請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96367| 標題: | 低軌道衛星網絡中基於深度強化學習的衛星輔助群眾外包直播 LEO-assisted Crowdsourced Livecast with Deep Reinforcement Learning on Satellite Networks |
| 作者: | 王梓旭 Tzu Hsu Wang |
| 指導教授: | 廖婉君 Wan jiun Liao |
| 關鍵字: | 低軌道衛星,衛星邊緣運算,眾包直播,深度強化學習, Low Earth Orbit,Satellite Edge Computing,Crowdsourced Livecast,Deep Reinforcement Learning, |
| 出版年 : | 2024 |
| 學位: | 碩士 |
| 摘要: | 在眾包直播中,觀眾端的觀看環境和對使用者體驗和偏好有異質性,導致如何符合成本效益地優化觀眾使用者體驗成了前所未有的挑戰。透過低軌衛星進行傳輸有望成為一個解決方案。然而,衛星的移動性、計算資源以及能源限制也成為了一大考驗。因此,本文提出資源分配的解決方案。基於直播主、衛星網路和觀眾的大量實時信息做出智能決策。而考慮到在這種背景下的過高計算複雜性,我們提出搭配深度強化學習的解決方案,能夠自動學習最合適的觀眾調度和轉碼選擇策略。 In crowdsourced live streaming, the diverse viewing environments and user experience preferences present significant challenges in cost-effectively optimizing audience experience. Transmission via low Earth orbit (LEO) satellites shows promise but also faces challenges due to mobility, computing resources, and energy constraints. This paper proposes a resource allocation solution. By leveraging real-time information from broadcasters, satellite networks, and viewers, we aim to meet user experience demands while minimizing system costs. Given the high computational complexity, we incorporate deep reinforcement learning (DRL) to automatically learn optimal strategies for viewer scheduling and transcoding selection. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96367 |
| DOI: | 10.6342/NTU202500030 |
| 全文授權: | 未授權 |
| 電子全文公開日期: | N/A |
| 顯示於系所單位: | 電機工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 5.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
