Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96327
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李貫銘zh_TW
dc.contributor.advisorKuan-Ming Lien
dc.contributor.author連廷勳zh_TW
dc.contributor.authorTing-Hsun Lienen
dc.date.accessioned2024-12-24T16:22:17Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-11-28-
dc.identifier.citation[1] ElMaraghy, H., Monostori, L., Schuh, G., and ElMaraghy, W., "Evolution and future of manufacturing systems," CIRP Annals, 70(2), pp. 635-658, 2021.
[2] Dimla E. Dimla, "Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods," International Journal of Machine Tools and Manufacture, 40(8), pp. 1073-1098, 2000.
[3] Cho, D., Lee, S. and Chu, C., "The state of machining process monitoring research in Korea," International Journal of Machine Tools and Manufacture, 39(11), pp.1697-1715, 1999.
[4] Roth, J. T., and Pandit, S. M., "Monitoring end-mill wear and predicting tool failure using accelerometers," ASME Journal of Manufacturing Science and Engineering, 121(4), pp. 559-567, 1999.
[5] K. Jemielniak and P.J. Arrazola, "Application of AE and cutting force signals in tool condition monitoring in micro-milling," CIRP Journal of Manufacturing Science and Technology, 1(2), pp. 97-102, 2008.
[6] Malekian, M., Park, S. S., and Jun, M. B., "Tool wear monitoring of micro-milling operations," Journal of Materials Processing Technology, 209(10), pp. 4903-4914, 2009.
[7] Weller, E. J., Schrier, H. M., and Weichbrodt, B., "What Sound Can Be Expected From A Worn Tool?, " Trans. ASME, J. Engng for Industry, v91(3), pp. 525-534, 1969.
[8] Kopač, J., and Šali, S., "Tool Wear Monitoring During The Turning Process," Journal of Materials Processing Technology, v113(1-3), pp. 312–316, 2001.
[9] Tekiner, Z. and Yesilyurt, S., "Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel," Materials and Design, v25(6), pp. 507-513, 2004.
[10] Lu, M. C. and Kannatey-Asibu Jr, E., "Analysis of sound signal generation due to flank wear in turning," Journal of Manufacturing Science and Engineering, Transactions of the ASME, v124(4), pp. 799-808, 2002.
[11] Dedieu, S., Moquin, P., and Goubran, R., "Sound measurement in noisy environment using optimized conformal microphone arrays," In 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, v1, pp. 748-751, 2005.
[12] Fischer, S., and Simmer, K. U., "Beamforming microphone arrays for speech acquisition in noisy environments. Speech communication," v20(3-4), pp.215-227, 1996.
[13] Gazor, S., and Grenier, Y., "Criteria for positioning of sensors for a microphone array," IEEE Transactions on Speech and Audio Processing, v3(4), pp. 294-303, 1995.
[14] Kothuru, A., Nooka, S. P., and Liu, R., "Audio-based tool condition monitoring in milling of the workpiece material with the hardness variation using support vector machines and convolutional neural networks," Procedia Manufacturing, v34, pp. 995-1004, 2019.
[15] Johnsson, S. Lennart, and Robert L. Krawitz. "Cooley - Tukey FFT on the connection machine." Parallel Computing, v18(11), pp. 1201-1221, 1992.
[16] Fonseca, W. D., Ristow, J. P., Sanches, D. G., and Gerges, S. N., "Bandwidth comparison on PSFs simulationsusing classical beamforming." Forum Acusticum, 2011.
[17] Ba, Demba E., Dinei Florêncio, and Cha Zhang. "Enhanced MVDR beamforming for arrays of directional microphones." 2007 IEEE international conference on multimedia and expo. IEEE, pp. 1307-1310, 2007.
[18] Chang, P. R., Yang, W. H., & Chan, K. K., "A neural network approach to MVDR beamforming problem." IEEE Transactions on Antennas and Propagation 40(3), pp. 313-322, 1992.
[19] Zhang, Z., Lan, C., Zeng, W., Chen, Z., & Chang, S. F., "Rethinking classification loss designs for person re-identification with a unified view," ArXiv abs/2006.04991, 2020.
[20] Li, C., and Wang, B., "Fisher linear discriminant analysis," CCIS Northeastern University, 2014.
