Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96329
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉zh_TW
dc.contributor.advisorHuei Wangen
dc.contributor.author呂仲堯zh_TW
dc.contributor.authorChung-Yao Luen
dc.date.accessioned2024-12-24T16:22:51Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-11-26-
dc.identifier.citation[1] U. J. Lewark, G. Langgartner, R. Follmann, D. Min, and Ø. Jensen, "AQ/V band low noise amplifier using space de-rated bias conditions," in 2022 17th European Microwave Integrated Circuits Conference (EuMIC), 2022: IEEE, pp. 127-129.
[2] H.-T. Chou, Z.-L. Ke, and H.-K. Chiou, "A low power compact size forward body-biased K-band CMOS low noise amplifier," in Asia-Pacific Microwave Conference 2011, 2011: IEEE, pp. 494-497.
[3] C.-J. Liang et al., "A tri (K/Ka/V)-band monolithic CMOS low noise amplifier with shared signal path and variable gains," in 2020 IEEE/MTT-S International Microwave Symposium (IMS), 2020: IEEE, pp. 333-336.
[4] S. Jang and C. Nguyen, "A High-Gain Power-Efficient Wideband V-Band LNA in 0.18-um SiGe BiCMOS," IEEE Microwave and Wireless Components Letters, vol. 26, no. 4, pp. 276-278, 2016.
[5] A. A. Alhamed and G. M. Rebeiz, "A global multi-standard/multi-band 17.1-52.4 GHz Tx phased array beamformer with 14.8 dBm OP1dB supporting 5G NR FR2 bands with multi-Gb/s 64-QAM for massive MIMO arrays," in 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2021: IEEE, pp. 99-102.
[6] T. Shimizu, Y. Kawahara, T. Nakagawa, and T. Yoneyama, "A 55GHz 5-pole NRD guide E-plane bandpass filter for millimeter wave OFDM applications," in 2006 Asia-Pacific Microwave Conference, 2006: IEEE, pp. 785-788.
[7] C.-N. Chen et al., "38-GHz phased array transmitter and receiver based on scalable phased array modules with endfire antenna arrays for 5G MMW data links," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 980-999, 2020.
[8] C. So, E.-T. Sung, and S. Hong, "A V-band four-channel phased array transmitter beamforming IC with 0.7-degree phase step in 20 dB dynamic range," in 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2023: IEEE, pp. 41-44.
[9] C. J. Lee, H. Nam, D. Kim, S.-K. Kim, and D. Y. Lee, "A D-band variable gain low noise amplifier in a 28 nm CMOS process for 6G wireless communications," IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.
[10] M.-D. Tsai, R.-C. Liu, C.-S. Lin, and H. Wang, "A low-voltage fully-integrated 4.5-6-GHz CMOS variable gain low noise amplifier," in 33rd European Microwave Conference Proceedings (IEEE Cat. No. 03EX723C), 2003, vol. 1: IEEE, pp. 13-16.
[11] T. W. Kim, B. Kim, and K. Lee, "Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors," IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 223-229, 2004.
[12] Z.-H. Wang, C.-N. Chen, T.-W. Huang, and H. Wang, "A 28-GHz high linearity up-conversion mixer using second-harmonic injection technique in 28-nm CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 31, no. 3, pp. 276-279, 2021.
[13] K. L. Fong and R. G. Meyer, "High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages," IEEE Journal of Solid-State Circuits, vol. 33, no. 4, pp. 548-555, 1998.
[14] M. Furqan, F. Ahmed, K. Aufinger, and A. Stelzer, "A D-band fully-differential quadrature FMCW radar transceiver with 11 dBm output power and a 3-dB 30-GHz bandwidth in SiGe BiCMOS," in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017: IEEE, pp. 1404-1407.
[15] J.-M. Song, V.-S. Trinh, S. Kim, and J.-D. Park, "275 GHz Quadrature Receivers for THz-Band 6G Indoor Network in 130-nm SiGe Technology," IEEE Access, 2023.
