parray, J. A., Jatav, H. S., Sharma, S., Punia, H., Sayyed, R. Z., Almalki, W. H., and Poczai, P. 2022. Role of salicylic acid in combating heat stress in plants. Front. Biosci. (Landmark Ed) 27:310. Satake, T., and Yoshida, S. 1978. High temperature-induced sterility in indica rices at flowering. Jpn. J. Crop Sci. 47:6-17. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671-675. Shepherd, S., Yuen, E. L. H., Carella, P., and Bozkurt, T. O. 2023. The wheels of destruction: plant NLR immune receptors are mobile and structurally dynamic disease resistance proteins. Curr. Opin. Plant Biol. 74:102372. Shah, F., Huang, J., Cui, K., Nie, L., Shah, T., Chen, C., and Wang, K. 2011. Impact of high-temperature stress on rice plant and its traits related to tolerance. J. Agric. Sci. 149:545-556. Shi, X., Xiong, Y., Zhang, K., Zhang, Y., Zhang, J., Zhang, L., Xiao, Y., Wang, G. L., and Liu, W. 2023. The ANIP1-OsWRKY62 module regulates both basal defense and Pi9-mediated immunity against Magnaporthe oryzae in rice. Mol. Plant 16:739-755. Shi, Y., Chang, Y. L., Wu, H. T., Shalmani, A., Liu, W. T., Li, W. Q., Xu, J. W., and Chen, K. M. 2020. OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice. Plant Cell Rep. 39:1767-1784. Shimono, M., Sugano, S., Nakayama, A., Jiang, C. J., Ono, K., Toki, S., and Takatsuji, H. 2007. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. The Plant Cell 19:2064-2076. Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P., and Raskin, I. 1995. Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 108:633-639. Singh, J., Gupta, S. K., Devanna, B. N., Singh, S., Upadhyay, A., and Sharma, T. R. 2020. Blast resistance gene Pi54 over-expressed in rice to understand its cellular and sub-cellular localization and response to different pathogens. Sci. Rep. 10:5243. Skamnioti, P., and Gurr, S. J. 2009. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol. 27:141-150. Su, S., Tang, P., Zuo, R., Chen, H., Zhao, T., Yang, S., and Yang, J. 2023. Exogenous jasmonic acid alleviates blast resistance reduction caused by LOX3 knockout in rice. Biomolecules 13:1197. Sugano, S., Jiang, C. J., Miyazawa, S. I., Masumoto, C., Yazawa, K., Hayashi, N., Shimono, M., Nakayama, A., Miyao, M., and Takatsuji, H. 2010. Role of OsNPR1 in rice defense program as revealed by genome-wide expression analysis. Plant Mol. Biol. 74:549-562. Sutthiphai, T., Damchuay, K., Neupane, R. C., Longya, A., Sriwongchai, T., Songkumarn, P., Parinthawong, N., Darwell, K., and Jantasuriyarat, C. 2022. Genetic variation of avirulence genes (AVR-Pi9, AVR-Pik, AVR-Pita1) and genetic diversity of rice blast fungus, Pyricularia oryzae, in Thailand. Plant Pathol. 71:322-333. Takahashi, S., Kimura, S., Kaya, H., Iizuka, A., Wong, H. L., Shimamoto, K., and Kuchitsu, K. 2012. Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB. J. Biochem. 152:37-43. Takatsuji, H., Jiang, C. J., and Sugano, S. 2010. Salicylic acid signaling pathway in rice and the potential applications of its regulators. Jpn. Agric. Res. Q. 44:217-223. Talbot, N. J. 2019. Appressoria. Curr. Biol. 29:R144-R146. Tamaoki, D., Seo, S., Yamada, S., Kano, A., Miyamoto, A., Shishido, H., Miyoshi, S., Taniguchi, S., Akimitsu, K., and Gomi, K. 2013. Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal. Behav. 8:e24260. Thomma, B. P., Nürnberger, T., and Joosten, M. H. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4-15. Tian, T., Chen, L., Ai, Y., and He, H. 2022. Selection of candidate genes conferring blast resistance and heat tolerance in rice through integration of Meta-QTLs and RNA-Seq. Genes 13:224. Trang Nguyen, H., Thi Mai To, H., Lebrun, M., Bellafiore, S., and Champion, A. 2019. Jasmonates-the master regulator of rice development, adaptation and defense. Plants (Basel) 8:339. Tseng, W. L., Lin, S. Y., Wang, Y. C., Lo, S. H., Lo, M. H., Lee, S. Y., Tsai, C. T., and Hsu, H. H. 2023. Impact of Pacific–Japan pattern on temperature and heatwave events in summer over Taiwan. Int. J. Climatol. 43:7067-7081. Tsunematsu, H., Yanoria, M. J. T., Ebron, L. A., Hayashi, N., Ando, I., Kato, H., Imbe, T., and Khush, G. S. 2000. Development of monogenic lines of rice for blast resistance. Breed. Sci. 50:229-234. Tyagi, H., Jha, S., Sharma, M., Giri, J., and Tyagi, A. K. 2014. Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Sci. 225:68-76. Velásquez, A. C., Castroverde, C. D. M., and He, S. Y. 2018. Plant–pathogen warfare under changing climate conditions. Curr. Biol. 28:R619-R634. Viswanath, K., Sharma, T., Sinha, P., and Kumar, M. 2015. Influence of temperature on appressorial formation in M. grisea in relation to cAMP-dependent PKA activity. J. Pure Appl. Microbiol. 9:2903-2913. Viswanath, K., Sinha, P., Naresh Kumar, S., Sharma, T., Saxena, S., Panjwani, S., Pathak, H., and Shukla, S. M. 2017. Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario. Clim. Change 142:155-167. Wang, G. F., Li, W. Q., Li, W. Y., Wu, G. L., Zhou, C. Y., and Chen, K. M. 2013. Characterization of rice NADPH oxidase genes and their expression under various environmental conditions. Int. J. Mol. Sci. 14:9440-9458. Wang, Q., Shen, T., Ni, L., Chen, C., Jiang, J., Cui, Z., Wang, S., Xu, F., Yan, R., and Jiang, M. 2023a. Phosphorylation of OsRbohB by the protein kinase OsDMI3 promotes H2O2 production to potentiate ABA responses in rice. Mol. Plant 16:882-902. Wang, R., He, F., Ning, Y., and Wang, G. L. 2020. Fine-Tuning of RBOH-mediated ROS signaling in plant immunity. Trends in Plant Science 25:1060-1062. Wang, Y., Bao, Z., Zhu, Y., and Hua, J. 2009. Analysis of temperature modulation of plant defense against biotrophic microbes. Mol. Plant. Microbe. Interact. 22:498-506. Wang, Y., Lei, B., Deng, H., Liu, X., Dong, Y., Chen, W., Lu, X., Chen, G., Zhang, G., Tang, W., and Xiao, Y. 2023b. Exogenous abscisic acid affects the heat tolerance of rice seedlings by influencing the accumulation of ROS. Antioxidants (Basel) 12:1404. Wang, Z. X., Yamanouchi, U., Katayose, Y., Sasaki, T., and Yano, M. 2001. Expression of the Pib rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences. Plant Mol. Biol. 47:653-661. Webb, K. M., Oña, I., Bai, J., Garrett, K. A., Mew, T., Vera Cruz, C. M., and Leach, J. E. 2010. A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytol. 185:568-576. Wilson, R. A., and Talbot, N. J. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7:185-195. Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C., Song, M. Y., Cumagun, C. J. R., Deng, Q., Lu, G., Jeon, J. S., Naqvi, N. I., and Zhou, B. 2015. Comparative genomics identifies the agnaporthe Moryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol. 206:1463-1475. Wu, N., Yao, Y., Xiang, D., Du, H., Geng, Z., Yang, W., Li, X., Xie, T., Dong, F., and Xiong, L. 2022. A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of Jasmonate-zim-domain genes in rice. New Phytol. 234:1315-1331. Wu, Y. S., and Yang, C. Y. 2019. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Bot. Stud. 60:23. Xie, X. Z., Xue, Y. J., Zhou, J. J., Zhang, B., Chang, H., and Takano, M. 2011. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol. Plant 4:688-696. Xie, Y., Wang, Y., Yu, X., Lin, Y., Zhu, Y., Chen, J., Xie, H., Zhang, Q., Wang, L., Wei, Y., Xiao, Y., Cai, Q., Zheng, Y., Wang, M., Xie, H., and Zhang, J. 2022. SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice. Mol. Plant 15:1931-1946. Yamada, S., Kano, A., Tamaoki, D., Miyamoto, A., Shishido, H., Miyoshi, S., Taniguchi, S., Akimitsu, K., and Gomi, K. 2012. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol. 53:2060-2072. Yan, X., Tang, B., Ryder, L. S., MacLean, D., Were, V. M., Eseola, A. B., Cruz-Mireles, N., Ma, W., Foster, A. J., Osés-Ruiz, M., and Talbot, N. J. 2023. The transcriptional landscape of plant infection by the rice blast fungus Magnaporthe oryzae reveals distinct families of temporally co-regulated and structurally conserved effectors. Plant Cell 35:1360-1385. Yang, C., Li, W., Cao, J., Meng, F., Yu, Y., Huang, J., Jiang, L., Liu, M., Zhang, Z., Chen, X., Miyamoto, K., Yamane, H., Zhang, J., Chen, S., and Liu, J. 2017. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J. 89:338-353. Yang, J., Miao, W., and Chen, J. 2021. Roles of jasmonates and brassinosteroids in rice responses to high temperature stress-a review. Crop J. 9:977-985. Ye, H., Du, H., Tang, N., Li, X., and Xiong, L. 2009. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol. Biol. 71:291-305. Yin, X., Kropff, M. J., and Goudriaan, J. 1996. Differential effects of day and night temperature on development to flowering in rice. Ann. Bot. 77:203-213. Yuan, Y., Zhong, S., Li, Q., Zhu, Z., Lou, Y., Wang, L., Wang, J., Wang, M., Li, Q., Yang, D., and He, Z. 2007. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol. J. 5:313-324. Zhai, C., Zhang, Y., Yao, N., Lin, F., Liu, Z., Dong, Z., Wang, L., and Pan, Q. 2014. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS ONE 9:e98067. Zhai, K., Liang, D., Li, H., Jiao, F., Yan, B., Liu, J., Lei, Z., Huang, L., Gong, X., Wang, X., Miao, J., Wang, Y., Liu, J. Y., Zhang, L., Wang, E., Deng, Y., Wen, C. K., Guo, H., Han, B., and He, Z. 2022. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature 601:245-251. Zhang, H., Wang, F., Song, W., Yang, Z., Li, L., Ma, Q., Tan, X., Wei, Z., Li, Y., Li, J., Yan, F., Chen, J., and Sun, Z. 2023. Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1. Nat. Commun. 14:3011. Zhang, M., Luo, X., He, W., Zhang, M., Peng, Z., Deng, H., and Xing, J. 2024. OsJAZ4 fine-tunes rice blast resistance and yield traits. Plants 13:348. Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., and Asseng, S. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 114:9326-9331. Zhao, Q., Guan, X., Zhou, L., Asad, M. A. U., Xu, Y., Pan, G., and Cheng, F. 2023. ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion. Plant Cell Environ. 46:1453-1471. Zhao, X., He, Y., Liu, Y., Wang, Z., and Zhao, J. 2024. JAZ proteins: key regulators of plant growth and stress response. Crop J. 12:1505-1516. Zhu, Y., Su, H., Liu, X. X., Sun, J. F., Xiang, L., Liu, Y. J., Hu, Z. W., Xiong, X. Y., Yang, X. M., Bhutto, S. H., Li, G. B., Peng, Y. Y., Wang, H., Shen, X., Zhao, Z. X., Zhang, J. W., Huang, Y. Y., Fan, J., Wang, W. M., and Li, Y. 2024. Identification of NADPH oxidase genes crucial for rice multiple disease resistance and yield traits. Rice 17:1. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96395 | - |
| dc.description.abstract | 近年來全球暖化問題日益嚴重,水稻作為全球重要糧食作物,栽培過程中常受 Pyricularia oryzae 侵害造成稻熱病發生,環境溫度上升在減少水稻產量同時也可能改變 P. oryzae 與水稻之間之交互作用。為瞭解高溫環境對稻熱病之影響,本研究測試 25 株臺灣本土 P .oryzae 對熱的耐受性,發現相較於 26℃,32℃ 及 35℃ 嚴重抑制 P. oryzae 於燕麥瓊脂培養基之菌絲生長 (平均抑制率分別為 59.1% 及 99.8%) 與產孢能力 (平均抑制率分別為 99.3% 及 99.6%)。使用受高溫影響較少的 P. oryzae 12CY-MS1-2 進行人工接種試驗,相較於日/夜溫 28/26℃ 處理,35/33℃ 處理顯著減少麗江新團黑穀 (Lijiangxintuanheigu, LTH)、高雄 145 號 (Kaohsiung No. 145, KH145) 及臺南 11 號之罹病級數,但加劇日本晴 (Nipponbare, NPB) 之病徵;帶有 Pi2、Pi9 及 Ptr 等抗稻熱病基因之 LTH 及 KH145 單基因品系中,Pi9 及 Ptr 於 LTH 遺傳背景時,高溫下罹病級數略為上升,Pi2 則在兩種遺傳背景均維持高度抗性。高溫雖抑制 P. oryzae 12CY-MS1-2 在植株葉片上的產孢 (35/33℃ 處理抑制率為 78-100%) 及壓器形成能力 (35/33℃ 處理抑制率為 26.4-43.7%),但仍具有二次傳播及侵染之風險。本研究選擇在臺灣具有優良抗性表現之 Pi9,透過 quantitative reverse transcription PCR (RT-qPCR) 進行基因表現量測定,結果顯示 35/33℃ 高溫環境下 Pi9 仍能表現,與其對應之稻熱病菌 avirulence (Avr) 基因 AvrPi9 於部分品種則表現量提升,顯示高溫強化 P. oryzae 侵染水稻之能力。進一步以 RT-qPCR 檢測活性氧生成基因 respiratory burst oxidase homologues B (OsRbohB) 及受植物賀爾蒙水楊酸 (salicylic acid, SA) 與茉莉酸 (jasmonic acid, JA) 調控之稻熱病抗性相關基因之表現量,發現不同品種應對高溫逆境之調控方式有所差異,但部分基因對高溫處理呈現相同趨勢,如高溫抑制 OsRbohB、SA 訊號傳遞基因 nonexpresser of pathogenesis-related genes 1 (OsNPR1) 及 JA 生合成基因 allene oxide synthase 2 (OsAOS2) 之表現;而 SA 訊號傳遞基因 WRKY DNA-binding protein 45 (OsWRKY45) 與 JA 訊號傳遞基因 jasmonate-zim-domain protein 9 (OsJAZ9) 於高溫下受到誘導;防禦下游基因 pathogenesis related protein 1b (OsPR1b) 則在 LTH、KH145 及 NPB 於侵染早期受高溫抑制;與非生物及生物逆境相關基因 stress associated protein 1 (OsSAP1) 則在高溫下受到誘導,並於 KH145 遺傳背景中有更高的表現,顯示 KH145 可能具有較好的耐非生物或生物逆境之能力。帶有 Pi9、遺傳背景為 KH145 之水稻品種臺大高雄 1 號 (National Taiwan University-Kaohsiung No. 1, NTU-KH1) 於高溫環境下維持對稻熱病高度抗性,且多種參與非生物逆境之基因 (OsRbohB、OsWRKY45 及 OsJAZ9) 於高溫環境上調,顯示具有抗非生物逆境之潛力。本研究探討高溫下水稻與 P. oryzae 之間的交互作用,期望為稻作病害管理提供科學依據,以確保糧食安全,減少氣候變遷帶來的潛在損失。 | zh_TW |
| dc.description.abstract | In recent years, the problem of global warming has become increasingly serious. Rice, as one of the world’s most important staple crops, is often attacked by Pyricularia oryzae, which causes rice blast during cultivation. Rising temperatures not only reduce rice yields, but may also alter the interaction between P. oryzae and rice. To understand the impact of high temperature on rice blast, this study tested the heat tolerance of 25 P. oryzae isolates from Taiwan. Compared to 26℃, both 32℃ and 35℃ significantly inhibited the mycelial growth (average inhibition rates were 59.1% and 99.8%, respectively) and sporulation ability (average inhibition rates were 99.3% and 99.6%, respectively) of P. oryzae on oatmeal agar medium (OMA). The inoculation experiments were conducted using P. oryzae 12CY-MS1-2, which was less affected by high temperatures. Compared to the treatment with day/night temperature of 28/26℃, the 35/33℃ treatment significantly reduced the disease severity in rice varieties Lijiangxintuanheigu (LTH), Kaohsiung No. 145 (KH145), and Tainan No. 11, but enhanced the disease symptoms in Nipponbare (NPB). Among the LTH and KH145 monogenic lines carrying blast resistance genes Pi2, Pi9, and Ptr, Pi9 and Ptr showed a slight increase in disease severity under high temperatures in the LTH genetic background, while Pi2 maintained high resistance in both genetic backgrounds. Although high temperatures suppressed the sporulation of P. oryzae 12CY-MS1-2 on rice leaves (inhibition rates were 78-100% at 35/33℃) and reduced its appressorium formation ability (inhibition rates were 26.4-43.7%), there remains a risk of secondary transmission and infection. This study selected Pi9, which has been highly resistant in Taiwan, and quantified its expression through quantitative reverse transcription PCR (RT-qPCR). The results showed that Pi9 remained expressed in the high temperature environment of 35/33℃. The corresponding avirulence (Avr) gene of P. oryzae, AvrPi9, exhibited increased expression in some varieties under high temperature, suggesting that elevated temperature enhances the virulence of P. oryzae. RT-qPCR was also conducted to quantify the expression of reactive oxygen species (ROS)-producing gene respiratory burst oxidase homologues B (OsRbohB) and the blast resistance-related genes regulated by plant hormones salicylic acid (SA) and jasmonic acid (JA). The results revealed differences in regulatory responses to high temperature among different rice varieties. However, some genes showed similar trends in response to high temperature treatment. For example, high temperature suppressed the expression of OsRbohB, SA signaling gene nonexpresser of pathogenesis-related genes 1 (OsNPR1), and JA biosynthesis gene allene oxide synthase 2 (OsAOS2). Conversely, SA signaling gene WRKY DNA-binding protein 45 (OsWRKY45) and JA signaling gene jasmonate-zim-domain protein 9 (OsJAZ9) were induced under high temperature. The downstream defense gene pathogenesis related protein 1b (OsPR1b) was suppressed in LTH, KH145 and NPB during the early stage of infection under high temperature. Stress associated protein 1 (OsSAP1), a gene related to abiotic and biotic stresses, was induced under high temperature and showed higher expression in KH145 genetic background. This indicates that KH145 may have better tolerance to both abiotic and biotic stresses. The rice variety National Taiwan University-Kaohsiung No. 1 (NTU-KH1), which carries Pi9 in the KH145 genetic background, maintained high resistance to rice blast under high temperature, and a variety of genes involved in abiotic stress (OsRbohB, OsWRKY45 and OsJAZ9) were upregulated under high temperature, indicating the potential to resist abiotic stresses. This study investigated the interaction between rice and P. oryzae under high-temperature conditions, offering a scientific basis for rice disease management to enhance food security and reduce potential losses driven by climate change. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:16:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-13T16:16:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目次 vi 表次 viii 圖次 ix 第一章 研究背景 1 1.1 全球暖化下的臺灣環境 1 1.2 高溫於水稻之損害 1 1.3 高溫對稻熱病之影響 2 1.4 水稻面對高溫與稻熱病菌雙重危害之反應 3 1.4.1 高溫對植物賀爾蒙調控路徑之影響 4 1.4.2 高溫對植物免疫之影響 6 1.5 研究動機與目的 8 第二章 材料與方法 10 2.1 植物材料與栽培方法 10 2.2 菌株來源及培養方式 10 2.3 P. oryzae 之菌落生長及產孢能力測試 11 2.4 P. oryzae 接種及水稻抗性評估 11 2.5 病斑產孢能力測試 12 2.5 P. oryzae 在水稻葉片上壓器形成測試 12 2.6 基因表現分析 13 2.6.1 RNA 萃取 13 2.6.2 Quantitative reverse transcription PCR (RT-qPCR) 14 2.7 統計分析 16 第三章 結果 17 3.1 高溫對 P. oryzae 之菌落生長及產孢能力影響 17 3.2 高溫對 P. oryzae 病原性及水稻抗感病表現之影響 17 3.2.1 高溫對水稻抗感病性之影響 17 3.2.2 高溫對 Pi2、Pi9、Ptr 於不同遺傳背景的抗性表現影響 18 3.2.3 高溫對病斑產孢能力之影響 18 3.2.4 高溫對 P. oryzae 壓器形成之影響 19 3.3 高溫對水稻防禦基因表現之影響 19 3.3.1 PTI 及 ETI 19 3.3.2 植物賀爾蒙路徑 20 第四章 討論 22 4.1 高溫對臺灣本土 P. oryzae 之影響 22 4.2 高溫可能增強 P. oryzae 效應蛋白並抑制 PTI 反應 23 4.3 Pi9 在高溫表現並賦予高溫下水稻之稻熱病抗性 25 4.4 遺傳背景對高溫下抗性表現之影響 27 4.5 NPB 於高溫失去抗性 28 4.6 高溫對 SA 及 JA 調控防禦路徑之影響 29 4.7 臺灣高溫下稻熱病的風險與管理 32 參考文獻 34 附表 53 附圖 61 附錄 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 稻熱病 | zh_TW |
| dc.subject | 植物防禦反應 | zh_TW |
| dc.subject | 抗性基因 | zh_TW |
| dc.subject | 二次感染源 | zh_TW |
| dc.subject | 壓器形成 | zh_TW |
| dc.subject | 產孢 | zh_TW |
| dc.subject | Pyricularia oryzae | zh_TW |
| dc.subject | 高溫逆境 | zh_TW |
| dc.subject | plant defense response | en |
| dc.subject | heat stress | en |
| dc.subject | rice blast | en |
| dc.subject | Pyricularia oryzae | en |
| dc.subject | sporulation | en |
| dc.subject | appressorium formation | en |
| dc.subject | secondary inoculum | en |
| dc.subject | resistance gene | en |
| dc.title | 高溫對稻熱病菌致病性及水稻防禦反應之影響 | zh_TW |
| dc.title | The effects of high temperature on Pyricularia oryzae virulence and rice defense responses | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 沈偉強;張芳瑜;張皓巽 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Chiang Shen;Fang-Yu Chang;Hao-Xun Chang | en |
| dc.subject.keyword | 高溫逆境,稻熱病,Pyricularia oryzae,產孢,壓器形成,二次感染源,抗性基因,植物防禦反應, | zh_TW |
| dc.subject.keyword | heat stress,rice blast,Pyricularia oryzae,sporulation,appressorium formation,secondary inoculum,resistance gene,plant defense response, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202500456 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-06 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | 2030-02-06 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2030-02-06 | 7.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