[21] Grandini, M., Bagli, E., & Visani, G., "Metrics for multi-class classification: an overview," arXiv preprint arXiv, 2008.05756, 2020.
[22] 莊侑杰, "領域自適應於銑削加工中刀具磨耗偵測," 國立台灣大學機械工程學系碩士論文, 2023.
[23] Akahashi, H., Sakai, K., & Shizuka, H., "Development of an in situ tool wear monitoring system using the cutting sound, " Advanced Materials Research, v1117, pp.277-280, 2015.
[24] "PCB Datasheet", https://www.pcb.com/products?m=378b02 , (accessed : Oct. 2024).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96327-
dc.description.abstract在銑削加工中,刀具的狀態是一個重要的指標,且會影響整體加工的品質,所以刀具磨耗的偵測系統就格外重要。雖然在過去的經驗裡,常透過有經驗的操作人員來聽聲音的變化以及其他現象進行判斷。不過為了提升加工便捷、操作簡單化以及提高可靠度,應透過感測器來收集相關訊號,以及透過機器學習來預測刀具磨耗的狀態。
本研究透過麥克風當作感測器,其目的是可以透過非接觸式的方式進行訊號偵測,易於安裝及調整感測器的位置,相較於接觸式感測器,限制較少。過去的研究為了提高實驗的重覆性,通常仔細校準麥克風的位置與角度,以降低實驗時的誤差。然而,實務上可能在安裝麥克風時會有些許角度的誤差,文獻中並未有研究討論到安裝麥克風的角度誤差對預測準確度的影響。本研究在實驗過程中除了單一麥克風外,會透過三支麥克風組成麥克風陣列進行聲音訊號處理,其方式稱為波束成型法(Beamforming),分別為延遲加總波束成型法(Delay-and-Sum Beamforming, DSB)與最小方差無失真響應波束成型法(Minimum Variance Distortionless Response, MVDR)之方法進行實驗。除此之外,透過群組分離準則以及特徵選取,將刀具磨耗指標進行分類,再利用費雪線性區分法(Fisher linear discriminant)建立刀具偵測系統,預測刀具磨耗的狀態。
實驗結果顯示在小角度的變化之下,可有效地透過MVDR波束成型法補償。相對於對準聲源的情況下準確率可以到93%,麥克風與聲源夾角為5度下,透過MVDR可以將準確率最大從75%上升到88%,角度誤差為10度的情況下,透過MVDR有效將準確率從最大從68%上升到82%。不過觀察到角度越大,能補償的有限,但在10度以內,補償後的預測準確度可以來到80%以上。
zh_TW
dc.description.abstractIn milling operations, the condition of the cutting tool is essential to determining the quality of machining. Therefore, an effective tool wear detection system is crucial. In the past, experienced operators would often rely on auditory cues and visual observations to assess tool conditions. However, to improve convenience, simplify operations, and enhance reliability, it is more effective to utilize sensors to collect relevant signals and apply machine learning techniques to predict tool wear.
In this research, microphones are used as sensors for contactless signal collection. This approach allows for easy installation and adjustment of sensor positions, offering more flexibility compared to contact sensors. Furthermore, the study investigates the accuracy of tool wear prediction by analyzing acoustic signals captured at different angles using microphones. To this end, the experimental setup allows the microphone positions to be adjusted freely. The experiments involve both individual microphones and a three-microphone array, utilizing acoustic signal processing methods known as beamforming. The two beamforming techniques employed are Delay-and-Sum Beamforming and Minimum Variance Distortionless Response. In addition, group separation criteria and feature selection are applied to classify tool wear indicators, followed by the use of Fisher Linear Discriminant for tool wear detection to predict tool wear accuracy and establish tool life standards.
The results indicate that small angular deviations can be effectively compensated using the MVDR beamforming method. Compared to the scenario where the microphone array is perfectly aligned with the acoustic source, achieving an accuracy of 93%, MVDR improves the accuracy from a maximum of 75% to 88% at a 5-degree angle error. For a 10-degree angle error, MVDR effectively raises the maximum accuracy from 68% to 82%. However, it was observed that the compensation becomes limited as the angle increases. Nevertheless, for deviations within 10 degrees, the post-compensation prediction accuracy remains above 80%.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:22:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:22:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
英文摘要 IV
目次 VI
圖次 X
表次 XIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 接觸式感測器訊號監測 2
1.2.2 非接觸式感測器訊號監測 3
1.3 研究動機與目的 4
1.4 論文架構 5
第二章 研究方法 6
2.1 研究架構 6
2.2 訊號擷取與分析 8
2.2.1 聲音訊號擷取 8
2.2.2 奈奎斯特定理(Nyquist Theorem) 8
2.3 訊號前處理 10
2.3.1 麥克風聲音校準 10
2.3.2 頻域訊號之轉換 12
2.4 波束成型法之濾波處理 14
2.4.1 延遲加總波束成型法(DSB) 14
2.4.2 最小方差無失真響應波束成型法(MVDR) 15
2.5 聲音訊號與刀具磨耗之模型建立 16
2.5.1 特徵集合 16
2.5.2 訊號歸一化 18
2.5.3 群組分離準則 18
2.5.4 費雪線性區分法 20
2.5.5 混淆矩陣 22
2.6 刀具磨耗之分析 24
第三章 實驗規劃 25
3.1 實驗架構 25
3.2 實驗設備 26
3.2.1 刀具 (Tool) 26
3.2.2 工件 27
3.2.3 治具 28
3.2.4 工具機 (Machining Center) 29
3.2.5 麥克風 (Microphone) 30
3.2.6 麥克風固定座 (Microphone Fixture) 30
3.2.7 資料擷取卡 (Data Acquisition) 31
3.2.8 CCD相機 (Charge-coupled Device Camera) 32
3.2.9 萬向磁性座(Magnet Holder) 33
3.2.10 扭力板手 (Torque Wrench) 34
3.2.11 槓桿量表 (Dial Test Indicator) 34
3.3 實驗規劃 35
3.3.1 銑削實驗流程 35
3.3.2 麥克風之架設 37
3.3.3 訊號分析流程 39
第四章 實驗結果與討論 40
4.1 刀具磨耗與聲音訊號之分析 40
4.1.1 刀具磨耗量測結果 40
4.1.2 聲音訊號RMS值與刀具磨耗之關係 43
4.2 麥克風陣列之濾波性能分析 43
4.2.1 麥克風能量校準結果 44
4.2.2 波束成型法結果分析 46
4.2.3 歸一化分析 49
4.3 特徵選取與聲音訊號分析 50
4.3.1 不同頻帶寬度之頻域特徵分析與時域特徵分析 51
4.3.2 特徵分離度分析 51
4.4 單一角度預測結果分析 59
4.4.1 未波束成型之預測結果 59
4.4.2 DSB & MVDR之預測結果 63
4.4.3 小結 71
4.5 多角度單一模型預測結果分析 72
4.5.1 多角度單一模型測試集之準確率分析 72
4.5.2 單一模型之5度預測結果 75
4.5.3 單一模型之10度預測結果 77
4.5.4 單一模型之20度預測結果 80
4.5.5 小結 82
4.6 三類別群組分離 83
第五章 結論與未來展望 86
5.1 結論 86
5.2 未來展望 87
參考文獻 88
-
dc.language.isozh_TW-
dc.subject波束成型法zh_TW
dc.subject麥克風陣列zh_TW
dc.subject聲音訊號zh_TW
dc.subject刀具磨耗zh_TW
dc.subject費雪線性區分法zh_TW
dc.subjectFisher linear discriminanten
dc.subjectMicrophone arrayen
dc.subjecttool wearen
dc.subjectacoustic signal processingen
dc.subjectbeamformingen
dc.title麥克風陣列安裝角度誤差對刀具磨耗偵測之預測準確度的影響zh_TW
dc.titleStudy on the Impact of Microphone Array Installation Angle Error on the Prediction Accuracy of Tool Wear Detection Systemsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡孟勳;盧銘詮;張弘岳zh_TW
dc.contributor.oralexamcommitteeMeng-Shiun Tsai;Ming-Chyuan Lu;Hung-Yue Changen
dc.subject.keyword麥克風陣列,刀具磨耗,聲音訊號,波束成型法,費雪線性區分法,zh_TW
dc.subject.keywordMicrophone array,tool wear,acoustic signal processing,beamforming,Fisher linear discriminant,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202404646-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-11-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-11-28-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
5.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved