Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96333
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林甫容zh_TW
dc.contributor.advisorFu-Jung Linen
dc.contributor.author賴沛襄zh_TW
dc.contributor.authorPei-Hsiang Laien
dc.date.accessioned2024-12-24T16:24:01Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-11-
dc.identifier.citation1. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet, 2024. 403(10431): p. 1027-1050.
2. Sakers, A., et al., Adipose-tissue plasticity in health and disease. Cell, 2022. 185(3): p. 419-446.
3. Harms, M. and P. Seale, Brown and beige fat: development, function and therapeutic potential. Nat Med, 2013. 19(10): p. 1252-63.
4. Lidell, M.E., et al., Evidence for two types of brown adipose tissue in humans. Nat Med, 2013. 19(5): p. 631-4.
5. Duerre, D.J. and A. Galmozzi, Deconstructing Adipose Tissue Heterogeneity One Cell at a Time. Front Endocrinol (Lausanne), 2022. 13: p. 847291.
6. Vitali, A., et al., The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res, 2012. 53(4): p. 619-29.
7. Xue, B., et al., Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J Lipid Res, 2007. 48(1): p. 41-51.
8. Arima, Y., et al., Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation. Nat Metab, 2021. 3(2): p. 196-210.
9. Asif, S., et al., Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis. Mol Metab, 2022. 61: p. 101494.
10. Wang, W., et al., A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metab, 2019. 30(1): p. 174-189.e5.
11. 江忠霖, 以小鼠模式探討酮體在米色脂肪分化之作用及其對脂肪褐化及抗肥胖潛力的影響, in 生化科技學系. 2024, 國立臺灣大學. p. 1-269.
12. Burl, R.B., et al., Deconstructing Adipogenesis Induced by β3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metab, 2018. 28(2): p. 300-309.e4.
13. Schwalie, P.C., et al., A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature, 2018. 559(7712): p. 103-108.
14. Merrick, D., et al., Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science, 2019. 364(6438).
15. Rondini, E.A. and J.G. Granneman, Single cell approaches to address adipose tissue stromal cell heterogeneity. Biochem J, 2020. 477(3): p. 583-600.
16. Rondini, E.A., et al., Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development. Mol Metab, 2021. 53: p. 101307.
17. Zinngrebe, J., K.-M. Debatin, and P. Fischer-Posovszky, Adipocytes in hematopoiesis and acute leukemia: friends, enemies, or innocent bystanders? Leukemia, 2020. 34(9): p. 2305-2316.
18. Wang, Q.A., et al., Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med, 2013. 19(10): p. 1338-44.
19. Bruder, J. and T. Fromme, Global Adipose Tissue Remodeling During the First Month of Postnatal Life in Mice. Front Endocrinol (Lausanne), 2022. 13: p. 849877.
20. Cannon, B. and J. Nedergaard, Brown adipose tissue: function and physiological significance. Physiol Rev, 2004. 84(1): p. 277-359.
21. Ricquier, D., Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front Endocrinol (Lausanne), 2011. 2: p. 85.
22. Wu, H., X. Li, and C. Shen, Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation. Physiol Res, 2020. 69(5): p. 759-773.
23. Chouchani, E.T., L. Kazak, and B.M. Spiegelman, New Advances in Adaptive Thermogenesis: UCP1 and Beyond. Cell Metab, 2019. 29(1): p. 27-37.
24. Kazak, L., et al., A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell, 2015. 163(3): p. 643-55.
25. Roh, H.C., et al., Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. Cell Metab, 2018. 27(5): p. 1121-1137.e5.
26. Xue, B., et al., Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fats⃞. Journal of Lipid Research, 2007. 48(1): p. 41-51.
27. Negron, S.G., et al., Both proliferation and lipogenesis of brown adipocytes contribute to postnatal brown adipose tissue growth in mice. Sci Rep, 2020. 10(1): p. 20335.
28. Sanchez-Gurmaches, J., C.M. Hung, and D.A. Guertin, Emerging Complexities in Adipocyte Origins and Identity. Trends Cell Biol, 2016. 26(5): p. 313-326.
29. Seale, P., et al., Transcriptional control of brown fat determination by PRDM16. Cell Metab, 2007. 6(1): p. 38-54.
30. Seale, P., et al., PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008. 454(7207): p. 961-7.
31. Wang, W., et al., Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A, 2014. 111(40): p. 14466-71.
32. Wu, J., et al., Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012. 150(2): p. 366-76.
33. Wang, W. and P. Seale, Control of brown and beige fat development. Nat Rev Mol Cell Biol, 2016. 17(11): p. 691-702.
34. Lee, Y.H., et al., Cellular origins of cold-induced brown adipocytes in adult mice. Faseb j, 2015. 29(1): p. 286-99.
35. Rosenwald, M., et al., Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol, 2013. 15(6): p. 659-67.
36. Bartelt, A. and J. Heeren, Adipose tissue browning and metabolic health. Nature Reviews Endocrinology, 2014. 10(1): p. 24-36.
37. Long, J.Z., et al., A smooth muscle-like origin for beige adipocytes. Cell Metab, 2014. 19(5): p. 810-20.
38. Berry, D.C., Y. Jiang, and J.M. Graff, Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat Commun, 2016. 7: p. 10184.
39. Oguri, Y., et al., CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell, 2020. 182(3): p. 563-577.e20.
40. Nahmgoong, H., et al., Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab, 2022. 34(3): p. 458-472.e6.
41. Ma, X., et al., Deciphering the Roles of PPARγ in Adipocytes via Dynamic Change of Transcription Complex. Front Endocrinol (Lausanne), 2018. 9: p. 473.
42. Rodeheffer, M.S., K. Birsoy, and J.M. Friedman, Identification of white adipocyte progenitor cells in vivo. Cell, 2008. 135(2): p. 240-9.
43. Berry, R. and M.S. Rodeheffer, Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol, 2013. 15(3): p. 302-8.
44. Chen, M., et al., Identification of an adipose tissue-resident pro-preadipocyte population. Cell Rep, 2023. 42(5): p. 112440.
45. Tang, F., et al., mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 2009. 6(5): p. 377-82.
46. Haque, A., et al., A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med, 2017. 9(1): p. 75.
47. Klein, A.M., et al., Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 2015. 161(5): p. 1187-1201.
48. Macosko, E.Z., et al., Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 2015. 161(5): p. 1202-1214.
49. Zheng, G.X., et al., Massively parallel digital transcriptional profiling of single cells. Nat Commun, 2017. 8: p. 14049.
50. AlJanahi, A.A., M. Danielsen, and C.E. Dunbar, An Introduction to the Analysis of Single-Cell RNA-Sequencing Data. Mol Ther Methods Clin Dev, 2018. 10: p. 189-196.
51. Puchalska, P. and P.A. Crawford, Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab, 2017. 25(2): p. 262-284.
52. Jiang, C.L., Y.F. Chen, and F.J. Lin, Apolipoprotein E deficiency activates thermogenesis of white adipose tissues in mice through enhancing β-hydroxybutyrate production from precursor cells. Faseb j, 2021. 35(8): p. e21760.
53. Nishitani, S., et al., Ketone body 3-hydroxybutyrate enhances adipocyte function. Sci Rep, 2022. 12(1): p. 10080.
54. Bouillon, R., et al., Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr Rev, 2019. 40(4): p. 1109-1151.
55. Amrein, K., et al., Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr, 2020. 74(11): p. 1498-1513.
56. Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin, D. and Calcium, The National Academies Collection: Reports funded by National Institutes of Health, in Dietary Reference Intakes for Calcium and Vitamin D, A.C. Ross, et al., Editors. 2011, National Academies Press (US)
Copyright © 2011, National Academy of Sciences.: Washington (DC).
57. Park, C.Y. and S.N. Han, The Role of Vitamin D in Adipose Tissue Biology: Adipocyte Differentiation, Energy Metabolism, and Inflammation. J Lipid Atheroscler, 2021. 10(2): p. 130-144.
58. Nimitphong, H., E. Park, and M.J. Lee, Vitamin D regulation of adipogenesis and adipose tissue functions. Nutr Res Pract, 2020. 14(6): p. 553-567.
59. 衛生福利部國民健康署, 國人膳食營養素參考攝取量. 2020.
60. Holick, M.F., et al., Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab, 2011. 96(7): p. 1911-30.
61. Institute of Medicine Committee on the Evaluation of the Addition of Ingredients New to Infant, F., in Infant Formula: Evaluating the Safety of New Ingredients. 2004, National Academies Press (US)
Copyright 2004 by the National Academy of Sciences. All rights reserved.: Washington (DC).
62. Wagner, C.L., et al., High-dose vitamin D3 supplementation in a cohort of breastfeeding mothers and their infants: a 6-month follow-up pilot study. Breastfeed Med, 2006. 1(2): p. 59-70.
63. Wagner, C.L. and F.R. Greer, Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics, 2008. 122(5): p. 1142-52.
64. Bouillon, R., et al., Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev, 2008. 29(6): p. 726-76.
65. Abbas, M.A., Physiological functions of Vitamin D in adipose tissue. J Steroid Biochem Mol Biol, 2017. 165(Pt B): p. 369-381.
66. Rebelos, E., N. Tentolouris, and E. Jude, The Role of Vitamin D in Health and Disease: A Narrative Review on the Mechanisms Linking Vitamin D with Disease and the Effects of Supplementation. Drugs, 2023. 83(8): p. 665-685.
67. Norman, A.W., Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology, 2006. 147(12): p. 5542-8.
68. Zmijewski, M.A. and C. Carlberg, Vitamin D receptor(s): In the nucleus but also at membranes? Exp Dermatol, 2020. 29(9): p. 876-884.
69. Silvagno, F. and G. Pescarmona, Spotlight on vitamin D receptor, lipid metabolism and mitochondria: Some preliminary emerging issues. Mol Cell Endocrinol, 2017. 450: p. 24-31.
70. Kong, J. and Y.C. Li, Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab, 2006. 290(5): p. E916-24.
71. Blumberg, J.M., et al., Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J Biol Chem, 2006. 281(16): p. 11205-13.
72. Nimitphong, H., et al., 25-hydroxyvitamin D₃ and 1,25-dihydroxyvitamin D₃ promote the differentiation of human subcutaneous preadipocytes. PLoS One, 2012. 7(12): p. e52171.
73. Narvaez, C.J., et al., Induction of STEAP4 correlates with 1,25-dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J Cell Physiol, 2013. 228(10): p. 2024-36.
74. Narvaez, C.J., et al., Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology, 2009. 150(2): p. 651-61.
75. Wong, K.E., et al., Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am J Physiol Endocrinol Metab, 2009. 296(4): p. E820-8.
76. Xu, Y., Y. Lou, and J. Kong, VDR regulates energy metabolism by modulating remodeling in adipose tissue. Eur J Pharmacol, 2019. 865: p. 172761.
77. Weber, K. and R.G. Erben, Differences in triglyceride and cholesterol metabolism and resistance to obesity in male and female vitamin D receptor knockout mice. J Anim Physiol Anim Nutr (Berl), 2013. 97(4): p. 675-83.
78. Matthews, D.G., et al., Adipose-specific Vdr deletion alters body fat and enhances mammary epithelial density. J Steroid Biochem Mol Biol, 2016. 164: p. 299-308.
79. Lontchi-Yimagou, E., et al., Insulin-sensitizing effects of vitamin D repletion mediated by adipocyte vitamin D receptor: Studies in humans and mice. Mol Metab, 2020. 42: p. 101095.
80. Ricciardi, C.J., et al., 1,25-Dihydroxyvitamin D3/vitamin D receptor suppresses brown adipocyte differentiation and mitochondrial respiration. Eur J Nutr, 2015. 54(6): p. 1001-12.
81. Mukai, T. and T. Kusudo, Bidirectional effect of vitamin D on brown adipogenesis of C3H10T1/2 fibroblast-like cells. PeerJ, 2023. 11: p. e14785.
82. Hoang, A.C., et al., Mitochondrial RNA stimulates beige adipocyte development in young mice. Nat Metab, 2022. 4(12): p. 1684-1696.
83. Lee, C.C., et al., Naa10p Inhibits Beige Adipocyte-Mediated Thermogenesis through N-α-acetylation of Pgc1α. Mol Cell, 2019. 76(3): p. 500-515.e8.
84. Hao, Y., et al., Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nature Biotechnology, 2024. 42(2): p. 293-304.
85. Aran, D., et al., Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology, 2019. 20(2): p. 163-172.
86. Cao, J., et al., The single-cell transcriptional landscape of mammalian organogenesis. Nature, 2019. 566(7745): p. 496-502.
87. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57.
88. Sherman, B.T., et al., DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res, 2022. 50(W1): p. W216-w221.
89. Ntambi, J.M. and T. Takova, Role of Ca2+ in the early stages of murine adipocyte differentiation as evidenced by calcium mobilizing agents. Differentiation, 1996. 60(3): p. 151-8.
90. Jensen, B., et al., High extracellular calcium attenuates adipogenesis in 3T3-L1 preadipocytes. Exp Cell Res, 2004. 301(2): p. 280-92.
91. Pramme-Steinwachs, I., M. Jastroch, and S. Ussar, Extracellular calcium modulates brown adipocyte differentiation and identity. Sci Rep, 2017. 7(1): p. 8888.
92. Zhai, M., et al., Involvement of calcium channels in the regulation of adipogenesis. Adipocyte, 2020. 9(1): p. 132-141.
93. Pei, H., et al., Krüppel-like factor KLF9 regulates PPARγ transactivation at the middle stage of adipogenesis. Cell Death Differ, 2011. 18(2): p. 315-27.
94. Fan, H., et al., Cold-Inducible Klf9 Regulates Thermogenesis of Brown and Beige Fat. Diabetes, 2020. 69(12): p. 2603-2618.
95. Fleet, J.C., Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J Nutr, 2004. 134(12): p. 3215-8.
96. Fleet, J.C., Vitamin D receptors: not just in the nucleus anymore. Nutr Rev, 1999. 57(2): p. 60-2.
97. Nowak, J.I., et al., VDR and PDIA3 Are Essential for Activation of Calcium Signaling and Membrane Response to 1,25(OH)(2)D(3) in Squamous Cell Carcinoma Cells. Cells, 2023. 13(1).
98. Shi, H., et al., 1alpha,25-dihydroxyvitamin D3 inhibits uncoupling protein 2 expression in human adipocytes. Faseb j, 2002. 16(13): p. 1808-10.
99. Gatza, C.E., et al., Type III TGF-β receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia, 2011. 13(8): p. 758-70.
100. Zhang, X., et al., TGFBR3 is an independent unfavourable prognostic marker in oesophageal squamous cell cancer and is positively correlated with Ki-67. Int J Exp Pathol, 2020. 101(6): p. 223-229.
101. Lee, M.J., et al., Impaired Glucocorticoid Suppression of TGFβ Signaling in Human Omental Adipose Tissues Limits Adipogenesis and May Promote Fibrosis. Diabetes, 2019. 68(3): p. 587-597.
102. Villarroya, J., et al., Secretory Proteome of Brown Adipocytes in Response to cAMP-Mediated Thermogenic Activation. Front Physiol, 2019. 10: p. 67.
103. Sun, L., et al., Dynamic interplay between IL-1 and WNT pathways in regulating dermal adipocyte lineage cells during skin development and wound regeneration. Cell Rep, 2023. 42(6): p. 112647.
104. McGillicuddy, F.C., et al., Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes, 2011. 60(6): p. 1688-98.
105. Hofwimmer, K., et al., IL-1β promotes adipogenesis by directly targeting adipocyte precursors. Nat Commun, 2024. 15(1): p. 7957.
106. Eguchi, J., et al., Identification of adipocyte adhesion molecule (ACAM), a novel CTX gene family, implicated in adipocyte maturation and development of obesity. Biochem J, 2005. 387(Pt 2): p. 343-53.
107. Murakami, K., et al., Antiobesity Action of ACAM by Modulating the Dynamics of Cell Adhesion and Actin Polymerization in Adipocytes. Diabetes, 2016. 65(5): p. 1255-67.
108. Maimaitiyiming, H., et al., CD47 deficiency protects mice from diet-induced obesity and improves whole body glucose tolerance and insulin sensitivity. Sci Rep, 2015. 5: p. 8846.
109. Norman-Burgdolf, H., et al., CD47 differentially regulates white and brown fat function. Biol Open, 2020. 9(12).
110. Li, D., T. Gwag, and S. Wang, Absence of CD47 maintains brown fat thermogenic capacity and protects mice from aging-related obesity and metabolic disorder. Biochem Biophys Res Commun, 2021. 575: p. 14-19.
111. Arbee, S., et al., Versican maintains the homeostasis of adipose tissues and regulates energy metabolism. Biochem Biophys Res Commun, 2024. 727: p. 150309.
112. Takahashi, S., et al., The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb, 2004. 11(4): p. 200-8.
113. Nguyen, A., et al., Very low density lipoprotein receptor (VLDLR) expression is a determinant factor in adipose tissue inflammation and adipocyte-macrophage interaction. J Biol Chem, 2014. 289(3): p. 1688-703.
114. Tao, H. and T. Hajri, Very low density lipoprotein receptor promotes adipocyte differentiation and mediates the proadipogenic effect of peroxisome proliferator-activated receptor gamma agonists. Biochem Pharmacol, 2011. 82(12): p. 1950-62.
115. Shin, K.C., et al., VLDL-VLDLR axis facilitates brown fat thermogenesis through replenishment of lipid fuels and PPARβ/δ activation. Cell Rep, 2022. 41(11): p. 111806.
116. Graae, A.S., et al., ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes, 2019. 68(3): p. 502-514.
117. Ullah, M., M. Sittinger, and J. Ringe, Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units. Matrix Biol, 2013. 32(7-8): p. 452-65.
118. Godfrey, K.M., et al., Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol, 2017. 5(1): p. 53-64.
119. Xue, R., et al., Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med, 2015. 21(7): p. 760-8.
120. Lim, S., et al., Cold-induced activation of brown adipose tissue and adipose angiogenesis in mice. Nature Protocols, 2012. 7(3): p. 606-615.
121. Chang, Y.S., et al., Postnatal Dexamethasone Therapy Impairs Brown Adipose Tissue Thermogenesis and Autophagy Flux in Neonatal Rat Pups. Theranostics, 2022. 12(13): p. 5803-5819.
122. Ying, F., et al., Prostaglandin E receptor subtype 4 regulates lipid droplet size and mitochondrial activity in murine subcutaneous white adipose tissue. Faseb j, 2017. 31(9): p. 4023-4036.
123. Asano, H., et al., Induction of beige-like adipocytes in 3T3-L1 cells. J Vet Med Sci, 2014. 76(1): p. 57-64.
124. Miller, C.N., et al., Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes. PLoS One, 2015. 10(9): p. e0138344.
125. Dias, C.T., et al., Maternal high-fat diet stimulates proinflammatory pathway and increases the expression of Tryptophan Hydroxylase 2 (TPH2) and brain-derived neurotrophic factor (BDNF) in adolescent mice hippocampus. Neurochem Int, 2020. 139: p. 104781.
126. Ashino, N.G., et al., Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem, 2012. 23(4): p. 341-8.
127. Vu, D., et al., 1,25-Dihydroxyvitamin D induces lipoprotein lipase expression in 3T3-L1 cells in association with adipocyte differentiation. Endocrinology, 1996. 137(5): p. 1540-4.
128. Fu, M., et al., A Nuclear Receptor Atlas: 3T3-L1 adipogenesis. Mol Endocrinol, 2005. 19(10): p. 2437-50.
129. Cero, C., et al., β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight, 2021. 6(11).
130. Lefterova, M.I. and M.A. Lazar, New developments in adipogenesis. Trends Endocrinol Metab, 2009. 20(3): p. 107-14.
131. Ramakrishnan, V.M. and N.L. Boyd, The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. Tissue Eng Part B Rev, 2018. 24(4): p. 289-299.
132. Green, H. and M. Meuth, An established pre-adipose cell line and its differentiation in culture. Cell, 1974. 3(2): p. 127-33.
133. Qian, S., et al., A single-cell sequence analysis of mouse subcutaneous white adipose tissue reveals dynamic changes during weaning. Commun Biol, 2024. 7(1): p. 787.
134. 潘子明 2019 春節特刊《保健食品研發與產業化》系列之一 :保健食品原料之選擇與功效評估. 2019.
135. Fleet, J.C., et al., Serum metabolite profiles and target tissue gene expression define the effect of cholecalciferol intake on calcium metabolism in rats and mice. J Nutr, 2008. 138(6): p. 1114-20.
136. Hummel, D.M., et al., Prevention of preneoplastic lesions by dietary vitamin D in a mouse model of colorectal carcinogenesis. J Steroid Biochem Mol Biol, 2013. 136: p. 284-8.
137. Seldeen, K.L., et al., A mouse model of vitamin D insufficiency: is there a relationship between 25(OH) vitamin D levels and obesity? Nutr Metab (Lond), 2017. 14: p. 26.
138. Liang, Q., et al., Postnatal Vitamin D Intake Modulates Hippocampal Learning and Memory in Adult Mice. Front Neurosci, 2018. 12: p. 141.
139. Roizen, J.D., et al., Decreased Serum 25-Hydroxyvitamin D in Aging Male Mice Is Associated With Reduced Hepatic Cyp2r1 Abundance. Endocrinology, 2018. 159(8): p. 3083-3089.
140. Elahi, M.M., et al., Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. Br J Nutr, 2009. 102(4): p. 514-9.
141. Mennitti, L.V., et al., Effects of maternal diet-induced obesity on metabolic disorders and age-associated miRNA expression in the liver of male mouse offspring. Int J Obes (Lond), 2022. 46(2): p. 269-278.
142. Targher, G., et al., Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis, 2007. 17(7): p. 517-24.
143. Barchetta, I., et al., Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus. Hepatology, 2012. 56(6): p. 2180-7.
144. Kim, G.H., et al., Vitamin D ameliorates age-induced nonalcoholic fatty liver disease by increasing the mitochondrial contact site and cristae organizing system (MICOS) 60 level. Exp Mol Med, 2024. 56(1): p. 142-155.
145. Lau, S.L., et al., Metabolic changes in vitamin D receptor knockout mice. PLoS One, 2022. 17(6): p. e0267573.
146. Yoshizawa, T., et al., Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet, 1997. 16(4): p. 391-6.
147. Li, Y.C., et al., Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci U S A, 1997. 94(18): p. 9831-5.
148. Kovacs, C.S. and H.M. Kronenberg, Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev, 1997. 18(6): p. 832-72.
149. Kaufmann, M., et al., A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice. Endocrinology, 2015. 156(12): p. 4388-97.
150. Panda, D.K., et al., Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem, 2004. 279(16): p. 16754-66.
151. Wong, K.E., et al., Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J Biol Chem, 2011. 286(39): p. 33804-10.
152. Shi, H., et al., 1alpha,25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. Faseb j, 2001. 15(14): p. 2751-3.
153. Felicidade, I., et al., Role of 1α,25-Dihydroxyvitamin D3 in Adipogenesis of SGBS Cells: New Insights into Human Preadipocyte Proliferation. Cell Physiol Biochem, 2018. 48(1): p. 397-408.
154. Salehpour, A., et al., 1,25-Dihydroxyvitamin D3 modulates adipogenesis of human adipose-derived mesenchymal stem cells dose-dependently. Nutr Metab (Lond), 2021. 18(1): p. 29.
155. Matsuda, S. and Y. Kitagishi, Peroxisome proliferator-activated receptor and vitamin d receptor signaling pathways in cancer cells. Cancers (Basel), 2013. 5(4): p. 1261-70.
156. Alimirah, F., et al., Crosstalk between the peroxisome proliferator-activated receptor γ (PPARγ) and the vitamin D receptor (VDR) in human breast cancer cells: PPARγ binds to VDR and inhibits 1α,25-dihydroxyvitamin D3 mediated transactivation. Exp Cell Res, 2012. 318(19): p. 2490-7.
157. Savkur, R.S., et al., Coactivation of the human vitamin D receptor by the peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Mol Pharmacol, 2005. 68(2): p. 511-7.
158. Rauluseviciute, I., et al., JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res, 2024. 52(D1): p. D174-d182.
159. Malloy, P.J. and B.J. Feldman, Cell-autonomous regulation of brown fat identity gene UCP1 by unliganded vitamin D receptor. Mol Endocrinol, 2013. 27(10): p. 1632-42.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96333-
dc.description.abstract根據世界衛生組織統計,自2022年起全球約有10億人口受肥胖困擾,而肥胖相關的代謝性疾病已成為重要公共健康問題。肥胖是由於脂肪細胞的過度積聚所致,其中白色脂肪細胞在特定刺激下能褐化為具有較高代謝率的米色脂肪細胞(beige adipocyte),進而改善肥胖及代謝疾病。哺乳期是米色脂肪細胞生成關鍵時期,先前實驗室研究發現在哺乳期給予小鼠酮體前驅物1,3-butanediol(1,3BD)誘導增強哺乳期生酮作用,能促進小鼠成年後米色脂肪細胞生成。然而,增強哺乳期生酮作用是否影響脂肪前驅細胞之組成而導致此現象尚不清楚。本研究第一部分使用單細胞RNA定序(single cell RNA sequencing)分析小鼠iWAT stroma vascular fraction cells(SVFs)之組成。透過R語言分析,我們定義iWAT SVFs共由八種細胞群構成,其中主要四群為相似於幹細胞的adipocyte stromal cells (ASC) 0、前脂肪細胞ASC1及具增生能力的前脂肪細胞ASC2a和ASC2b。我們發現哺乳期增強生酮作用使ASC1細胞群比例增加、ASC0細胞群比例減少,存在ASC0細胞群轉變為ASC1細胞群的可能性,且ASC1細胞群高度表現米色脂肪前驅細胞標記Cd81。因此,ASC1細胞群比例增加可能是哺乳期增強生酮作用促進米色脂肪細胞生成的重要因素之一。此外,轉錄因子vitamin D receptor(VDR)也在ASC1細胞群高度表現,然而活化維生素D訊號途徑是否促進米色脂肪細胞生成仍不清楚。故本研究第二部分擬探討維生素D及活化VDR訊號途徑於米色脂肪生成扮演的角色,同時也想探討維生素D與酮體是否協同促進米色脂肪細胞生成。我們由in vitro模式發現維生素D(calcitriol)在分化期間促進3T3-L1米色脂肪細胞之產熱基因Ucp1表現。且哺乳期長期補充維生素D3(cholecalciferol)能顯著促進小鼠成年後受冷誘導的米色脂肪細胞生成,哺乳期短時間補充維生素D3亦趨勢性促進一般仔鼠(Ch)或肥胖子代(Ob)於P9時的米色脂肪細胞生成。然而在目前實驗設計下未觀察到維生素D與酮體協同促進的效果。綜合以上,本研究發現哺乳期增強生酮作用改變ASCs之組成,進而促進米色脂肪細胞生成,且其中維生素D及VDR訊號途徑可能扮演重要的角色。zh_TW
dc.description.abstractObesity is characterized by the expansion of white adipose tissue with excess accumulation of lipids in white adipocytes. White adipocytes can transition into beige adipocytes under specific stimuli, and beige adipocytes exhibit a higher metabolic rate, offering potential benefits in reducing body weight and improving metabolic health. The preweaning period is crucial for beige adipogenesis. Our previous research demonstrated that administering 1,3-butanediol (1,3BD), a ketone precursor, to preweaning mice enhances beige adipogenesis. However, the impact of 1,3BD on the composition of adipocyte precursor cells remains unclear. In this study, we employed single-cell RNA sequencing to analyze stromal vascular fraction cells (SVFs) isolated from the inguinal white adipose tissue (iWAT) of mice. Using R studio analysis, we identified eight distinct cell clusters based on known cell markers, with four major clusters including stem cell-like adipocyte stromal cells (ASC) 0, preadipocytes ASC1, and proliferative preadipocytes ASC2a and ASC2b. We found that postnatal ketogenesis increases the proportion of ASC1 while decreasing ASC0, suggesting a possible recruitment of ASC1 from ASC0. In addition, the beige progenitor cell marker Cd81 was highly expressed in ASC1, indicating the important role of ASC1 in beige adipogenesis during ketogenesis. Furthermore, the transcription factor vitamin D receptor (VDR) was also highly expressed in ASC1, suggesting a possible involvement of the VDR signaling pathway in beige adipogenesis. Next, we explored the role of vitamin D in beige adipogenesis and determined whether vitamin D and 1,3BD synergistically improve beige adipogenesis. We demonstrated that calcitriol promotes Ucp1 expression in the 3T3-L1 cell line during induction of adipocyte differentiation. Our in vivo experiments further revealed that long-term postnatal vitamin D3 (cholecalciferol) supplementation enhances beige adipogenesis in adult mice. Short-term postnatal vitamin D3 supplementation tends to enhance beige adipogenesis in offspring from both normal diet-fed (Ln) and diet-induced obesity (Ob) dams. However, no significant synergistic effect was observed when both vitamin D and 1,3BD were co-administered at the tested doses. In summary, enhanced ketogenesis during lactation alters the composition of ASCs, promoting beige adipogenesis. Moreover, vitamin D and VDR signaling pathway may play critical roles in regulating this process, offering insights into potential therapeutic strategies for obesity and metabolic disorders.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:24:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:24:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iv
目次 vi
圖次 ix
表次 xi
縮寫表 xii
第一章 緒論 1
第一節 前言 1
第二節 文獻回顧 2
一、脂肪細胞的種類 2
二、脂肪前驅細胞(adipose precursor cells, APCs) 5
三、單細胞RNA定序(Single cell mRNA sequencing, scRNA-seq) 9
四、酮體之簡介 11
五、維生素D 12
第二章 以單細胞RNA定序探討酮體於脂肪前驅細胞組成的影響 18
第一節 前言與實驗設計 18
一、前言 18
二、實驗設計 19
第二節 材料與方法 20
一、單細胞RNA定序(Single cell RNA sequencing, scRNA-seq) 20
二、ScRNA-seq數據分析 21
三、Gene ontology (GO) analysis 23
第三節 實驗結果 25
一、單細胞RNA定序(scRNA-seq)定義iWAT SVFs存在8種細胞群 25
二、哺乳期增強生酮作用提升脂肪前驅細胞之ASC1細胞群組成 27
三、哺乳期增強生酮作用提升ASC1細胞群之米色脂肪細胞生成標記 28
四、哺乳期增強生酮作用提升轉錄因子Klf9及Vdr於ASC1細胞群之表現量 29
五、哺乳期增強生酮作用提升ASC1細胞群之調控VDR訊號相關基因表現量 29
六、哺乳期增強生酮作用於ASC1細胞群上調之基因參與細胞增生、脂肪分化及脂質代謝相關途徑 30
七、缺乏酮體提升脂肪前驅細胞之鈣離子反應相關基因表現量 31
八、特異性高表現於ASC1細胞群的細胞表面標記 32
第四節 討論 45
一、脂肪前驅細胞群之定義 45
二、小鼠脂肪前驅細胞組成與年齡的關係 46
三、哺乳期增強生酮作用影響脂肪前驅細胞之米色脂肪生成 47
四、哺乳期增強生酮作用提升之轉錄因子KLF9參與調控米色脂肪細胞生成 48
五、脂肪前驅細胞之鈣離子反應與脂肪細胞生成的關係 48
六、米色脂肪前驅細胞的潛在標記 49
七、未來展望 52
第五節 結論 55
第三章 初探維生素D訊號於米色脂肪細胞生成扮演的潛在角色 56
第一節 前言與實驗設計 56
一、前言 56
二、實驗設計 56
第二節 材料與方法 58
一、3T3-L1細胞培養及分化 58
二、人類脂肪細胞培養與分化 60
三、油紅染色(Oil red O staining, ORO staining) 62
四、小鼠飼養 63
五、小鼠體溫量測 64
六、小鼠脂肪組織切片染色 65
七、小鼠脂肪組織均質 67
八、總RNA抽取及反轉錄 67
九、Quantitative Real-time PCR(RT-qPCR) 68
十、統計方法 69
第三節 實驗結果 70
ㄧ、Calcitriol可能在3T3-L1細胞株誘導分化期間促進其米色脂肪細胞分化,但在誘導分化後抑制其米色脂肪細胞分化 70
二、哺乳期長期(19天)補充維生素D3及/或酮體前驅物1,3BD對小鼠成年後米色脂肪細胞生成之影響 71
三、哺乳期短時間(6天)補充維生素D3及/或酮體前驅物1,3BD對P9 Ln仔鼠米色脂肪細胞生成之影響 74
四、哺乳期短時間(6天)補充維生素D3對飲食誘導肥胖母鼠之子代(Ob)米色脂肪細胞生成的影響 76
五、人類脂肪前驅細胞分化 79
第四節 討論 97
一、Calcitriol影響3T3-L1米色脂肪分化的可能原因 97
二、β-adrenergic signaling參與維生素D促進米色脂肪細胞生成機制的可能性 100
三、酮體對米色脂肪細胞生成的影響 100
四、哺乳期短時間補充維生素D3可能促進P9仔鼠的白色脂肪細胞米色化 101
五、哺乳期短時間補充維生素D3不影響P9仔鼠血清25-OHD濃度的可能原因 102
六、哺乳期短時間補充維生素D3活化仔鼠iWAT VDR訊號的效果可能不顯著 104
七、哺乳期短時間補充維生素D3可能改善P9 Ob仔鼠的非酒精性脂肪肝 105
八、VDR蛋白或其訊號活化於米色脂肪生成扮演重要的角色 105
九、以VDR-KO小鼠探討VDR訊號於米色脂肪細胞生成的可行性 106
十、人類脂肪前驅細胞分化 108
十一、VDR及其訊號促進米色脂肪細胞生成的潛在機制 108
十二、未來展望 112
第五節 結論 115
總結 116
附錄 117
參考文獻 123
-
dc.language.isozh_TW-
dc.subject脂肪前驅細胞zh_TW
dc.subject哺乳期生酮zh_TW
dc.subject米色脂肪細胞生成zh_TW
dc.subject維生素Dzh_TW
dc.subjectVDRzh_TW
dc.subject單細胞RNA定序zh_TW
dc.subjectVDRen
dc.subjectbeige adipogenesisen
dc.subjectadipose stromal cellsen
dc.subjectpostnatal ketogenesisen
dc.subjectsingle cell RNA sequencingen
dc.subjectvitamin Den
dc.title探討酮體誘導米色脂肪細胞重塑的複雜性及維生素D訊號扮演的潛在角色zh_TW
dc.titleUnraveling the complexity of beige remodeling induced by ketone bodies reveals vitamin D signaling as a potential mediatoren
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃青真;謝博軒;王志豪;李家瑋zh_TW
dc.contributor.oralexamcommitteeChing-Jang Huang;Po-Shiuan Hsieh;Chih-Hao Wang;Chia-Wei Leeen
dc.subject.keyword米色脂肪細胞生成,脂肪前驅細胞,哺乳期生酮,單細胞RNA定序,維生素D,VDR,zh_TW
dc.subject.keywordbeige adipogenesis,adipose stromal cells,postnatal ketogenesis,single cell RNA sequencing,vitamin D,VDR,en
dc.relation.page133-
dc.identifier.doi10.6342/NTU202404686-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-12-11-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2029-12-10-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
33.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved