請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林坤佑 | zh_TW |
| dc.contributor.advisor | Kun-You Lin | en |
| dc.contributor.author | 林顥庭 | zh_TW |
| dc.contributor.author | Hao-Ting Lin | en |
| dc.date.accessioned | 2025-02-13T16:12:37Z | - |
| dc.date.available | 2025-02-14 | - |
| dc.date.copyright | 2025-02-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-06 | - |
| dc.identifier.citation | [1] M. A. Morton, J. P. Comeau, J. D. Cressler, M. Mitchell and J. Papapolymerou, "Sources of Phase Error and Design Considerations for Silicon-Based Monolithic High-Pass/Low-Pass Microwave Phase Shifters," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4032-4040, Dec. 2006
[2] Yun-Chieh Chiang, Wei-Tsung Li, Jeng-Han Tsai, and Tian-Wei Huang, "A 60GHz digitally controlled 4-bit phase shifter with 6-ps group delay deviation," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012 [3] W. -T. Li, Y. -C. Chiang, J. -H. Tsai, H. -Y. Yang, J. -H. Cheng and T. -W. Huang, "60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, March 2013 [4] J. -H. Tsai, Y. -L. Tung and Y. -H. Lin, "A 27–42-GHz Low Phase Error 5-Bit Passive Phase Shifter in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 9, pp. 900-903, Sept. 2020 [5] J. Pang et al., "A 28-GHz CMOS Phased-Array Beamformer Utilizing Neutralized Bi-Directional Technique Supporting Dual-Polarized MIMO for 5G NR," in IEEE Journal of Solid-State Circuits, vol. 55, no. 9, pp. 2371-2386, Sept. 2020 [6] H. Ha yashi, M. Muraguchi, Y. Umeda, and T. Enoki, "A high-Q broad-band active inductor and its application to a low-loss analog phase shifter," IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 12, pp. 2369-2374, Dec. 1996, [7] L. Liang-Hung and L. Yu-Te, "A 4-GHz phase shifter MMIC in 0.18-pm CMOS," IEEE Microwave and Wireless Components Letters, vol. 15, no. 10, pp. 694-696, Oct. 2005 [8] A. S. Nagra and R. A. York, "Distributed analog phase shifters with low insertion loss," IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 9, pp. 1705-1711, Sept. 1999 [9] F. Ellinger, H. Jackel, and W. Bachtold, "Varactor-loaded transmission-line phase shifter at C-band using lumped elements," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1135-1140, Apr. 2003 [10] R. Garg and A. S. Natarajan, "A 28-GHz Low-Power Phased-Array Receiver Front-End With 360* RTPS Phase Shift Range," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4703-4714, Nov. 2017 [11] D. Pepe and D. Zito, "Two mm-Wave Vector Modulator Active Phase Shifters With Novel IQ Generator in 28 nm FDSOI CMOS," in IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 344-356, Feb. 2017. [12] E. Sung and S. Hong, "A Wideband W-band 6-bit Active Phase Shifter in 28-nm RF CMOS," 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2019. [13] B. -H. Ku, O. Inac, M. Chang, H. -H. Yang and G. M. Rebeiz, "A High-Linearity 76–85-GHz 16-Element 8-Transmit/8- Receive Phased-Array Chip With High Isolation and FlipChip Packaging," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 10, pp. 2337-2356, Oct. 2014. [14] S. Afroz and Kwang-Jin Koh, "90° hybrid-coupler based phase-interpolation phase-shifter for phased-array applications at W-band and beyond," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 2016. [15] H. Lee and B. Min, "W-Band CMOS 4-Bit Phase Shifter for High Power and Phase Compression Points," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 1, pp. 1-5, Jan. 2015. [16] S. Y. Kim and G. M. Rebeiz, "A 4-Bit Passive Phase Shifter for Automotive Radar Applications in 0.13 μm CMOS," 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium, 2009. [17] S. Y. Kim, O. Inac, C. Kim, D. Shin, and G. M. Rebeiz, "A 76–84-GHz 16-Element Phased-Array Receiver With a Chip-Level Built-In Self-Test System," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 3083-3098, Aug. 2013. [18] R. Garg and A. S. Natarajan, "A 28-GHz Low-Power Phased-Array ReceiverFront-End With 360* RTPS Phase Shift Range," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4703-4714, Nov. 2017 [19] F. Ellinger, R. Vogt, and W. Bachtold, "Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler," in IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 5, pp. 913-917, May 2001 [20] B. Sun et al., "A 6-Bit E-band Vector-Sum Phase Shifter With Transformer-Based Hybrid in 65nm CMOS," 2023 IEEE MTT-S International Wireless Symposium (IWS), Qingdao, China, 2023 [21] M. H. Sahlabadi, H. Yu, J. Xia, and S. Boumaiza, "A Compact, High Tuning Accuracy and Enhanced Linearity 37-43 GHz Digitally-Controlled Vector Sum Phase Shifter," 2024 IEEE 24th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Antonio, TX, USA, 2024 [22] J. -H. Tsai, K. -J. Lin, H. Xiao, and W. -T. Li, "A 39 GHz 5-Bit Switch Type Phase Shifter using 65 nm CMOS Technology," 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 2019 [23] Dong-Woo Kang, Hui Dong Lee, Chung-Hwan Kim, and Songcheol Hong, "Ku-band MMIC phase shifter using a parallel resonator with 0.18-/spl mu/m CMOS technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 294-301, Jan. 2006 [24] Y. -F. Tsao, H. -S. Hsu, J. Würfl and H. -T. Hsu, "Dual-Band Power Amplifier Design at 28/38 GHz for 5G New Radio Applications," in IEEE Access, vol. 10, pp. 77826-77836, 2022 [25] L. Samoska et al., "On the stability of millimeter-wave power amplifiers," 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), Seattle, WA, USA, 2002 [26] G. F. Engen and C. A. Hoer, "Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer," in IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 12, pp. 987-993, Dec. 1979 [27] Nikandish, G., Yousefi, A., & Medi, A. (2014). Stability analysis of broadband cascode amplifiers in the presence of inductive parasitic components. IET Circuits, Devices & Systems, 8(6), 469-477 [28] M. Ćwikliński et al., "D-Band and G-Band High-Performance GaN Power Amplifier MMICs," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 5080-5089, Dec. 2019, [29] D. P. Nguyen, X. -T. Tran, N. L. K. Nguyen, P. T. Nguyen and A. -V. Pham, "A Wideband High Efficiency Ka-Band MMIC Power Amplifier for 5G Wireless Communications," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019 [30] P. -C. Huang, Z. -M. Tsai, K. -Y. Lin and H. Wang, "A 17–35 GHz Broadband, High Efficiency PHEMT Power Amplifier Using Synthesized Transformer Matching Technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 112-119, Jan. 2012 [31] D. N. Martin, P. Enrico de Falco, M. Roberg, G. Lasser, and T. W. Barton, "An 18–38-GHz K-/Ka-Band Reconfigurable Chireix Outphasing GaAs MMIC Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3028-3038, July 2020 [32] D. P. Nguyen, T. Pham, B. L. Pham and A. -V. Pham, "A High Efficiency High Power Density Harmonic-Tuned Ka Band Stacked-FET GaAs Power Amplifier," 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2016 [33] I. Huang et al., "A 29.6 dBm 29-GHz Power Amplifier for Satellite and 5G Communications Using 0.15-μm GaAs p-HEMT Technology," 2018 Asia-Pacific Microwave Conference (APMC), 2018, pp. 986-988, doi: 10.23919/APMC.2018 [34] A. Alizadeh, M. Frounchi and A. Medi, "On Design of Wideband Compact-Size Ka/Q-Band High-Power Amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 6, pp. 1831-1842, June 2016 [35] Y. -F. Tsao, H. -S. Hsu, J. Würfl and H. -T. Hsu, "Dual-Band Power Amplifier Design at 28/38 GHz for 5G New Radio Applications," in IEEE Access, vol. 10, pp. 77826-77836, 2022 [36] B. -W. Huang, Z. -H. Fu and K. -Y. Lin, "A Millimeter-Wave Ultra-Wide Band Power Amplifier in 0.15-μm GaAs pHEMT for 5G Communication," 2022 Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 2022 [37] K. -J. Koh and G. M. Rebeiz, "0.13-um CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays," in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007 [38] Y. -T. Chang, K. -Y. Lin and T. -L. Wu, "Wideband Reconfigurable Power Divider/Combiner in 40-nm CMOS for 5G mmW Beamforming System," in IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 2, pp. 1410-1422, Feb. 2022 [39] J. Pang et al., "A 28-GHz CMOS Phased-Array Beamformer Supporting Dual-Polarized MIMO with Cross-Polarization Leakage Cancellation," 2020 IEEE Symposium on VLSI Circuits, 2020 [40] Y. -T. Chang, Z. -W. Ou, H. Alsuraisry, A. Sayed and H. -C. Lu, "A 28-GHz Low-Power Vector-Sum Phase Shifter Using Biphase Modulator and Current Reused Technique," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018 [41] F. Akbar and A. Mortazawi, "A Frequency Tunable 360° Analog CMOS Phase Shifter With an Adjustable Amplitude," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 12, pp. 1427-1431, Dec. 2017 [42] J. Pang et al., "A 28-GHz CMOS Phased-Array Beamformer Supporting Dual-Polarized MIMO with Cross-Polarization Leakage Cancellation," 2020 IEEE Symposium on VLSI Circuits, 2020 [43] W. Y. Li, L. Wang, Y. J. Cheng and Y. Fan, "Design of Ku-Band Bi-Directional Wideband Active Phase Shifter Using Reconfigurable Network," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2021 [44] J. -H. Tsai, Y. -L. Tung and Y. -H. Lin, "A 27–42-GHz Low Phase Error 5-Bit Passive Phase Shifter in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 9, pp. 900-903, Sept. 2020 [45] K.-J. Koh and G. M. Rebeiz, “0.13-µm CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535–2546, Nov. 2007. [46] S. P. Sah and D. Heo, “An ultra-wideband 15–35 GHz phase-shifter for beamforming applications,” in Proc. IEEE Eur. Microw. Integr. Circuit (EuMIC), Oct. 2013, pp. 264–267 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96380 | - |
| dc.description.abstract | 這篇論文由三個主要部分組成,其中兩部分是應用在W頻段和第五代移動通信系統的毫米波相移器,另一部分是應用在第五代移動通信系統的Ka頻段功率放大器。
第一部分介紹了一個使用65奈米CMOS製程的W-band 5位元雙向開關型相移器。首先使用開關型相移器實現11.25°、22.5°和45°的相移單元。接著,使用改良式反射型相移器實現90°相移單元。此外,為了減少相移器的損耗及不同相位狀態下的振幅差異,添加了一個雙向可變增益放大器。透過電流鏡調整增益,可以減少相移器的損耗及不同相位狀態下的振幅差異。為實現寬頻180°相位移性能,在BDVGA的輸出匹配變壓器中添加了雙刀單擲(DPST)開關。然而,量測結果與模擬結果有些差異,此部分差異將在討論部分中進行探討。 在第二部分中,介紹了一個採用0.15微米GaAs pHEMT製程的Ka頻段功率放大器。採用疊接FET架構來減緩增益隨頻率的變化,以實現寬頻帶的性能。在疊接FET架構中,結合接地電容可使所設計的頻率範圍內MAG曲線的頻率敏感性降低。疊接FET架構也使最佳負載阻抗隨頻率的變化減小,透過輸出匹配網路可以獲得寬頻功率性能。輸入和級間匹配網路針對增加小信號增益平坦度做設計,以實現寬頻小信號響應。然而,WIN Semiconductors提供的模擬模型不準確,導致量測時發生頻帶內的震盪。這個問題將會在討論部分中進行詳細討論。 第三部分介紹了一個使用90奈米CMOS製程的Ka頻段雙向相移器。首先設計了一個具有低幅度不平衡的寬頻正交生成器。然後實現了一個具有180°相移功能的雙向可變增益放大器,以調整每個I/Q信號的增益。可變增益放大器的增益控制範圍足以提供11.25°的解析度。因此,這個5位元相移器具有寬頻增益性能以及低均方根相位和振幅誤差。然而,量測結果與模擬結果有些差異,此差異將在討論部分中進行探討。 | zh_TW |
| dc.description.abstract | This thesis consists of three main parts, two of which are millimeter-wave phase shifters for the W-band and the fifth-generation mobile communication system, and the other is a Ka-band power amplifier for the fifth-generation mobile communication system.
In the first part, a 70-95 GHz 5-bit switch-type phase shifter implemented in a 65-nm CMOS process is presented. First, switch-type phase shifters are used to achieve 11.25°, 22.5°, and 45° phase shift cells. Then, a bi-phase switching reflection-type topology is used for a 90° phase shift bit. Furthermore, to reduce the loss of the phase shifter and the amplitude differences among the different phase states, a bi-directional variable gain amplifier (BDVGA) is added. By adjusting the gain via a current mirror, the loss of the phase shifter and the amplitude differences among the different phase states can be reduced. Moreover, to achieve wideband 180° phase shift performance, a double-pole single-through (DPST) switch is added to the output matching transformer of the BDVGA. However, the measured results differ from the simulation results; this discrepancy will be discussed. In the second part, a Ka-band power amplifier fabricated in 0.15-μm GaAs pHEMT process is presented. The stacked-FET topology was adopted for mitigation of the gain roll-off with frequency to achieve similar performance at a wide frequency band. In the stacked-FET configuration, the combination of the grounding capacitance could also effectively make the MAG profile less frequency-sensitive in the frequency range of interest. Then, the output matching network is adopted to obtain wide-band power performance. The input and inter-stage matching network is designed for small signal gain-flatness to achieve wide-band small signal response. However, the inaccuracies in the simulation model provided by WIN Semiconductors resulted in in-band oscillations. This issue will be examined in more detail. In the third part, a Ka-band bi-directional phase shifter implemented in a 90-nm CMOS process is presented. First, a wide-band quadrature generator with low amplitude imbalance is designed. Then, a bi-directional variable gain amplifier with half-cycle phase shift capability is implemented to adjust each gain of I/Q signals. The gain control range of the variable gain amplifier is sufficient to provide a resolution of 11.25°. As a result, the 5-bit phase shifter has a wide-band gain performance as well as low root-mean-square phase and amplitude errors. However, the measured results differ from the simulation results; this discrepancy will be discussed. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:12:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-13T16:12:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 v ABSTRACT vi CONTENTS viii LIST OF FIGURES xiii LIST OF TABLES xxxv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Introduction of Phased Array Systems 2 1.3 Contributions 5 1.4 Thesis Organization 7 Chapter 2 A W-band 5-bit Bi-directional Phase Shifter in 65-nm CMOS 8 2.1 Introduction 8 2.2 Introduction to Various Phase Shifter Topologies 9 2.2.1 Tunable Transmission Line Phase Shifter 9 2.2.2 Reflection-type Phase Shifter 11 2.2.3 Vector-sum Phase Shifter 12 2.2.4 Switch-type Phase Shifter 14 2.3 Circuit Design 15 2.3.1 Block Diagram 15 2.3.2 Design of Switch-Type Phase shifter 16 2.3.3 Design of Switching Reflection-Type Phase Shifter 33 2.3.4 Design of Bi-directional Variable Gain Amplifier 47 2.3.5 Design of 180° Phase Shift Mechanism 60 2.3.6 Design of the Power Grid Network 65 2.3.7 Circuit Schematic 66 2.4 Simulation Results 67 2.4.1 S-parameters 67 2.4.2 RMS Phase/Amplitude Error 71 2.4.3 Noise Figure 75 2.5 Measured Results 75 2.5.1 S-parameters 76 2.5.2 RMS Phase/Amplitude Error 80 2.6 Discussion 83 2.7 Summary 94 Chapter 3 A Ka-band power amplifier in 0.15-μm GaAs pHEMT 98 3.1 Introduction 98 3.2 Circuit Design 99 3.2.1 Block Diagram 99 3.2.2 Comparison of a Single Device and Stacked FETs 99 3.2.3 Device Selection of Power Stage 100 3.2.4 Design of Output Matching Network 105 3.2.5 Device Selection of Driver Stage 108 3.2.6 Design of Inter-stage and Input Matching Network 110 3.2.7 Circuit Schematic 116 3.3 Simulation Results 118 3.3.1 Small-Signal Simulation 118 3.3.2 Large-Signal Simulation 119 3.3.3 Third Intercept Point (IP3) Simulation 125 3.3.4 Even Mode Stability Simulation 126 3.3.5 Odd Mode Stability Simulation 132 3.4 Measured Results 140 3.5 Discussion 142 3.5.1 Introduction 142 3.5.2 Design of TRL Calibration 144 3.5.3 Measured Results and Comparison 148 3.5.4 Methods to Improve Stability 151 3.6 Summary 164 Chapter 4 A Ka-band 5-bit Bi-directional phase shifter in 90-nm CMOS 166 4.1 Introduction 166 4.2 Fundamental Theory of Vector-sum Phase Shifters 167 4.3 Circuit Design 168 4.3.1 Block Diagram 168 4.3.2 Design of Quadrature Power Splitter 169 4.3.3 Design of Variable Gain Amplifier 180 4.3.4 Design of 0-π Phase Switch 202 4.3.4 Circuit Schematic 208 4.4 Simulated Results 209 4.4.1 S-parameters 209 4.4.2 RMS Phase/Amplitude Error 212 4.4.3 Noise Figure 215 4.4.4 Large-signal Simulation 216 4.5 Measured Results 218 4.5.1 Measurement Results in Backward Mode 219 4.5.2 Measurement Results in Forward Mode 222 4.6 Discussion 225 4.7 Summary 235 Chapter 5 Conclusion 238 REFERENCE 240 | - |
| dc.language.iso | en | - |
| dc.subject | CMOS | zh_TW |
| dc.subject | 相移器 | zh_TW |
| dc.subject | 雙向 | zh_TW |
| dc.subject | W頻段 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | Ka頻段 | zh_TW |
| dc.subject | 疊接FET | zh_TW |
| dc.subject | phase shifter | en |
| dc.subject | Ka-band | en |
| dc.subject | W-band | en |
| dc.subject | bi-directional | en |
| dc.subject | power amplifier | en |
| dc.subject | stacked-FET | en |
| dc.subject | CMOS | en |
| dc.title | 應用於雙向相位陣列系統寬頻毫米波相移器與應用於第五代行動通訊毫米波系統寬頻疊接式功率放大器之研究 | zh_TW |
| dc.title | Research on Millimeter-wave Wideband Phase Shifters for Bi-directional Phased Array Systems and Ka-band Wideband Stacked-FET Power Amplifier for 5G Millimeter-wave Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡作敏;張鴻埜;蔡政翰;高堃堯 | zh_TW |
| dc.contributor.oralexamcommittee | Zuo-Min Tsai;Hong-Yeh Chang;Jeng-Han Tsai;Kun-Yao Gao | en |
| dc.subject.keyword | CMOS,疊接FET,Ka頻段,功率放大器,W頻段,雙向,相移器, | zh_TW |
| dc.subject.keyword | CMOS,stacked-FET,power amplifier,phase shifter,bi-directional,W-band,Ka-band, | en |
| dc.relation.page | 248 | - |
| dc.identifier.doi | 10.6342/NTU202500338 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 14.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
