Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 分子科學與技術國際研究生博士學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96365
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor謝雅萍zh_TW
dc.contributor.advisorYa-Ping Hsiehen
dc.contributor.author陳定睿zh_TW
dc.contributor.authorDing-Rui Chenen
dc.date.accessioned2025-01-05T16:07:11Z-
dc.date.available2025-01-07-
dc.date.copyright2025-01-04-
dc.date.issued2024-
dc.date.submitted2024-12-17-
dc.identifier.citation1. Velický, M.; Toth, P. S., Applied Materials Today 2017,8, 68-103.
2. Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L., Chemical reviews 2018,118,13,6236-6296.
3. Glavin, N. R.; Rao, R.; Varshney, V.; Bianco, E.; Apte, A.; Roy, A.; Ringe, E.;Ajayan, P. M., Advanced Materials 2020,32,7, 1904302.
4. Tanjil, M. R.-E.; Jeong, Y.; Yin, Z.; Panaccione, W.; Wang, M. C., Coatings 2019,9,2, 133.
5. Wang, S.; Liu, X.; Xu, M.; Liu, L.; Yang, D.; Zhou, P., Nature Materials 2022,21,11, 1225-1239.
6. Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P., Advanced Energy Materials 2016,6,23, 1600671.
7. Wang, S.; Liu, X.; Zhou, P., Advanced Materials 2022,34,48, 2106886.
8. Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; Hettick, M.; Hu, C. C.; Javey, A., ACS nano 2014,8,6, 6259-6264.
9. Nalwa, H. S., RSC advances 2020,10,51, 30529-30602.
10. Mattevi, C.; Kim, H.; Chhowalla, M., Journal of Materials Chemistry 2011,21,10, 3324-3334.
11. Najafabadi, A. T., Renewable and Sustainable Energy Reviews 2015,41, 1515-1545.
12. Mwakikunga, B. W.; Hillie, K. T., Graphene synthesis, catalysis with transition metals and their interactions by laser photolysis. InTech: 2011.
13. Al-Dhahebi, A. M.; Gopinath, S. C. B.; Saheed, M. S. M., Nano Convergence 2020,7, 1-23.
14. Wang, X.-Y.; Narita, A.; Müllen, K., Nature Reviews Chemistry 2017,2,1, 0100.
15. Xu, Y.; Cao, H.; Xue, Y.; Li, B.; Cai, W., Nanomaterials 2018,8,11, 942.
16. Backes, C.; Hanlon, D.; Szydlowska, B. M.; Harvey, A.; Smith, R. J.; Higgins, T. M.; Coleman, J. N., JoVE (Journal of Visualized Experiments) 2016,118, e54806.
17. Zhang, F.; Yang, K.; Liu, G.; Chen, Y.; Wang, M.; Li, S.; Li, R., Composites Part A: Applied Science and Manufacturing 2022,160, 107051.
18. Backes, C.; Higgins, T. M.; Kelly, A.; Boland, C.; Harvey, A.; Hanlon, D.; Coleman, J. N., Chemistry of materials 2017,29,1, 243-255.
19. Penney, J.; Tsai, L.-H., Elimination of senescent cells prevents neurodegeneration in mice. Nature Publishing Group UK London: 2018.
20. Pham, T. T.; Do, Q. H.; Ngo, T. K.; Sporken, R., Materials Today Communications 2019,18, 184-190.
21. Hernández, A. R. R.; Cruz, A. G.; Campos-Delgado, J., Chemical Vapor Deposition Synthesis of Graphene on Copper Foils. In Graphene-A Wonder Material for Scientists and Engineers, IntechOpen: 2022.
22. Kairi, M. I.; Khavarian, M.; Bakar, S. A.; Vigolo, B.; Mohamed, A. R., Journal of Materials Science 2018,53,2, 851-879.
23. Jin, Y.; Hu, B.; Wei, Z.; Luo, Z.; Wei, D.; Xi, Y.; Zhang, Y.; Liu, Y., Journal of Materials Chemistry A 2014,2,38, 16208-16216.
24. Kaymak, N.; Bayram, O.; Tataroğlu, A.; Bilge Ocak, S.; Oz Orhan, E., Journal of Materials Science: Materials in Electronics 2020,31,12, 9719-9725.
25. Ho, K.-I.; Huang, C.-H.; Liao, J.-H.; Zhang, W.; Li, L.-J.; Lai, C.-S.; Su, C.-Y., Scientific reports 2014,4,1, 5893.
26. Chronopoulos, D. D.; Bakandritsos, A.; Pykal, M.; Zbořil, R.; Otyepka, M., Applied materials today 2017,9, 60-70.
27. Borse, R. A.; Kale, M. B.; Sonawane, S. H.; Wang, Y., Advanced Functional Materials 2022,32,26, 2202570.
28. Gao, Q.; Zhang, W.; Shi, Z.; Yang, L.; Tang, Y., Advanced Materials 2019,31,2, 1802880.
29. Chen, S. H.; Hofmann, M.; Yen, Z. L.; Hsieh, Y. P., Advanced Functional Materials 2020,30,40, 2004370.
30. Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H., Materials Today 2017,20,3, 116-130.
31. Yang, R.; Fan, Y.; Zhang, Y.; Mei, L.; Zhu, R.; Qin, J.; Hu, J.; Chen, Z.; Hau Ng, Y.; Voiry, D., Angewandte Chemie International Edition 2023,62,13, e202218016.
32. Shi, Z.; Khaledialidusti, R.; Malaki, M.; Zhang, H., Nanomaterials 2021,11,12, 3170.
33. Hoang Huy, V. P.; Ahn, Y. N.; Hur, J., Nanomaterials 2021,11,6, 1517.
34. Han, S. A.; Bhatia, R.; Kim, S.-W., Nano Convergence 2015,2,1, 1-14.
35. Rai, A.; Movva, H. C.; Roy, A.; Taneja, D.; Chowdhury, S.; Banerjee, S. K.,Crystals 2018,8,8, 316.
36. Gan, X.; Lee, L. Y. S.; Wong, K.-y.; Lo, T. W.; Ho, K. H.; Lei, D. Y.; Zhao, H., ACS Applied Energy Materials 2018,1,9, 4754-4765.
37. Venkata Subbaiah, Y.; Saji, K.; Tiwari, A., Advanced Functional Materials 2016,26,13, 2046-2069.
38. Thomas, N.; Mathew, S.; Nair, K. M.; O'Dowd, K.; Forouzandeh, P.; Goswami, A.; McGranaghan, G.; Pillai, S. C., Materials Today Sustainability 2021,13, 100073.
39. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Nano letters 2011,11,12, 5111-5116.
40. Shi, J.; Ma, D.; Han, G.-F.; Zhang, Y.; Ji, Q.; Gao, T.; Sun, J.; Song, X.; Li, C.; Zhang, Y., ACS nano 2014,8,10, 10196-10204.
41. Zhang, X.; Zhang, Y.; Yu, H.; Zhao, H.; Cao, Z.; Zhang, Z.; Zhang, Y., Advanced Materials 2023, 2207966.
42. Novoselov, K.; Mishchenko, A.; Carvalho, A.; Castro Neto, A., Science 2016,353,6298, aac9439.
43. Li, M.-Y.; Chen, C.-H.; Shi, Y.; Li, L.-J., Materials Today 2016,19,6, 322-335.
44. Yang, W.; Chen, G.; Shi, Z.; Liu, C.-C.; Zhang, L.; Xie, G.; Cheng, M.; Wang, D.; Yang, R.; Shi, D., Nature materials 2013,12,9, 792-797.
45. Shinde, P. V.; Tripathi, A.; Thapa, R.; Rout, C. S., Coordination Chemistry 95 Reviews 2022,453, 214335.
46. Qi, R.; Wang, S.; Wang, M.; Liu, W.; Yan, Z.; Bi, X.; Huang, Q., Chemical Communications 2017,53,70, 9757-9760.
47. Bo, W.; Zou, Y.; Wang, J., RSC advances 2021,11,53, 33675-33691.
48. Yano, Y.; Mitoma, N.; Ito, H.; Itami, K., The Journal of Organic Chemistry 2019,85,1, 4-33.
49. Wang, Z.; Zhang, X.; Hachtel, J. A.; Apte, A.; Tiwary, C. S.; Vajtai, R.; Idrobo, J. C.; Ozturk, R.; Ajayan, P., Nanoscale Horizons 2019,4,3, 689-696.
50. Xuan, L.; Jiongpeng, H.; Yifan, Z.; Lei, S., Progress in Chemistry 2023,35,1, 88.
51. Qi, Z.; Cao, P.; Park, H. S., Journal of Applied Physics 2013,114,16.
52. Wei, T.; Li, H.; Fu, Y.; Zheng, X.; Huang, L.; Song, A., Carbon 2023,210, 118053.
53. Oh, J.; Yoo, H.; Choi, J.; Kim, J. Y.; Lee, D. S.; Kim, M. J.; Lee, J.-C.; Kim, W. N.; Grossman, J. C.; Park, J. H., Nano Energy 2017,35, 26-35.
54. Qi, J.; Qian, X.; Qi, L.; Feng, J.; Shi, D.; Li, J., Nano letters 2012,12,3, 1224-1228.
55. Zeng, X.; Zhao, C.; Nie, T.; Shen, Z.-Y.; Yu, R.; Stucky, G., Materials Today Physics 2022,28, 100888.
56. Yao, S.; Cui, J.; Lu, Z.; Xu, Z. L.; Qin, L.; Huang, J.; Sadighi, Z.; Ciucci, F.; Kim, J. K., Advanced Energy Materials 2017,7,8, 1602149.
57. Huang, Y.; Li, Y.; Zhang, G.; Liu, W.; Li, D.; Chen, R.; Zheng, F.; Ni, H., Journal of Alloys and Compounds 2019,778, 603-611.
58. Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X., Applied Catalysis B: Environmental 2020,268, 118382.
59. Liu, F.; Chen, X.; Wang, X.; Han, Y.; Song, X.; Tian, J.; He, X.; Cui, H., Sensors and Actuators B: Chemical 2019,291, 155-163.
60. Jeong, S.-J.; Jo, S.; Lee, J.; Yang, K.; Lee, H.; Lee, C.-S.; Park, H.; Park, S., Nano Letters 2016,16,9, 5378-5385.
61. Kotekar-Patil, D.; Deng, J.; Wong, S. L.; Lau, C. S.; Goh, K. E. J., Applied Physics Letters 2019,114,1.
62. Celis, A.; Nair, M. N.; Taleb-Ibrahimi, A.; Conrad, E. H.; Berger, C.; De Heer, W.; Tejeda, A., Journal of Physics D: Applied Physics 2016,49,14, 143001.
63. Li, S.; Lin, Y.-C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z.; Shen, Y.; Tang, D.-M.; Wang, J.; Zhang, Q., Nature materials 2018,17,6, 535-542.
64. Liu, X.; Xu, T.; Wu, X.; Zhang, Z.; Yu, J.; Qiu, H.; Hong, J.-H.; Jin, C.-H.; Li, J.-X.; Wang, X.-R., Nature communications 2013,4,1, 1776.
65. Aljarb, A.; Fu, J.-H.; Hsu, C.-C.; Chuu, C.-P.; Wan, Y.; Hakami, M.; Naphade, D. R.; Yengel, E.; Lee, C.-J.; Brems, S., Nature Materials 2020,19,12, 1300-1306.
66. Li, Y.; Moy, E. C.; Murthy, A. A.; Hao, S.; Cain, J. D.; Hanson, E. D.; DiStefano, J. G.; Chae, W. H.; Li, Q.; Wolverton, C., Advanced Functional Materials 2018,28,13, 1704863.
67. Jiao, S.; Kong, M.; Hu, Z.; Zhou, S.; Xu, X.; Liu, L., Small 2022,18,16, 2105129.
68. Wei, Z.; Hsu, C.; Almakrami, H.; Lin, G.; Hu, J.; Jin, X.; Agar, E.; Liu, F.,Electrochimica Acta 2019,316, 173-180.
69. Jacobberger, R. M.; Murray, E. A.; Fortin-Deschênes, M.; Göltl, F.; Behn, W. A.; Krebs, Z. J.; Levesque, P. L.; Savage, D. E.; Smoot, C.; Lagally, M. G., Nanoscale 2019,11,11, 4864-4875.
70. Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y., Nano letters 2013,13,3, 1341-1347.
71. Chen, S.; Kim, S.; Chen, W.; Yuan, J.; Bashir, R.; Lou, J.; Van Der Zande, A. M.; King, W. P., Nano Letters 2019,19,3, 2092-2098.