[16] A. Chakraborty, S. Trotta, and R. Weigel, "A low-power multichannel receiver for D-band sensing applications in a 0.13 µm SiGe BiCMOS technology," in 2014 Asia-Pacific Microwave Conference, 2014: IEEE, pp. 154-156.
[17] X. Li, X. Jia, S. Erdogan, M. Jordan, and M. Swaminathan, "Design and Characterization of Metalized Trench Based Waveguide Technology on Glass Interposer for 6G Applications," in 2023 IEEE/MTT-S International Microwave Symposium-IMS 2023, 2023: IEEE, pp. 684-687.
[18] T. S. Rappaport et al., "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE access, vol. 7, pp. 78729-78757, 2019.
[19] L. Sheng, J. C. Jensen, and L. E. Larson, "A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter," IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1329-1337, 2000.
[20] J.-H. Tsai and T.-W. Huang, "35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 10, pp. 2075-2085, 2007.
[21] K.-Y. Kao, D.-R. Lu, J.-C. Kao, and K.-Y. Lin, "A 60 GHz variable-gain low-noise amplifier with low phase variation," in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016: IEEE, pp. 1-3.
[22] K.-C. Chang, Y. Wang, and H. Wang, "A broadband variable gain low noise amplifier covering 28/38 GHz bands with low phase variation in 90-nm CMOS for 5G communications," in 2021 IEEE MTT-S International Microwave Symposium (IMS), 2021: IEEE, pp. 764-767.
[23] S. H. Kim, T. H. Jang, J. H. Kim, and C. S. Park, "A wideband 120-GHz variable gain amplifier with multistage phase compensation," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2419-2427, 2020.
[24] D.-S. Siao, J.-C. Kao, and H. Wang, "A 60 GHz low phase variation variable gain amplifier in 65 nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, 2014.
[25] J.-H. Tsai and C.-L. Lin, "A 40-GHz 4-bit digitally controlled VGA with low phase variation using 65-nm CMOS process," IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, 2019.
[26] Y. Wang, T.-Y. Chiu, C.-C. Chien, W.-H. Tsai, and H. Wang, "An E-band high-performance variable gain low noise amplifier for wireless communications in 90-nm CMOS process," IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, pp. 1095-1098, 2022.
[27] W.-Z. Huang, M.-H. Li, Y.-S. Ng, Y. Wang, and H. Wang, "A V-band Double-Transformer-Coupling and Current Steering VGLNA in 90-nm CMOS," in 2022 17th European Microwave Integrated Circuits Conference (EuMIC), 2022: IEEE, pp. 134-136.
[28] H.-H. Lin, Y.-H. Lin, and H. Wang, "A high linearity 24-GHz down-conversion mixer using distributed derivative superposition technique in 0.18-um CMOS process," IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 49-51, 2018.
[29] F. Zhu et al., "A broadband low-power millimeter-wave CMOS downconversion mixer with improved linearity," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 3, pp. 138-142, 2014.
[30] F. Chen, Y. Wang, J.-L. Lin, Z.-M. Tsai, and H. Wang, "A 24-GHz High Linearity Down-conversion Mixer in 90-nm CMOS," in 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2018: IEEE, pp. 1-3.
[31] Z. Chen et al., "A 62–85-GHz high linearity upconversion mixer with 18-GHz IF bandwidth," IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 219-221, 2019.
[32] Y.-T. Chang, H.-Y. Chen, and H.-C. Lu, "A V-band high linearity sub-harmonic I/Q demodulator using transformer coupling," in 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2017: IEEE, pp. 196-198.
[33] W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, "1024-QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 11, pp. 3974-3985, 2013.
[34] Y.-H. Lin, J.-L. Kuo, and H. Wang, "A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique," in 2012 7th European Microwave Integrated Circuit Conference, 2012: IEEE, pp. 365-368.
[35] P.-H. Tsai, C.-C. Kuo, J.-L. Kuo, S. Aloui, and H. Wang, "A 30–65 GHz reduced-size modulator with low LO power using sub-harmonic pumping in 90-nm CMOS technology," in 2012 IEEE Radio Frequency Integrated Circuits Symposium, 2012: IEEE, pp. 491-494.
[36] J.-H. Tsai, "Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1350-1360, 2011.
[37] C. Loyez, A. Siligaris, P. Vincent, A. Cathelin, and N. Rolland, "A direct conversion IQ modulator in CMOS 65nm SOI for multi-gigabit 60GHz systems," in 2012 7th European Microwave Integrated Circuit Conference, 2012: IEEE, pp. 5-7.
[38] Y.-T. Chou, Y.-H. Lin, and H. Wang, "A high image rejection E-band sub-harmonic IQ demodulator with low power consumption in 90-nm CMOS process," in 2016 11th European Microwave Integrated Circuits Conference (EuMIC), 2016: IEEE, pp. 488-491.
[39] C.-Y. Lu, Y. Wang, and H. Wang, "A V-band Double-Transformer-Coupling with Low Phase Variation VGLNA in 90-nm CMOS Process," in 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2024: IEEE, pp. 1-2.
[40] C.-Y. Lu, Y.Wang, and Huei Wang, "A V-Band High Linearity Down-Conversion Mixer Using Distributed Derivative Superposition Technique in 90-nm CMOS Process," in 2024 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2024.
[41] Y.-T. Chang and H.-C. Lu, "A $ V $-Band Low-Power Digital Variable-gain Low-noise Amplifier using Current-reused Technique with Stable Matching and Maintained OP1dB," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4404-4417, 2019.
[42] B. Razavi and R. Behzad, RF microelectronics. Prentice hall New York, 2012.
[43] H. T. Friis, "Noise figures of radio receivers," Proceedings of the IRE, vol. 32, no. 7, pp. 419-422, 1944.
[44] W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, and T.-W. Huang, "60-GHz 5-bit phase shifter with integrated VGA phase-error compensation," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, 2013.
[45] Z. Jiang et al., "A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift," in 2017 IEEE Asia Pacific Microwave Conference (APMC), 2017: IEEE, pp. 1200-1202.
[46] Ying Chen," Design of microwave ultra-low-power low noise amplifier and millimeter-wave doherty power amplifier, National Taiwan University Master's Thesis, 2019.
[47] S. Kong, H. D. Lee, M.-S. Lee, and B. Park, "A V-band current-reused LNA with a double-transformer-coupling technique," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 942-944, 2016.
[48] Y.-T. Chang, T.-Y. Lin, and H.-C. Lu, "A low power wideband V-band LNA using double-transformer-coupling technique and T-type matching in 90nm CMOS," in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019: IEEE, pp. 224-227.
[49] J. Zhang, D. Zhao, and X. You, "A 20-GHz 1.9-mW LNA using g m-boost and current-reuse techniques in 65-nm CMOS for satellite communications," IEEE Journal of Solid-State Circuits, vol. 55, no. 10, pp. 2714-2723, 2020.
[50] C.-Y. Hsieh, J.-C. Kao, J.-J. Kuo, and K.-Y. Lin, "A 57–64 GHz low-phase-variation variable-gain amplifier," in 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012: IEEE, pp. 1-3.
[51] Chun-Chia Chien," Design of D-band frequency doubler, low-noise amplifiers for 5G communication and bidirectional amplifier for next-generation phased-arrays, National Taiwan University Master's Thesis, 2023.
[52] N. Deferm and P. Reynaert, CMOS Front Ends for Millimeter Wave Wireless Communication Systems. Springer, 2015.
[53] Y. Wang, F. Meng, K. Ma, and M. Lu, "Design of a dB-Linear 21.5-to-36 GHz 6-bit RF-VGA with Accurate Gain Control in 0.13-μm SiGe BiCMOS Technology," in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), 2022: IEEE, pp. 3343-3346.
[54] T. Wu, C. Zhao, H. Liu, Y. Wu, Y. Yu, and K. Kang, "A 20~ 43 GHz VGA with 21.5 dB gain tuning range and low phase variation for 5G communications in 65-nm CMOS," in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019: IEEE, pp. 71-74.
[55] W.-T. Li et al., "Parasitic-insensitive linearization methods for 60-GHz 90-nm CMOS LNAs," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2512-2523, 2012.
[56] E. Allam, J. Nisbet, and M. Malieparrd, "Low-Voltage 1.9 GHz Front-End Receiver in 0.5-um CMOS Technology," IEEE J. Solid State Circuits, vol. 36, no. 10, pp. 1434-1443, 2001.
[57] V. Aparin and L. E. Larson, "Modified derivative superposition method for linearizing FET low-noise amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 2, pp. 571-581, 2005.
[58] T. H. Lee, The design of CMOS radio-frequency integrated circuits. Cambridge university press, 2003.
[59] W. M. Fathelbab and M. B. Steer, "Tapped marchand baluns for matching applications," IEEE transactions on microwave theory and techniques, vol. 54, no. 6, pp. 2543-2551, 2006.
[60] R. Mongia, I. J. Bahl, and P. Bhartia, "RF and microwave coupled-line circuits," (No Title), 1999.
[61] M. T. Terrovitis and R. G. Meyer, "Intermodulation distortion in current-commutating CMOS mixers," IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1461-1473, 2000.
[62] S. P. Sah and D. Heo, "A 12 GHz IF bandwidth low power 5–17 GHz V-band positive transformer-feedback down-conversion mixer," in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 2014: IEEE, pp. 1-4.
[63] P. Testa, V. Rieß, C. Carta, and F. Ellinger, "An inductorless 60GHz down-conversion mixer in 22nm FD-SOI CMOS technology," in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019: IEEE, pp. 152-155.
[64] C.-A. Hsieh, Y.-H. Lin, and H. Wang, "A miniature 52–66 GHz sub-harmonic IQ demodulator with low LO power in 65-nm CMOS," in 2014 Asia-Pacific Microwave Conference, 2014: IEEE, pp. 1199-1201.
[65] W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu, and T.-W. Huang, "A 453-/spl mu/W 53-70-GHz ultra-low-power double-balanced source-driven mixer using 90-nm CMOS technology," IEEE transactions on microwave theory and techniques, vol. 61, no. 5, pp. 1903-1912, 2013.
[66] Y.-T. Chang, C.-Y. Kang, and H.-C. Lu, "A V-band high gain sub-harmonic down-conversion mixer using PMOS cross couple pair to implement negative impedance and current-bleeding technique," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2765-2769, 2021.
[67] C. J. Lee and C. S. Park, "A D-band gain-boosted current bleeding down-conversion mixer in 65 nm CMOS for chip-to-chip communication," IEEE Microwave and Wireless Components Letters, vol. 26, no. 2, pp. 143-145, 2016.
[68] Z.-M. Tsai, H.-C. Liao, Y.-H. Hsiao, and H. Wang, "V-Band High Data-Rate I/Q Modulator and Demodulator With a Power-Locked Loop LO Source in 0.15-/spl mu/m GaAs pHEMT Technology," IEEE transactions on microwave theory and techniques, vol. 61, no. 7, pp. 2670-2684, 2013.
[69] T.-H. Wu, S.-C. Tseng, C.-C. Meng, and G.-W. Huang, "GaInP/GaAs HBT sub-harmonic Gilbert mixers using stacked-LO and leveled-LO topologies," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 880-889, 2007.
[70] M. Goldfarb, E. Balboni, and J. Cavey, "Even harmonic double-balanced active mixer for use in direct conversion receivers," IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1762-1766, 2003.
[71] J. M. Dunn, S. Kapur, and D. Long, "EMX: Overcoming silicon chip EM simulation challenges for passive circuit analysis and model development," in 2021 International Applied Computational Electromagnetics Society Symposium (ACES), 2021: IEEE, pp. 1-4.
[72] J. C. Rautio, "Tips and Tricks for Using Sonnet® Lite," First published in Microwave Product Digest, vol. 13, 1999.
[73] J.-X. Zheng, "A general purpose 3D electromagnetic simulation and optimization package-IE3D," in 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 94CH3389-4), 1994: IEEE, pp. 373-376.
[74] N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, vol. 40, no. 6, pp. 634-641, 1992.
[75] H. A. Wheeler, "Formulas for the skin effect," Proceedings of the IRE, vol. 30, no. 9, pp. 412-424, 1942.
[76] H. Nam, C. J. Lee, D. Kim, S.-K. Kim, D. Y. Lee, and I. Na, "A D-band high-linearity down-conversion mixer for 6G wireless communications," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 5, pp. 579-582, 2023.
[77] D. Parveg, M. Varonen, M. Kärkkäinen, D. Karaca, A. Vahdati, and K. A. Halonen, "Wideband millimeter-wave active and passive mixers in 28 nm bulk CMOS technology," in 2015 10th European Microwave Integrated Circuits Conference (EuMIC), 2015: IEEE, pp. 116-119.
[78] D. Parveg et al., "CMOS I/Q subharmonic mixer for millimeter-wave atmospheric remote sensing," IEEE Microwave and wireless components letters, vol. 26, no. 4, pp. 285-287, 2016.
[79] Y. Yan, M. Bao, S. E. Gunnarsson, V. Vassilev, and H. Zirath, "A 110–170-GHz multi-mode transconductance mixer in 250-nm InP DHBT technology," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 9, pp. 2897-2904, 2015.
[80] J. W. Archer and J. Tello, "A 180–196 GHz image‐reject Schottky‐diode MMIC mixer," Microwave and optical technology letters, vol. 49, no. 10, pp. 2319-2322, 2007.
[81] P. Kangaslahti et al., "Miniature low noise G-band IQ receiver," in 2010 IEEE MTT-S International Microwave Symposium, 2010: IEEE, pp. 497-500.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96329-
dc.description.abstract本篇論文包含以下三個部分:V頻段低相位變異低雜訊可變增益放大器,V頻段高線性度降頻器,以及D頻段次諧波正交升頻器的量測與模擬結果。
第一個部分將會著重於V-band低相位變異低雜訊可變增益放大器的設計。此低雜訊可變增益放大器主要應用在V頻段的相位陣列系統中。此研究使用90奈米互補式金氧化物半導體電晶體製程來製作。為了實現低相位變異,該電路採用了電感性的相位反轉網路,以反轉電流控制(current-steering)架構的輸出相對控制電壓的相位變化趨勢。這使得兩級串接的電流控制架構之可變增益放大器具有相位相互抵消的效果,從而實現低相位變異的特性。此外,輸入端使用了雙重變壓器耦合(double-transformer-coupling)的技術,以提高整體電路的增益和穩定性,同時降低雜訊指數和直流功耗。此可變增益低雜訊放大器的量測結果為:最高增益20.7 dB,3 dB頻寬為55-62 GHz,最低雜訊指數5.3 dB,3 dB頻寬內的相對相位偏移為6.3度,均方根相位誤差為2.45度。
第二個部分聚焦於V頻段高線性度降頻器的設計,主要應用於高線性度接收機或解調系統中。此研究同樣使用90互補式金氧化物半導體製程來製作。為了提升混頻器的整體線性度,該電路在轉導級採用了分佈式導數疊加(distributed derivative superposition)的技術。在切換級(switching stage)內部,使用了電感電容共振電路(LC tank)和主動負載(active load)來提高轉換增益和線性度性能。此電路最終的量測結果為:最高轉換增益-4.8 dB,3 dB頻寬為47-62 GHz,在60 GHz操作頻率下的輸入三階截斷點(IIP3)為15.2 dBm,輸入1dB壓縮點(IP1dB)為2 dBm。
最後一個部分著重於D頻段次諧波升頻器的設計。此研究使用65互補式金氧化物半導體製程製作。為了降低調變系統內部本地振盪鏈的設計難度,採用了次諧波混頻器架構以降低本地振盪鏈的操作頻率。在中頻(IF)端和本地振盪源(LO)端均使用了放大器來提升整體混頻器的轉換增益。本地振盪源端的相位耦合器的設計中,45度功率分配器採用了威金森(Wilkinson)功率分配器結合高通和低通濾波器來產生相位差。中頻端則使用了晶片外部的90度耦合器和巴倫(Balun)來產生理想的四相訊號。在射頻(RF)端,使用巴倫和威金森功率合成器將四相訊號整合成一路輸出。最終量測結果為:射頻端的 3 dB頻寬為139-161 GHz,最高轉換增益為-4.3 dB,本地振盪源端的 3 dB頻寬為67-78 GHz,中頻端的3dB頻寬為1-10 GHz。在射頻端的3 dB頻寬內的鏡像訊號抑制比(IRR)皆小於-15.5 dB。
zh_TW
dc.description.abstractThis paper includes several sections: V-band low phase variation VGLNA, V-band high linearity down-conversion mixer, and D-band sub-harmonic IQ up-conversion mixer measurement and simulation results.
The first part will focus on the design of the V-band low phase variation VGLNA. This VGLNA is primarily used in V-band phased array systems. The research is conducted using a 90-nm CMOS process. To achieve low phase variation, the circuit employs an inductive phase-inversion network to inverse the phase variation trend of the current-steering architecture's output versus the control voltage. This allows the two-stage cascaded current steering VGA to have a phase cancellation effect, thereby realizing low phase variation characteristics. Additionally, the input stage uses double-transformer-coupling (DTC) technology to enhance overall circuit gain and stability while reducing noise figure and DC power consumption. The measured maximum gain of the VGLNA is 20.7 dB, 3 dB bandwidth of 55-62 GHz, minimum noise figure of 5.3 dB, relative phase shift within the 3 dB bandwidth of 6.3 degrees, and RMS phase error of 2.45 degrees.
The second part focuses on the V-band high linearity down-conversion mixer, primarily used in high-linearity receivers or demodulation systems. This research is also conducted using a 90-nm CMOS process. To enhance the overall linearity of the mixer, the circuit employs the distributed derivative superposition (DS) technique in the transconductance stage. The LC tank and active load improve the switching stage's conversion gain and linearity performance. The final measured results of this circuit are a maximum gain of -4.8 dB, a 3 dB bandwidth of 47-62 GHz, an IIP3 of 15.2 dBm at an operating frequency of 60 GHz, and an IP1dB of 2 dBm.
The final part focuses on the design of the D-band sub-harmonic up-conversion mixer. To reduce the design complexity of the LO chain in the modulation system, the sub-harmonic mixer architecture is adopted to lower the operating frequency of the LO chain. Buffers are used at both the IF and LO ends to enhance the overall conversion gain of the mixer. For the LO phase coupler design, a 45-degree power divider employs a Wilkinson power divider combined with high pass and low pass filters to generate the phase difference. The IF end uses an off-chip 90-degree coupler and balun to produce the desired quadrature signals. A balun and Wilkinson power combiner at the RF end are used to integrate the quadrature signals into a single output. The final measured results are an RF 3 dB bandwidth of 139-161 GHz, a maximum conversion gain of -4.3 dB, an LO 3 dB bandwidth of 67-78 GHz, and an IF bandwidth of 1-10 GHz. The image rejection ratio (IRR) within the RF 3 dB bandwidth is less than -15.5 dB, the same as the LO bandwidth.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:22:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:22:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xxiii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 3
1.2.1 V-Band VGLNA in CMOS Process 3
1.2.2 V-Band Mixer in CMOS Process 5
1.2.3 D-Band Sub-Harmonic IQ Mixer in CMOS Process 7
1.3 Contributions 9
1.3.1 V-Band VGLNA in CMOS Process 9
1.3.2 V-band Mixer in CMOS Process 10
1.3.3 D-band Sub-Harmonic Up-Conversion Mixer in CMOS Process 11
1.4 Thesis Organization 12
Chapter 2 A V-Band Double-Transformer-Coupling with Low Phase Variation VGLNA in 90-nm CMOS Process 13
2.1 Introduction 13
2.2 Design Procedure of the V-Band VGLNA 17
2.2.1 Device Size and Bias Selection 17
2.2.2 Double-Transformer-Coupling Technique 27
2.2.3 Design of Inductive Phase-Inversion Network 43
2.2.4 Overall Circuit Schematic and Simulation Result 55
2.3 Measurement Results 66
2.4 Summary 75
Chapter 3 A V-Band High Linearity Down- Conversion Mixer Using Distributed Derivative Superposition Technique in 90-nm CMOS Process 78
3.1 Introduction 78
3.2 Circuit Design 81
3.2.1 Distributed Derivative Superposition Technique 81
3.2.2 Switching Stage Design 89
3.2.3 Transconductance Stage Design 100
3.2.4 Overall Circuit Schematic and Simulation Result 101
3.3 Measurement Result 107
3.4 Summary 112
Chapter 4 A D-Band Sub-Harmonic IQ up-conversion Mixer in 65-nm CMOS Process 114
4.1 Introduction 114
4.2 Circuit Design 117
4.2.1 Single Sideband Suppression 117
4.2.2 Sub-Harmonic Mixer Design 119
4.2.3 Half-Quadrature-Generator Design 132
4.2.4 Single Sub-Harmonic Mixer Performance 141
4.2.5 RF Power Combiner Design 144
4.2.6 LO 45-Degree Power Divider Design 146
4.2.7 Overall Circuit Schematic and Simulation Result 150
4.3 Measurement Results 156
4.4 Trouble Shooting and Discussions 161
4.5 Summary 181
Chapter 5 Conclusion 183
REFERENCE 185
-
dc.language.isoen-
dc.subject低相位變異可變增益放大器zh_TW
dc.subject調變系統zh_TW
dc.subject次諧波混頻器zh_TW
dc.subjectD頻段zh_TW
dc.subject低雜訊放大器zh_TW
dc.subjectV頻段zh_TW
dc.subject高線性度混頻器zh_TW
dc.subject雙變壓器耦合zh_TW
dc.subject互補式金屬氧化物半導體zh_TW
dc.subjectmodulation systemsen
dc.subjectCMOSen
dc.subjectlow phase variation amplifieren
dc.subjectdouble-transformer-couplingen
dc.subjecthigh linearity mixeren
dc.subjectV-banden
dc.subjectlow noise amplifieren
dc.subjectD-banden
dc.subjectsub-harmonic mixeren
dc.title應用於V頻段低相位變異之可變增益低雜訊放大器、高線性度降頻器及D頻段次諧波正交升頻器之設計zh_TW
dc.titleDesign of V-Band Low Phase Variation Variable Gain Low Noise Amplifier, High Linearity Down-Conversion Mixer and D-Band Sub-Harmonic IQ Up-Conversion Mixeren
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃天偉;林坤佑;章朝盛;王雲杉zh_TW
dc.contributor.oralexamcommitteeTian-Wei Huang;Kun-You Lin;Chau-Ching Chiong;Yunshan Wangen
dc.subject.keyword互補式金屬氧化物半導體,低相位變異可變增益放大器,雙變壓器耦合,高線性度混頻器,V頻段,低雜訊放大器,D頻段,次諧波混頻器,調變系統,zh_TW
dc.subject.keywordCMOS,low phase variation amplifier,double-transformer-coupling,high linearity mixer,V-band,low noise amplifier,D-band,sub-harmonic mixer,modulation systems,en
dc.relation.page190-
dc.identifier.doi10.6342/NTU202404639-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-11-27-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved