請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96364完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佑宗 | zh_TW |
| dc.contributor.advisor | You-Tzung Chen | en |
| dc.contributor.author | 梁本裕 | zh_TW |
| dc.contributor.author | Ben-Yu Liang | en |
| dc.date.accessioned | 2024-12-26T16:07:21Z | - |
| dc.date.available | 2024-12-27 | - |
| dc.date.copyright | 2024-12-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | 1. Swaiman, K.F., Hallervorden-Spatz syndrome. Pediatric Neurology, 2001. 25(2): p. 102-108.
2. Bokhari, M.R., H. Zulfiqar, and S.R.A. Bokhari, Hallervorden-Spatz Disease, in StatPearls. 2024, StatPearls Publishing 3. Kurian, M.A. and S.J. Hayflick, Pantothenate kinase-associated neurodegeneration (PKAN) and PLA2G6-associated neurodegeneration (PLAN): review of two major neurodegeneration with brain iron accumulation (NBIA) phenotypes. Int Rev Neurobiol, 2013. 110: p. 49-71. 4. Hogarth, P., et al., Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Molecular Genetics and Metabolism, 2017. 120(3): p. 278-287. 5. Hayflick, S.J., et al., Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med, 2003. 348(1): p. 33-40. 6. Schneider, S.A., J. Hardy, and K.P. Bhatia, Syndromes of neurodegeneration with brain iron accumulation (NBIA): An update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Movement Disorders, 2012. 27(1): p. 42-53. 7. Dansie, L.E., et al., Physiological roles of the pantothenate kinases. Biochem Soc Trans, 2014. 42(4): p. 1033-6. 8. Brunetti, D., et al., Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum Mol Genet, 2012. 21(24): p. 5294-305. 9. Jeong, S.Y., et al., 4'-Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN. EMBO Mol Med, 2019. 11(12): p. e10489. 10. Sharma, L.K., et al., A therapeutic approach to pantothenate kinase associated neurodegeneration. Nat Commun, 2018. 9(1): p. 4399. 11. Jackowski, S. and C.O. Rock, CoA regulation and metabolic control. The Biochemist, 2015. 37(1): p. 4-8. 12. Subramanian, C., et al., A pantothenate kinase-deficient mouse model reveals a gene expression program associated with brain coenzyme a reduction. Biochim Biophys Acta Mol Basis Dis, 2020. 1866(5): p. 165663. 13. Chiu, J.E., et al., The yeast pantothenate kinase Cab1 is a master regulator of sterol metabolism and of susceptibility to ergosterol biosynthesis inhibitors. J Biol Chem, 2019. 294(40): p. 14757-14767. 14. Ceccatelli Berti, C., et al., Exploring Yeast as a Study Model of Pantothenate Kinase-Associated Neurodegeneration and for the Identification of Therapeutic Compounds. Int J Mol Sci, 2020. 22(1). 15. Wu, Z., et al., Pantothenate kinase-associated neurodegeneration: insights from a Drosophila model. Hum Mol Genet, 2009. 18(19): p. 3659-72. 16. Khatri, D., et al., Abnormal Vasculature Development in Zebrafish Embryos with Reduced Expression of Pantothenate Kinase 2 Gene. Bull Exp Biol Med, 2020. 170(1): p. 58-63. 17. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76. 18. Campanella, A., et al., Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties. Human molecular genetics, 2012. 21(18): p. 4049-4059. 19. Orellana, D.I., et al., Coenzyme A corrects pathological defects in human neurons of PANK2-associated neurodegeneration. EMBO Mol Med, 2016. 8(10): p. 1197-1211. 20. Ripamonti, M., et al., PKAN hiPS-Derived Astrocytes Show Impairment of Endosomal Trafficking: A Potential Mechanism Underlying Iron Accumulation. Frontiers in Cellular Neuroscience, 2022. 16. 21. Santambrogio, P., et al., Massive iron accumulation in PKAN-derived neurons and astrocytes: light on the human pathological phenotype. Cell Death & Disease, 2022. 13(2): p. 185. 22. Klopstock, T., et al., Safety and efficacy of deferiprone for pantothenate kinase-associated neurodegeneration: a randomised, double-blind, controlled trial and an open-label extension study. The Lancet Neurology, 2019. 18(7): p. 631-642. 23. Merkel, S.F., et al., Trafficking of adeno-associated virus vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. J Neurochem, 2017. 140(2): p. 216-230. 24. Haggerty, D.L., et al., Adeno-Associated Viral Vectors in Neuroscience Research. Mol Ther Methods Clin Dev, 2020. 17: p. 69-82. 25. Anzalone, A.V., et al., Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019. 576(7785): p. 149-157. 26. Gao, C., Genome engineering for crop improvement and future agriculture. Cell, 2021. 184(6): p. 1621-1635. 27. Anzalone, A.V., L.W. Koblan, and D.R. Liu, Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol, 2020. 38(7): p. 824-844. 28. Li, X., et al., Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nature Communications, 2022. 13(1): p. 1669. 29. Nelson, J.W., et al., Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology, 2022. 40(3): p. 402-410. 30. Tanja, R., et al., Treatment of a genetic liver disease in mice through transient prime editor expression. bioRxiv, 2024: p. 2024.01.22.575834. 31. Singh, K., et al., Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects. Current gene therapy, 2024. 2024;24(5):377-394 32. An, M., et al., Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nature Biotechnology, 2024. 20;185(2):250-265.e16. 33. Newby, G.A. and D.R. Liu, In vivo somatic cell base editing and prime editing. Mol Ther, 2021. 29(11): p. 3107-3124. 34. Chen, P.J., et al., Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell, 2021. 184(22): p. 5635-5652.e29. 35. Gao, P., et al., Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol, 2021. 22(1): p. 83. 36. Lin, J., et al., Modeling a cataract disorder in mice with prime editing. Mol Ther Nucleic Acids, 2021. 25: p. 494-501. 37. Kim, Y., et al., Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell, 2021. 28(9): p. 1614-1624.e5. 38. Doman, J.L., et al., Designing and executing prime editing experiments in mammalian cells. Nature Protocols, 2022. 17(11): p. 2431-2468. 39. Grabiec, M., et al., Stage-specific roles of FGF2 signaling in human neural development. Stem Cell Res, 2016. 17(2): p. 330-341. 40. Kirkeby, A., et al., Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions. Cell Reports, 2012. 1(6): p. 703-714. 41. Tcw, J., et al., An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2017. 9(2): p. 600-614. 42. Pang, Z.P., et al., Induction of human neuronal cells by defined transcription factors. Nature, 2011. 476(7359): p. 220-223. 43. Flitsch, L.J., K.E. Laupman, and O. Brüstle, Transcription Factor-Based Fate Specification and Forward Programming for Neural Regeneration. Front Cell Neurosci, 2020. 14: p. 121. 44. Ou-Yang, C.-H., et al., Generation of a human induced pluripotent stem cell (iPSC) line (IBMS-iPSC-070-02) from a patient with neurodegeneration with brain iron accumulation (NBIA) having compound heterozygous mutations in PANK2 gene. Stem Cell Research, 2021. 51: p. 102190. 45. Kantor, A., Development of CRISPR-Cas genome and epigenome engineering tools towards retinal degenerations. 2022, University of Oxford. 46. Kluesner, M.G., et al., EditR: A Method to Quantify Base Editing from Sanger Sequencing. Crispr j, 2018. 1(3): p. 239-250. 47. Bosch, J.A., G. Birchak, and N. Perrimon, Precise genome engineering in <i>Drosophila</i> using prime editing. Proceedings of the National Academy of Sciences, 2021. 118(1): p. e2021996118. 48. Petri, K., et al., CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nature Biotechnology, 2022. 40(2): p. 189-193. 49. Liu, Y., et al., Efficient generation of mouse models with the prime editing system. Cell Discovery, 2020. 6(1): p. 27. 50. Koeppel, J., et al., Prediction of prime editing insertion efficiencies using sequence features and DNA repair determinants. Nature Biotechnology, 2023. 41(10): p. 1446-1456. 51. Scholefield, J. and P.T. Harrison, Prime editing – an update on the field. Gene Therapy, 2021. 28(7): p. 396-401. 52. Nandy, K., et al., Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Scientific Reports, 2023. 13(1): p. 21953. 53. Medley, J.C., et al., Single nucleotide substitutions effectively block Cas9 and allow for scarless genome editing in Caenorhabditis elegans. Genetics, 2022. 220(1). 54. Yan, Y., et al., Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2013. 2(11): p. 862-870. 55. Leonardi, R., et al., Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine. Proc Natl Acad Sci U S A, 2007. 104(5): p. 1494-9. 56. Hayflick, S.J., S.Y. Jeong, and O.C.M. Sibon, PKAN pathogenesis and treatment. Molecular Genetics and Metabolism, 2022. 137(3): p. 283-291. 57. Di Meo, I., M. Carecchio, and V. Tiranti, Inborn errors of coenzyme A metabolism and neurodegeneration. Journal of Inherited Metabolic Disease, 2019. 42(1): p. 49-56. 58. Li, Y., et al., Neural differentiation from pluripotent stem cells: The role of natural and synthetic extracellular matrix. World J Stem Cells, 2014. 6(1): p. 11-23. 59. Allegrucci, C. and L.E. Young, Differences between human embryonic stem cell lines. Human Reproduction Update, 2006. 13(2): p. 103-120. 60. Osafune, K., et al., Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol, 2008. 26(3): p. 313-5. 61. Chehelgerdi, M., et al., Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer, 2023. 22(1): p. 189. 62. Leoni, V., et al., Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Molecular Genetics and Metabolism, 2012. 105(3): p. 463-471. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96364 | - |
| dc.description.abstract | PKAN (Pantothenate Kinase-Associated Neurodegeneration,泛酸激酶相關神經退化性疾病),是一種罕見的神經退化性疾病,屬於腦鐵沉積相關的神經退化性疾病(NBIA, Neurodegeneration with brain iron accumulation)的一種。該病首次於1922 年發現。其特徵是PANK2 基因的突變,所轉譯的產物為泛酸鹽激活酵素 (Pantothenate kinase 2)在粒線體中作用,其功能為調控輔酶 A 的生成。此疾病患者大腦蒼白球內鐵的積累,在核磁共振成像 (MRI)上呈現出獨特的“虎眼"標誌。本研究之目的在於運用引導編輯 (Prime editing)技術修正了源自患者的誘導多能幹細胞 (iPSCs, Induced pluripotent stem cell)中的PANK2 基因突變,並探討了其對分化後的神經幹細胞群體的影響。在方法學上,通過優化的引導編輯系統,我成功修正了PKAN 患者誘導多能幹細胞中的PANK2 exon 1 突變。隨後,這些修正後的同源性誘導多能幹細胞被分化為神經幹細胞 (NSCs, neural stem cells)。我的實驗中發現基因修正後的神經幹細胞相比於PKAN 的神經幹細胞顯示出較高的輔酶 A 濃度。這些結果初步發現了通過基因編輯來糾正PKAN 相關神經缺陷的治療潛力。 | zh_TW |
| dc.description.abstract | PKAN (pantothenate kinase-associated neurodegeneration), a rare neurodegenerative disorder categorized under neurodegeneration with brain iron accumulation (NBIA), was first identified in 1922. Mutations in the PANK2 gene characterize the disease. It is characterized by a mutation in the PANK2 gene, which encodes the enzyme pantothenate kinase 2. This enzyme functions in the mitochondria and regulates the production of coenzyme A. This leads to iron accumulation in the globus pallidus, presenting a distinctive "eye-of-the-tiger" sign on magnetic resonance imaging (MRI). This study aims to correct the PANK2 mutation in patient-derived induced pluripotent stem cells (iPSCs) using gene editing technology and explore its effects on differentiated neural cell populations. Using optimized engineered pegRNA (epegRNA), I successfully corrected the PANK2 exon 1 mutation in PKAN patient-derived iPSCs. These corrected isogenic iPSCs were then differentiated into neural stem cells (NSCs). The corrected NSCs demonstrated higher coenzyme A concentration than PKAN NSCs. These findings underscore some initial signs of the therapeutic potential of gene correction via prime editing in mitigating neural deficits associated with PKAN. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-26T16:07:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-26T16:07:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 ii
Abstract iii 1. Introduction 1 1.1 Pantothenate kinase-associated neurodegeneration (PKAN) 1 1.2 Models of PKAN 3 1.3 Therapies for pantothenate kinase-associated neurodegeneration 5 1.4 The prime editing system is suitable for creating precise gene editing models 6 1.5 Current progress in neuron differentiation from iPSCs 7 2. Materials and methods 10 2.1 Cell culture 10 2.2 Prime editing- epegRNA design 10 2.3 epegRNA cloning-Golden Gate Assembly 11 2.4 Transient transfection 13 2.5 Cell genomic DNA extraction and amplification 13 2.6 Analysis of Sanger sequencing data and epegRNA editing efficiency 14 2.7 Generation of NSCs from iPSCs 15 2.8 Differentiation of NSCs to neuron cells, astrocytes, and oligodendrocytes 15 2.9 Characterization of NSCs and Differentiated Subtypes of Neural Cells 16 2.10 Cell viability assay 17 2.11 Coenzyme A Detection 17 2.12 Determination of mitochondrial membrane potential 18 3. Results 19 3.1 Design the prime editing system plasmids for creating mutant PANK2 gene 19 3.2 Establish the PANK2 exon 1 (c.332 T > A) mutant HEK293T cell line 20 3.3 Design the prime editing system plasmids for correcting mutant PANK2 gene in PKAN patient-derived iPSCs 21 3.4 Identify the optimal prime editing designs for correcting mutant PANK2 gene 21 3.5 Correction of the PKAN patient-derived iPSCs by prime editing 22 3.6 Induction of neural stem cells from hiPSCs 22 3.7 Differentiation of neural cells from NSCs 23 3.8 Gene correction by prime editing enhances CoA level in NSCs 24 4. Discussion 25 5. References 29 6. Figures 38 Figure 1. Characterizations of prime editing introduced PANK2 exon1 mutant HEK293T 38 Figure 2. Characterizations of prime editing introduced PANK2 exon1 mutant correction HEK293T 39 Figure 3. Genetic correction of PKAN patient-derived PANK2 mutant iPSC 40 Figure 4. Immunofluorescence staining of differentiated NSCs from PKAN and gene-corrected iPSCs 42 Figure 5. Immunofluorescence staining of differentiated neuron cells from WT NSCs 43 Figure 6. Investigation of WT, PKAN, and corrected NSCs 44 7. Supplementary Figures 45 Figure S1. The design of the prime editing system for introducing PANK2 mutant gene 45 Figure S2. Immunofluorescence staining of differentiated neuron cells from PKAN and gene-corrected NSCs 47 8. Tables 48 Table 1. Oligo designs for epegRNA 48 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 引導編輯 | zh_TW |
| dc.subject | 神經幹細胞 | zh_TW |
| dc.subject | 泛酸激酶相關神經退行性疾病 | zh_TW |
| dc.subject | neural stem cells | en |
| dc.subject | pantothenate kinase-associated neurodegeneration | en |
| dc.subject | prime editing | en |
| dc.title | 引導編輯系統於泛酸激酶相關神經退化性疾病細胞模型的應用 | zh_TW |
| dc.title | Application of prime editing systems on PKAN cell model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃祥博;林靜嫻;周祐吉;周志銘 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiang-Po Huang;Chin-Hsien Lin ;Yu-Chi Chou;Chih-Ming Chou | en |
| dc.subject.keyword | 泛酸激酶相關神經退行性疾病,引導編輯,神經幹細胞, | zh_TW |
| dc.subject.keyword | pantothenate kinase-associated neurodegeneration,prime editing,neural stem cells, | en |
| dc.relation.page | 48 | - |
| dc.identifier.doi | 10.6342/NTU202402995 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | - |
| 顯示於系所單位: | 基因體暨蛋白體醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