72. Aljarb, A.; Fu, J.-H.; Hsu, C.-C.; Chuu, C.-P.; Wan, Y.; Hakami, M.; Naphade, D. R.; Yengel, E.; Lee, C.-J.; Brems, S., Nat. Mater. 2020,19,12, 1300-1306.
73. Li, Q.; Newberg, J.; Walter, E.; Hemminger, J.; Penner, R., Nano Letters 2004,4,2, 277-281.
74. Padmajan Sasikala, S.; Singh, Y.; Bing, L.; Yun, T.; Koo, S. H.; Jung, Y.; Kim, S. O., Nature communications 2020,11,1, 1-8.
75. Pak, Y.; Kim, Y.; Lim, N.; Min, J.-W.; Park, W.; Kim, W.; Jeong, Y.; Kim, H.; Kim, K.; Mitra, S., APL Materials 2018,6,7, 076102.
76. Hung, Y.-H.; Lu, A.-Y.; Chang, Y.-H.; Huang, J.-K.; Chang, J.-K.; Li, L.-J.; Su, C.-Y., ACS Applied Materials & Interfaces 2016,8,32, 20993-21001.
77. Padmajan Sasikala, S.; Singh, Y.; Bing, L.; Yun, T.; Koo, S. H.; Jung, Y.; Kim, S. O., Nature communications 2020,11,1, 5032.
78. Wang, Z.; Almdal, K.; Semenova, E.; Jannasch, P.; Posselt, D.; Ndoni, S., 2017.
79. Kang, S. H.; Hwang, W. S.; Lin, Z.; Kwon, S. H.; Hong, S. W., Nano Letters 2015,15,12, 7913-7920.
80. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y., Chemical reviews 2019,120,2, 851-918.
81. Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F., Acs Catalysis 2014,4,11, 3957-3971.
82. Wu, A.; Gu, Y.; Xie, Y.; Yan, H.; Jiao, Y.; Wang, D.; Tian, C., Journal of Alloys and Compounds 2021,867, 159066.
83. Zhu, J.; Yang, R.; Zhang, G., ChemPhysMater 2022,1,2, 102-111.
84. Duan, X.; Xu, J.; Wei, Z.; Ma, J.; Guo, S.; Liu, H.; Dou, S., Small Methods 2017,1,11, 1700156.
85. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F., Science 2017,355,6321, eaad4998.
86. Raja Sulaiman, R. R.; Hanan, A.; Wong, W. Y.; Mohamad Yunus, R.; Shyuan Loh, K.; Walvekar, R.; Chaudhary, V.; Khalid, M., Catalysts 2022,12,12, 1576.
87. Lao, M.; Li, P.; Jiang, Y.; Pan, H.; Dou, S. X.; Sun, W., Nano Energy 2022,98, 107231.
88. Fu, Q.; Han, J.; Wang, X.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W.; Liu, S.; Gao, T.; Zhang, Z., Advanced Materials 2021,33,6, 1907818.
89. Liu, J.; Hou, S.; Li, W.; Bandarenka, A. S.; Fischer, R. A., Chemistry–An Asian Journal 2019,14,20, 3474-3501.
90. Paul, S., Ber. Dtsch. Chem. Ges 1911,44, 17.97
91. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J.; Chen, J. G.; Pandelov, S.; Stimming, U., Journal of The Electrochemical Society 2005,152,3, J23.
92. Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K., The Journal of Physical Chemistry C 2010,114,42, 18182-18197.
93. Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T., Proceedings of the National Academy of Sciences 2011,108,3, 937-943.
94. Mondal, A.; Vomiero, A., Advanced Functional Materials 2022,32,52, 2208994.
95. Morales-Guio, C. G.; Stern, L.-A.; Hu, X., Chemical Society Reviews 2014,43,18, 6555-6569.
96. Sahoo, P. K.; Bisoi, S. R.; Huang, Y.-J.; Tsai, D.-S.; Lee, C.-P., Catalysts 2021,11,6, 689.
97. Chen, Z.; Qing, H.; Zhou, K.; Sun, D.; Wu, R., Progress in Materials Science 2020,108, 100618.
98. Hosoi, T.; Yonekura, T.; Sunada, K.; Sasaki, K., Journal of The Electrochemical Society 2014,162,1, F136.
99. Shin, S.; Jin, Z.; Kwon, D. H.; Bose, R.; Min, Y.-S., Langmuir 2015,31,3, 1196-1202.
100. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I., science 2007,317,5834, 100-102.
101. Zhang, R.; Zhang, M.; Yang, H.; Li, G.; Xing, S.; Li, M.; Xu, Y.; Zhang, Q.; Hu, S.; Liao, H., Small Methods 2021,5,11, 2100612.
102. He, Y.; Tang, P.; Hu, Z.; He, Q.; Zhu, C.; Wang, L.; Zeng, Q.; Golani, P.; Gao, G.; Fu, W., Nature communications 2020,11,1, 57.
103. Suleman, M.; Lee, S.; Kim, M.; Nguyen, V. H.; Riaz, M.; Nasir, N.; Kumar, S.; Park, H. M.; Jung, J.; Seo, Y., ACS omega 2022,7,34, 30074-30086.
104. Hsieh, Y.-P.; Shih, C.-H.; Chiu, Y.-J.; Hofmann, M., Chemistry of Materials 2016,28,1, 40-43.
105. Deng, B.; Wu, J.; Zhang, S.; Qi, Y.; Zheng, L.; Yang, H.; Tang, J.; Tong, L.; Zhang, J.; Liu, Z., Small 2018,14,22, 1800725.
106. Yin, P.; Lin, Q.; Duan, Y., Journal of Innovative Optical Health Sciences 2020,13,05, 2030010.
107. Dong, Z.; Xu, H.; Liang, F.; Luo, C.; Wang, C.; Cao, Z.-Y.; Chen, X.-J.; Zhang, J.; Wu, X., Molecules 2018,24,1, 88.
108. Cong, X.; Liu, X.-L.; Lin, M.-L.; Tan, P.-H., npj 2D Materials and Applications 2020,4,1, 13.
109. Yao, Y.; Ao, K.; Lv, P.; Wei, Q., Nanomaterials 2019,9,6, 844.
110. Luo, R.; Xu, W. W.; Zhang, Y.; Wang, Z.; Wang, X.; Gao, Y.; Liu, P.; Chen, M., Nature Communications 2020,11,1, 1011.
111. Molas, M. R.; Macewicz, Ł.; Wieloszyńska, A.; Jakóbczyk, P.; Wysmołek, A.; Bogdanowicz, R.; Jasinski, J. B., npj 2D Materials and Applications 2021,5,1, 83.
112. Tebyetekerwa, M.; Zhang, J.; Xu, Z.; Truong, T. N.; Yin, Z.; Lu, Y.; Ramakrishna, S.; Macdonald, D.; Nguyen, H. T., ACS nano 2020,14,11, 14579-14604.
113. Agrawal, D.; Pathan, A.; Bhatt, P.; Dave, B.; Bora, N. In A Portable Experimental set-up for AFM to work at cryogenic temperature, National Conferencenon Recent Trends in Engineering & Technology, 2011; pp 1-4.
114. Shin, K. H.; Seo, M.-K.; Pak, S.; Jang, A.; Sohn, J. I., Nanomaterials 2022,12,9, 1393.
115. Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J., Nano letters 2014,14,6, 3185-3190.
116. Shin, K. H.; Seo, M.-K.; Pak, S.; Jang, A.-R.; Sohn, J. I., Nanomaterials 2022,12,9, 1393.
117. Lei, Z.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y., Advanced Energy Materials 2018,8,19, 1703482.
118. Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T. S.; Kaehr, B.; Brinker, C. J., Nature communications 2015,6,1, 8311.
119. Yim, W.; Nguyen, V. T.; Phung, Q. T.; Kim, H. S.; Ahn, Y. H.; Lee, S.;Park, J.-Y., ACS Applied Materials & Interfaces 2022,14,22, 26295-26302.
120. Tosun, M.; Fu, D.; Desai, S. B.; Ko, C.; Seuk Kang, J.; Lien, D. H.;Najmzadeh, M.; Tongay, S.; Wu, J.; Javey, A., Sci. Rep. 2015,5,1, 1-8.
121. Ochedowski, O.; Marinov, K.; Scheuschner, N.; Poloczek, A.; Bussmann, B. K.; Maultzsch, J.; Schleberger, M., Beilstein journal of nanotechnology 2014,5,1,291-297.
122. Bashir, A.; Awan, T. I.; Tehseen, A.; Tahir, M. B.; Ijaz, M., Chemistry of Nanomaterials 2020, 51-87.
123. Zhu, X.; Wang, C.; Fu, L., Cell Reports Physical Science 2020,1,9.
124. Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.;Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G., Nature materials 2016,15,9, 1003-1009.
125. Amiinu, I. S.; Pu, Z.; Liu, X.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H.; Mu, S., Advanced Functional Materials 2017,27,44, 1702300.
126. Xue, X.; Zhang, J.; Saana, I. A.; Sun, J.; Xu, Q.; Mu, S., Nanoscale 2018,10,35, 16531-16538.
127. Liu, S.; Zhou, L.; Zhang, W.; Jin, J.; Mu, X.; Zhang, S.; Chen, C.; Mu, S., Nanoscale 2020,12,18, 9943-9949.
128. Cheng, Y.; Song, H.; Wu, H.; Zhang, P.; Tang, Z.; Lu, S., Chem.: Asian J. 2020,15,20, 3123-3134.
129. Liu, C.; Kong, C.; Zhang, F. J.; Kai, C. M.; Cai, W. Q.; Sun, X. Y.; Oh, W. C., J. Korean Ceram. Soc. 2021,58,2, 135-147.
130. Niu, S.; Cai, J.; Wang, G., Nano Res. 2021,14,6, 1985-2002.
131. Cheng, Y.; Song, H.; Wu, H.; Zhang, P.; Tang, Z.; Lu, S., Chem Asian J. 2020,15,20, 3123-3134.
132. Zhuang, P.; Sun, Y.; Dong, P.; Smith, W.; Sun, Z.; Ge, Y.; Pei, Y.; Cao, Z.; Ajayan, P. M.; Shen, J., Adv. Funct. Mater. 2019,29,33, 1901290.
133. Li, G.; Zhang, D.; Qiao, Q.; Yu, Y.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S., J. Am. Chem. Soc. 2016,138,51, 16632-16638.
134. Li, Y.; Yin, K.; Wang, L.; Lu, X.; Zhang, Y.; Liu, Y.; Yan, D.; Song, Y.;Luo, S., Appl. Catal. B 2018,239, 537-544.
135. Xu, W.; Chai, K.; Jiang, Y. W.; Mao, J.; Wang, J.; Zhang, P.; Shi, Y., ACS Appl. Mater. Interfaces. 2019,11,19, 17670-17677.
136. He, Y.; Tang, P.; Hu, Z.; He, Q.; Zhu, C.; Wang, L.; Zeng, Q.; Golani, P.; Gao, G.; Fu, W., Nat. Commun. 2020,11,1, 1-12.
137. Zhang, J.; Wu, J.; Guo, H.; Chen, W.; Yuan, J.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J., Adv Mater 2017,29,42, 1701955.
138. Liu, L.; Li, X.; Xu, L. C.; Liu, R.; Yang, Z., Appl. Surf. Sci. 2017,396, 138-143.
139. Wu, F. Y.; Guan, P. L.; Xu, X. Y.; Kong, Y. Q.; Cao, D. J.; Yang, J. L.; Wei,X. W., Mater. Lett. 2022,315, 131987.
140. Li, S.; Lin, Y.-C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z.; Shen, Y.; Tang, D.-M.; Wang, J.; Zhang, Q., Nat. Mater. 2018,17,6, 535-542.
141. Vieira, L.; Neto, J. d. R. M.; Ferreira, O. P.; Torresi, R. M.; de Torresi, S. I. C.; Alves, O. L., RSC Adv. 2018,8,53, 30346-30353.
142. Tan, J.; Mei, Y.; Shen, H.; Liu, H.; Azhagan, T.; Song, W.; Thomas, T.; Liu, J.; Yang, M.; Gao, M., ChemCatChem 2020,12,1, 122-128.
143. Vasu, K.; Yamijala, S. S.; Zak, A.; Gopalakrishnan, K.; Pati, S. K.; Rao, C., small 2015,11,32, 3916-3920.
144. Wang, J.; Han, M.; Wang, Q.; Ji, Y.; Zhang, X.; Shi, R.; Wu, Z.; Zhang, L.; Amini, A.; Guo, L., ACS nano 2021,15,4, 6633-6644.
145. Pak, Y.; Kim, Y.; Lim, N.; Min, J.-W.; Park, W.; Kim, W.; Jeong, Y.; Kim, H.; Kim, K.; Mitra, S., APL Mater. 2018,6,7, 076102.
146. Chen, S. H.; Hofmann, M.; Yen, Z. L.; Hsieh, Y. P., Adv. Funct. Mater.2020,30,40, 2004370.
147. Ding, S.; Xiao, X.; Liu, S.; Wu, J.; Huang, Z.; Qi, X.; Li, J., Appl. Phys. A 2019,125,5, 1-7.
148. Kvashnin, D. G.; Sorokin, P. B.; Brüning, J.; Chernozatonskii, L. A., Appl. Phys. Lett. 2013,102,18, 183112.
149. Hsieh, Y. P.; Chen, D. R.; Chiang, W. Y.; Chen, K. J.; Hofmann, M., RSC Adv. 2017,7,7, 3736-3740.
150. Yan, Z.; Lin, J.; Peng, Z.; Sun, Z.; Zhu, Y.; Li, L.; Xiang, C.; Samuel, E. L.; Kittrell, C.; Tour, J. M., ACS nano 2012,6,10, 9110-9117.
151. Wu, Y.; Hao, Y.; Jeong, H. Y.; Lee, Z.; Chen, S.; Jiang, W.; Wu, Q.; Piner, R. D.; Kang, J.; Ruoff, R. S., Adv. Mater. 2013,25,46, 6744-6751.
152. Zhu, W.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P., Nano Lett. 2012,12,7, 3431-3436.
153. Chen, S.; Kim, S.; Chen, W.; Yuan, J.; Bashir, R.; Lou, J.; Van Der Zande, A. M.; King, W. P., Nano Lett. 2019,19,3, 2092-2098.
154. Hung, Y. H.; Lu, A.-Y.; Chang, Y. H.; Huang, J. K.; Chang, J. K.; Li, L.-J.;Su, C. Y., ACS Appl. Mater. Interfaces. 2016,8,32, 20993-21001.
155. Pak, Y.; Kim, Y.; Lim, N.; Min, J. W.; Park, W.; Kim, W.; Jeong, Y.; Kim, H.; Kim, K.; Mitra, S., APL Mater. 2018,6,7, 076102.
156. Li, Y.; Moy, E. C.; Murthy, A. A.; Hao, S.; Cain, J. D.; Hanson, E. D.; DiStefano, J. G.; Chae, W. H.; Li, Q.; Wolverton, C., Adv. Funct. Mater. 2018,28,13, 1704863.
157. Wang, Z.; Zhang, X.; Hachtel, J. A.; Apte, A.; Tiwary, C. S.; Vajtai, R.; Idrobo, J. C.; Ozturk, R.; Ajayan, P., Nanoscale Horiz. 2019,4,3, 689-696.
158. Aljarb, A.; Fu, J. H.; Hsu, C. C.; Chuu, C. P.; Wan, Y.; Hakami, M.; Naphade, D. R.; Yengel, E.; Lee, C. J.; Brems, S., Nat. Mater. 2020,19,12, 1300-1306.
159. Hu, S.; Li, J.; Zhan, X.; Wang, S.; Lei, L.; Liang, Y.; Kang, H.; Zhang, Y.; Chen, Z.; Sui, Y., Sci. China Mater. 2020,63,6, 1065-1075.
160. Li, S.; Lin, Y. C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z.; Shen, Y.; Tang, D. M.; Wang, J.; Zhang, Q., Nat. Mater. 2018,17,6, 535-542.
161. Li, B.; Yang, S.; Huo, N.; Li, Y.; Yang, J.; Li, R.; Fan, C.; Lu, F., RSC Adv. 2014,4,50, 26407-26412.
162. Xu, X.; Liu, L., Nanoscale Res. Lett. 2021,16,1, 1-10.
163. Li, Y.; Zhou, Z.; Zhang, S.; Chen, Z., J. Am. Chem. Soc. 2008,130,49,16739-16744.
164. Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T.S.; Kaehr, B.; Brinker, C. J., Nat. Commun. 2015,6,1, 1-8.
165. Li, L.; Carter, E. A., J. Am. Chem. Soc. 2019,141,26, 10451-10461.
166. Liu, Y.; Liu, H.; Wang, J.; Liu, D., J. Phys. Chem. 2022,126,10, 4929-4938.
167. Hu, P.; Ye, J.; He, X.; Du, K.; Zhang, K. K.; Wang, X.; Xiong, Q.; Liu, Z.;Jiang, H.; Kloc, C., Sci. Rep. 2016,6,1, 1-8.
168. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea,F.; van der Zant, H. S.; Steele, G. A., Nano Lett. 2013,13,11, 5361-5366.
169. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund Jr, R. F.; Pantelides, S. T.; Bolotin, K. I., Nano Lett. 2013,13,8, 3626-3630.
170. Xie, H.; Liu, C.; Hu, H.; Yin, H.; Zhong, J.; Zong, X.; Jiang, X.; Zhang, J.; Wang, W.; Tao, Y., Appl. Surf. Sci. 2021,545, 148809.
171. Hwang, D. Y.; Choi, K. H.; Park, J. E.; Suh, D. H., Phys. Chem. Chem. Phys. 2017,19,28, 18356-18365.
172. Cummins, D. R.; Martinez, U.; Sherehiy, A.; Kappera, R.; Martinez-Garcia, A.; Schulze, R. K.; Jasinski, J.; Zhang, J.; Gupta, R. K.; Lou, J.; Chhowalla, M.; Sumanasekera, G.; Mohite, A. D.; Sunkara, M. K.; Gupta, G., Nat. Commun. 2016,7,1, 11857.
173. Chung, Y.-J.; Yang, C.-S.; Lee, J.-T.; Wu, G. H.; Wu, J. M., Adv. Energy Mater. 2020,10,42, 2002082.
174. Li, Z.; Jiang, Z.; Zhou, W.; Chen, M.; Su, M.; Luo, X.; Yu, T.; Yuan, C., Inorg. Chem. 2021,60,3, 1991-1997.
175. Zhu, J.; Wang, Z. C.; Dai, H.; Wang, Q.; Yang, R.; Yu, H.; Liao, M.; Zhang, J.; Chen, W.; Wei, Z., Nat. Commun. 2019,10,1, 1-7.
176. Wang, Z.; Li, Q.; Xu, H.; Dahl-Petersen, C.; Yang, Q.; Cheng, D.; Cao, D.; Besenbacher, F.; Lauritsen, J. V.; Helveg, S., Nano Energy 2018,49, 634-643.
177. Xu, J.; Shao, G.; Tang, X.; Lv, F.; Xiang, H.; Jing, C.; Liu, S.; Dai, S.; Li, Y.; Luo, J., Nat. Commun. 2022,13,1, 1-8.
178. Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F., Nat. Mater. 2016,15,1, 48-53.
179. Su, S.; Zhou, Q.; Zeng, Z.; Hu, D.; Wang, X.; Jin, M.; Gao, X.; Nötzel, R.;hou, G.; Zhang, Z., ACS Appl. Mater. Interfaces. 2018,10,9, 8026-8035.
180. Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M., Nano Lett. 2016,16,2, 1097-1103.
181. Nguyen, A. D.; Nguyen, T. K.; Le, C. T.; Kim, S.; Ullah, F.; Lee, Y.; Lee,S.; Kim, K.; Lee, D.; Park, S., ACS omega 2019,4,25, 21509-21515.
182. Zhou, Q.; Luo, X.; Li, Y.; Nan, Y.; Deng, H.; Ou, E.; Xu, W., Int. J. Hydrog.Energy 2020,45,1, 433-442.
183. Zhou, Q.; Su, S.; Cheng, P.; Hu, X.; Gao, X.; Zhang, Z.; Liu, J. M., J. Mater. Chem. C 2020,8,9, 3017-3022.
184. Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L., Nat. Chem. 2018,10,12, 1246-1251.
185. Bala, A.; Sen, A.; Kim, Y. H.; Kim, Y. M.; Gandla, S.; Park, H.; Kim, S., J. Phys. Chem. C. 2022.
186. Cho, H. Y.; Nguyen, T. K.; Ullah, F.; Yun, J. W.; Nguyen, C. K.; Kim, Y. S., Phys. B: Condens. Matter. 2018,532, 84-89.
187. Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H. S.; Nørskov, J. K.; Zheng, X.; Abild-Pedersen, F., Nat. Commun. 2017,8,1, 1-8.
188. Wang, J.; Yan, M.; Zhao, K.; Liao, X.; Wang, P.; Pan, X.; Yang, W.; Mai, L., Adv. Mater. 2017,29,7, 1604464.
189. Wang, Y.; Udyavara, S.; Neurock, M.; Frisbie, C. D., Nano Lett. 2019,19,9, 6118-6123.
190. Tao, L.; Duan, X.; Wang, C.; Duan, X.; Wang, S., ChemComm 2015,51,35, 7470-7473.
191. Cho, H.-Y.; Nguyen, T. K.; Ullah, F.; Yun, J. W.; Nguyen, C. K.; Kim, Y. S., Physica B: Condensed Matter 2018,532, 84-89.
192. Tao, L.; Duan, X.; Wang, C.; Duan, X.; Wang, S., ChemComm 2015,51,35, 7470-7473.
193. Myland, J. C.; Oldham, K. B., Anal. Chem. 2000,72,17, 3972-3980.
194. Kapałka, A.; Fóti, G.; Comninellis, C., Electrochem. commun. 2008,10,4, 607-610.
195. Conway, B.; Tilak, B., Electrochimica acta 2002,47,22-23, 3571-3594.
196. Trasatti, S., J. electroanal. chem 1972,39,1, 163-184.
197. Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y., Nano Lett. 2013,13,3, 1341-1347.
198. Jaramillo, T. F.; Bonde, J.; Zhang, J.; Ooi, B.-L.; Andersson, K.; Ulstrup, J.; Chorkendorff, I., J. Phys. Chem. C 2008,112,45, 17492-17498.
199. Miki, K.; Watanabe, T.; Koh, S., Crystals 2020,10,4, 241.
200. Yao, H.; Hsieh, Y. P.; Kong, J.; Hofmann, M., Nat. Mater. 2020,19,7, 745- 751.
201. Di Bernardo, I.; Blyth, J.; Watson, L.; Xing, K.; Chen, Y.-H.; Chen, S.-Y.; Edmonds, M. T.; Fuhrer, M. S., J. Phys. Condens. Matter. 2022,34,17, 174002.
202. Xiao, Z.; Durkan, C., Nanotechnology 2019,30,44, 445203.
203. Zhang, C.; Johnson, A.; Hsu, C. L.; Li, L.-J.; Shih, C. K., Nano Lett. 2014,14,5, 2443-2447.
204. Ou, Y.; Kang, Z.; Liao, Q.; Zhang, Z.; Zhang, Y., Nano Res. 2020,13,3, 701-708.
205. Marcus, Y.; Altman-Gueta, H.; Finkler, A.; Gurevitz, M., Journal of Bacteriology 2005,187,12, 4222-4228.
206. Climent, M. J.; Corma, A.; Iborra, S.; Sabater, M. J., Heterogeneous catalysis for tandem reactions. ACS Publications: 2014; Vol. 4, pp 870-891.
207. Stürzel, M.; Mihan, S.; Mülhaupt, R., Chemical reviews 2016,116,3, 1398-1433.
208. Lu, S.-S.; Zhang, L.-M.; Dong, Y.-W.; Zhang, J.-Q.; Yan, X.-T.; Sun, D.-F.; Shang, X.; Chi, J.-Q.; Chai, Y.-M.; Dong, B., Journal of materials chemistry A 2019,7,28, 16859-16866.
209. Tuller, H. L., Materials for renewable and sustainable energy 2017,6,1, 3.
210. Li, Y. C.; Wang, Z.; Yuan, T.; Nam, D.-H.; Luo, M.; Wicks, J.; Chen, B.; Li, J.; Li, F.; De Arquer, F. P. G., Journal of the American Chemical Society 2019,141,21, 8584-8591.
211. Zhou, J.; Xie, Y.; Yang, L.; Liu, Y.; Du, Y.; Yu, L.; Yu, Y., Inorganic Chemistry Frontiers 2023,10,10, 2842-2859.
212. Liao, H.; Wei, C.; Wang, J.; Fisher, A.; Sritharan, T.; Feng, Z.; Xu, Z. J., Advanced Energy Materials 2017,7,21, 1701129.
213. Ago, H.; Okada, S.; Miyata, Y.; Matsuda, K.; Koshino, M.; Ueno, K.; Nagashio, K., Science and Technology of Advanced Materials 2022,23,1, 275-299.
214. Wang, Z.; Xu, B.; Pei, S.; Zhu, J.; Wen, T.; Jiao, C.; Li, J.; Zhang, M.; Xia, J., Science China Information Sciences 2022,65,11, 211401.
215. Zefeng, X.; Baoshan, T.; Feng, L. J.; Zamburg, E.; Thean, A. V.-Y. In 2.5 D MoS2-Based Non-Volatile Optical Memory for Integrated Photonics, CLEO: Science and Innovations, Optica Publishing Group: 2022; p SM5P. 3.
216. Pham, P. V.; Bodepudi, S. C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X., Chemical Reviews 2022,122,6, 6514-6613.
217. Gbadamasi, S.; Mohiuddin, M.; Krishnamurthi, V.; Verma, R.; Khan, M. W.; Pathak, S.; Kalantar-Zadeh, K.; Mahmood, N., Chemical Society Reviews 2021,50,7, 4684-4729.
218. Shifa, T. A.; Wang, F.; Liu, Y.; He, J., Advanced Materials 2019,31,45, 1804828.
219. Borhade, P. S.; Chen, T.; Chen, D. R.; Chen, Y. X.; Yao, Y. C.; Yen, Z. L.; Tsai, C. H.; Hsieh, Y. P.; Hofmann, M., Small 2023, 2311209.
220. Chen, D.-R.; Muthu, J.; Guo, X.-Y.; Chin, H.-T.; Lin, Y.-C.; Haider, G.;Ting, C.-C.; Kalbáč, M.; Hofmann, M.; Hsieh, Y.-P., Journal of Materials Chemistry A 2023,11,29, 15802-15810.
221. Wang, Y.; Qiu, W.; Song, E.; Gu, F.; Zheng, Z.; Zhao, X.; Zhao, Y.; Liu, J.;Zhang, W., National Science Review 2018,5,3, 327-341.
222. Huang, H.; Hu, G.; Hu, C.; Fan, X., International Journal of MolecularSciences 2022,23,19, 11727.
223. Seo, B.; Jung, G. Y.; Sa, Y. J.; Jeong, H. Y.; Cheon, J. Y.; Lee, J. H.; Kim, H. Y.; Kim, J. C.; Shin, H. S.; Kwak, S. K., ACS nano 2015,9,4, 3728-3739.
224. Xie, L.; Wang, L.; Zhao, W.; Liu, S.; Huang, W.; Zhao, Q., Nature communications 2021,12,1, 5070.
225. Ge, L.; Yuan, H.; Min, Y.; Li, L.; Chen, S.; Xu, L.; Goddard III, W. A., The Journal of Physical Chemistry Letters 2020,11,3, 869-876.
226. Vojvodic, A.; Nørskov, J. K., National Science Review 2015,2,2, 140-143.
227. Chen, J.; Jia, M.; Mao, Y.; Hu, P.; Wang, H., ACS Catalysis 2023,13,5, 2937-2947.
228. Exner, K. S.; Sohrabnejad-Eskan, I.; Over, H., Acs Catalysis 2018,8,3, 1864- 1879.
229. Li, P.; Jiao, Y.; Huang, J.; Chen, S., JACS Au 2023,3,10, 2640-2659.
230. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K., Scientific reports 2015,5,1, 13801.
231. Wang, S.; Chen, X.; Zhao, C.; Kong, Y.; Lin, B.; Wu, Y.; Bi, Z.; Xuan, Z.; Li, T.; Li, Y., Nature Electronics 2023,6,4, 281-291.
232. Huang, Y.; Nielsen, R. J.; Goddard III, W. A.; Soriaga, M. P., Journal of the American Chemical Society 2015,137,20, 6692-6698.
233. Liu, J.; Zhu, D.; Ling, T.; Vasileff, A.; Qiao, S.-Z., Nano Energy 2017,40,264-273.
234. Liu, T.; Xie, L.; Yang, J.; Kong, R.; Du, G.; Asiri, A. M.; Sun, X.; Chen, L., ChemElectroChem 2017,4,8, 1840-1845.
235. Chiang, C.-H.; Yang, Y.-C.; Lin, J.-W.; Lin, Y.-C.; Chen, P.-T.; Dong, C.-L.; Lin, H.-M.; Chan, K. M.; Kao, Y.-T.; Suenaga, K., ACS nano 2022,16,11, 18274-18283.
236. Davelou, D.; Mathioudakis, C.; Remediakis, I. N.; Kopidakis, G., Phys Status Solidi-R 2022,16,4.
237. Zeng, K.; Zhang, D., Progress in energy and combustion science 2010,36,3, 307-326.
238. Hullfish, C. W.; Tan, J. Z.; Adawi, H. I.; Sarazen, M. L., ACS Catalysis 2023,13,19, 13140-13150.
239. Scheepers, F.; Stähler, M.; Stähler, A.; Rauls, E.; Müller, M.; Carmo, M.; Lehnert, W., Applied Energy 2021,283, 116270.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96365-
dc.description.abstract可再生能源需求的增長引起了世界對於水分解反應(2 H2O → 2 H2 + O2)的高度興趣,也突顯了高效催化劑的重要性。二維(2D)材料,如二硫化鉬(MoS2)的邊緣,展現了匹配的ΔGH*並具有作為析氫反應(HER)催化劑的潛力,然而這些材料的動力學尚未完全理解和解決。
在本論文中,我們首先研究了以邊緣主導的超窄MoS2 奈米帶陣列的電化學反應動力學表現。然後,我們通過二維邊緣的凡得瓦(vdW)堆疊實現了多位點電催化,除了透過實驗和模擬結果確認了優良的HER 和OER(析氧反應)以及多位點間中間體的交換反應,我們還展現了十分良好的整體水分解反應效果。
為了研究邊緣主導的電化學反應動力學,我們首先開發了一種模板減法圖案化方法(TSPP)。該型態工程法使我們能夠建立長距離、高密度和高質量的基面超窄奈米帶陣列,充當探索邊緣主導電化學的實驗平台。小於30 奈米的奈米帶陣列在評估電化學特性時展現出增強的HER動力學。由光電催化測量和載流子傳輸模擬證明這些改進是由於從基面向邊緣位置的電荷轉移效率的提高所貢獻的。我們的結果展示了邊緣主導電催化在HER 中的潛力,並為奈米帶製造和奈米帶增強電化學提供了一種有望的策略。
接著,我們繼續擴展透過vdW 堆疊2D 邊緣實現多位點邊緣催化。透過結合實驗與模擬結合,我們證明了vdW 堆疊活性位點在HER 中表現出協同作用,並確認了相鄰位點之間的中間體交換。此外,我們的結果展示了HER 和OER 的增強效果,優於均質疊層材料。vdW 堆疊的多位點催化成功應用於中性水分解微反應器,並表現出卓越的性能。
zh_TW
dc.description.abstractThe growing demand for renewable energy has sparked interest in water-splitting reactions (2H2O → 2 H2 + O2), highlighting the crucial role of high-performance electrocatalysis.Two dimensional (2D) materials such as Molybdenum Disulfide (MoS2) edges exhibit the best matched ΔGH* for hydrogen evolution reactions (HER) if their kinetics can be addressed and understood.
In this thesis, we first investigated the electrochemical reaction kinetics of edge-dominated ultranarrow MoS2 nanoribbon arrays. Then, multi-site electrocatalysis was achieved through the van der Waals (vdW) stacking of 2D edges. In addition to confirming excellent Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER), as well as intermediate exchange reactions through experimental and simulation results, we also demonstrated excellent performance in the overall water splitting reaction.
To investigate edge-dominated electrochemical reaction kinetics, we first developed a morphological engineering method called the templated subtractive patterning process (TSPP). This method enables us to establish a long-range, high-density, and high-quality basal plane ultra-nanoribbon arrays, acting as an experimental platform for exploring edge-dominated electrochemistry. Sub-30nm nanoribbons demonstrate significantly enhanced HER kinetics through assessed electrochemical characterizations. These improvements are due to increased charge transfer efficiency from the basal plane toward the edge sites as revealed by Photo-electrocatalytic measurements and carrier transport simulations. Our findings demonstrate the potential of edge-dominated electrocatalysis for HER and provide a promising strategy for nanoribbon fabrication and nanoribbon-enhanced electrochemistry.
Afterward, we extended our exploration to realize multi-site edge catalysis by forming vdw 2D edges. Combining direct experimental evidence and Ab-initio simulations, we demonstrated that vdW stacking at active sites exhibits synergistic interactions in the HER, and the exchange of intermediates between neighboring sites was confirmed. Furthermore, our results showcased enhanced efficiency in HER and OER, outperforming homogeneous materials. The vdw stacked multi-site catalysis were successfully applied to neutral water-splitting microreactors, demonstrating superior performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-01-05T16:07:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-01-05T16:07:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
中文摘要 iv
ABSTRACT v
TABLE OF CONTENTS vii
LIST OF FIGURES & TABLES ix

Chapter 1 Introduction 1
[1.1] Two-dimensional materials 2
[1.2] Graphene 4
[1.2.1] Synthesis of graphene 5
[1.2.2] Fluorographene 8
[1.3] 2D transition metal dichalcogenides 13
[1.3.1] Molybdenum Disulfide (MoS2) 14
[1.4] 2D van der Waals heterostructures 17
[1.4.1] Approach to creating 2D vdW heterostructures 18
[1.5] Nanoribbons of 2D materials 21
[1.5.1] Preparation of MoS2 nanoribbons and their applications in circuit integration and hydrogen conversion 22
[1.6] Water-splitting reactions 25
[1.6.1] Hydrogen evolution reaction (HER) 25
[1.6.2] HER Mechanism 27
[1.6.3] Volcano plots 28
[1.6.4] Primary Parameters for Evaluating HER Catalysts 29

Chapter 2 Experimental Section 34
[2.1] Materials preparation 35
[2.1.1] MoS2 and WS2 growth 35
[2.1.2] Graphene growth 36
[2.1.2] Graphene transfer 37
[2.2] Characterization of 2D materials and nanoribbon structure 39
[2.2.2] Photoluminescence (PL) 42
[2.2.3] Atomic Force Microscopes (AFM) 44
[2.2.4] Current-voltage characteristics 45
[2.2.5] Scanning Electron Microscope 45
[2.2.6] Atomic-resolution transmission electron microscopy 46
[2.2.7] Kelvin Probe Force Microscopy (KPFM) 47
[2.3] Device fabrication 49
[2.3.1] Spin coater 49
[2.3.2] Thermal Evaporator 50
[2.3.3] Photolithography 50
[2.2.3] On-Chip Device fabrication for microcell HER measurement 51
[2.4] Three-electrode localized electrochemical microcell measurement 53

Chapter 3 Results and Discussion 55
[3.1] Edge-dominated hydrogen evolution reactions in ultra-narrow MoS2 nanoribbon arrays 57
[3.1.1] Introduction 57
[3.1.2] Templated Subtractive Patterning Process (TSPP) and Concept 60
[3.1.3] Realization of ultranarrow MoS2 nanoribbon arrays by TSPP 63
[3.1.4] Evaluation of MoS2 nanoribbon 66
[3.1.5] Verification of Edge-enhanced electrochemistry 69
[3.1.6] Investigation of the origin of edge-enhanced HER 74
[3.1.7] Summary 78
[3.2] Atomically engineered multisite electrochemical catalysts 79
[3.1.1] Introduction 79
[3.1.2] Assembling a Van der Waals (vdW) stack edges 79
[3.1.3] Electrochemical characterization of vdW multi-site catalysts 82
[3.1.4] Exploring the hydrogen adsorption in vdW multi-site catalysts 86
[3.1.5] Overall water splitting performance applications 88
[3.1.6] Summary 91

Chapter 4 Conclusion and Outlook 92
References 93
附錄 104
-
dc.language.isoen-
dc.title用於高效水分解的原子層電催化劑設計zh_TW
dc.titleAtomically engineered electrochemical catalysts for efficient water splitting.en
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.coadvisor謝馬利歐zh_TW
dc.contributor.coadvisorMario Hofmannen
dc.contributor.oralexamcommittee陳永芳;王丞浩;丁初稷zh_TW
dc.contributor.oralexamcommitteeYang-Fang Chen;Chen-Hao WANG;Chu-Chi Tingen
dc.subject.keyword二維材料,電催化劑,二硫化鉬,凡得瓦堆疊,二維邊緣,析氫反應,奈米帶陣列,zh_TW
dc.subject.keyword2D materials,electrocatalysis,MoS2,van-der-Waals stacking,2D edges,hydrogen evolution reaction (HER),nanoribbons,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202400784-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-12-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept分子科學與技術國際研究生博士學位學程-
dc.date.embargo-lift2029-12-16-
Appears in Collections:分子科學與技術國際研究生博士學位學程

Files in This Item:
File SizeFormat 
ntu-113-1.pdf
  Restricted Access
6.83 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved