Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96310
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃振康zh_TW
dc.contributor.advisorChen-Kang Huangen
dc.contributor.author周秉毅zh_TW
dc.contributor.authorPing-Yi Chouen
dc.date.accessioned2024-12-24T16:17:24Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-11-
dc.identifier.citationAbaajeh, A. R., C. E. Kingston, and M. Harty. (2023). Environmental factors influencing the growth and pathogenicity of microgreens bound for the market: a review. Renewable Agriculture and Food Systems, 38, e12.
AeroFarms. (2024). Vertically farmed greens for elevated flavor, AeroFarms. Retrieved July 28, 2024, from https://www.aerofarms.com/our-flavor-spectrum/
AeroGarden. (2022). Microgreens Kit for Harvest Gardens. Retrieved July 28 from, 2024, https://aerogarden.com/seed-kits/microgreens/microgreens-kit-for-harvest-gardens.html
Ahmad, S., S. Choon, R. Abu Bakar, P. Ding, U. Sinniah, and A. Hamid. (2009). Effects of seeding density and watering duration on growth characteristics and sprouting atmosphere of black gram (vigna mungo l.) Sprouts grown in a chamber. Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce 875,
Ampofo, J. O., and M. Ngadi. (2020). Ultrasonic assisted phenolic elicitation and antioxidant potential of common bean (Phaseolus vulgaris) sprouts. Ultrasonics Sonochemistry, 64, 104974.
Baiyin, B., K. Tagawa, M. Yamada, X. Wang, S. Yamada, S. Yamamoto, and Y. Ibaraki. (2021). Study on plant growth and nutrient uptake under different aeration intensity in hydroponics with the application of particle image velocimetry. Agriculture, 11(11), 1140.
Banerjee, C., and L. Adenaeuer. (2014). Up, up and away! The economics of vertical farming. Journal of Agricultural Studies, 2(1), 40-60.
Bar-Sela, G., M. Cohen, E. Ben-Arye, and R. Epelbaum. (2015). The medical use of wheatgrass: review of the gap between basic and clinical applications. Mini reviews in medicinal chemistry, 15(12), 1002-1010.
Bar-Sela, G., M. Tsalic, G. Fried, and H. Goldberg. (2007). Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutrition and cancer, 58(1), 43-48.
Bhatia, C., A. Pandey, S. R. Gaddam, U. Hoecker, and P. K. Trivedi. (2018). Low temperature-enhanced flavonol synthesis requires light-associated regulatory components in Arabidopsis thaliana. Plant and Cell Physiology, 59(10), 2099-2112.
Bones, A. M., and J. T. Rossiter. (1996). The myrosinase‐glucosinolate system, its organisation and biochemistry. Physiologia plantarum, 97(1), 194-208.
Brazaitytė, A., S. Sakalauskienė, G. Samuolienė, J. Jankauskienė, A. Viršilė, A. Novičkovas, R. Sirtautas, J. Miliauskienė, V. Vaštakaitė, and L. Dabašinskas. (2015). The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food chemistry, 173, 600-606.
Brazaityte, A., A. Virsile, J. Jankauskiene, S. Sakalauskiene, G. Samuoliene, R. Sirtautas, A. Novickovas, L. Dabasinskas, J. Miliauskiene, and V. Vastakaite. (2015). Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. International Agrophysics, 29(1).
Brazaitytė, A., A. Viršilė, J. Jankauskienė, S. Sakalauskienė, G. Samuolienė, R. Sirtautas, A. Novičkovas, L. Dabašinskas, J. Miliauskienė, and V. Vaštakaitė. (2013). The effect of supplemental UV-A irradiation in solid-state lighting on microgreens growth and phytochemical content. International Agrophysics (įteiktas).
Brunetti, C., L. Guidi, F. Sebastiani, and M. Tattini. (2015). Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany, 119, 54-62.
Cao, D. M., P. T. B. Vu, M. T. T. Hoang, A. L. Bui, and P. N. D. Quach. (2020). Developing a sufficient protocol for the enhancement of α-glucosidase inhibitory activity by Urena lobata L. Aeroponic hairy roots using exogenous factors, a precursor, and an elicitor. Plants, 9(4), 548.
Choe, U., L. L. Yu, and T. T. Wang. (2018). The science behind microgreens as an exciting new food for the 21st century. Journal of agricultural and food chemistry, 66(44), 11519-11530.
Cooper, A. (1979). The ABC of NFT. Nutrient film technique. Grower Books.
Daud, M., V. Handika, and A. Bintoro. (2018). Design and realization of fuzzy logic control for Ebb and flow hydroponic system. International Journal of Scientific and Technology Research, 7(9), 138-144.
Devkota, H. P. (2020). Analysis of glucosinolates. In Recent Advances in Natural Products Analysis (pp. 651-661). Elsevier.
Di Gioia, F., P. De Bellis, C. Mininni, P. Santamaria, and F. Serio. (2017). Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. Journal of the Science of Food and Agriculture, 97(4), 1212-1219.
Doria, E., A. Pagano, C. Ferreri, A. V. Larocca, A. Macovei, S. d. S. Araújo, and A. Balestrazzi. (2019). How does the seed pre-germinative metabolism fight against imbibition damage? Emerging roles of fatty acid cohort and antioxidant defence. Frontiers in Plant Science, 10, 1505.
Fahey, J. W., Y. Zhang, and P. Talalay. (1997). Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 94(19), 10367-10372.
Fortună, M.-E., V. Vasilache, M. Ignat, M. Silion, T. Vicol, X. Patraș, I. Miron, and A. Lobiuc. (2018). Elemental and macromolecular modifications in Triticum aestivum L. plantlets under different cultivation conditions. Plos One, 13(8), e0202441.
Gao, M., R. He, R. Shi, Y. Zhang, S. Song, W. Su, and H. Liu. (2021). Differential effects of low light intensity on broccoli microgreens growth and phytochemicals. Agronomy, 11(3), 537.
Gardyn. (2020). Microgreens Complete Kit. Retrieved July 28, 2024, from https://mygardyn.com/gardyn-microgreens/
Gawlik-Dziki, U., M. Jeżyna, M. Świeca, D. Dziki, B. Baraniak, and J. Czyż. (2012). Effect of bioaccessibility of phenolic compounds on in vitro anticancer activity of broccoli sprouts. Food Research International, 49(1), 469-476.
Gerovac, J. R., J. K. Craver, J. K. Boldt, and R. G. Lopez. (2016). Light Intensity and Quality from Sole-source Light-emitting Diodes Impact Growth, Morphology, and Nutrient Content of Brassica Microgreens. HortScience, 51(5), 497-503.
Ghoora, M. D., D. R. Babu, and N. Srividya. (2020). Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. Journal of Food Composition and Analysis, 91, 103495.
Ghumman, A., N. Singh, and A. Kaur. (2017). Chemical, nutritional and phenolic composition of wheatgrass and pulse shoots. International journal of food science & technology, 52(10), 2191-2200.
Gnauer, C., H. Pichler, M. Tauber, C. Schmittner, K. Christl, J. Knapitsch, and M. Parapatits. (2019). Towards a secure and self-adapting smart indoor farming framework. e & i Elektrotechnik und Informationstechnik, 136(7), 341-344.
Grant, R. H. (1997). Partitioning of biologically active radiation in plant canopies. International Journal of Biometeorology, 40, 26-40.
Grishin, A., A. Grishin, N. Semenova, V. Grishin, I. Knyazeva, and A. Dorochov. (2021). The effect of dissolved oxygen on microgreen productivity. BIO Web of Conferences,
Guo, R., G. Yuan, and Q. Wang. (2011). Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts. Food chemistry, 129(3), 1080-1087.
Hamama. (2023). Hamama Seed Quilt. Retrieved July 28, 2024, from https://www.hamama.com/products/microgreens-kit
Hooks, T., L. Sun, Y. Kong, J. Masabni, and G. Niu. (2022). Adding UVA and far-red light to white LED affects growth, morphology, and phytochemicals of indoor-grown microgreens. Sustainability, 14(14), 8552.
Huang, H., X. Jiang, Z. Xiao, L. Yu, Q. Pham, J. Sun, P. Chen, W. Yokoyama, L. L. Yu, and Y. S. Luo. (2016). Red cabbage microgreens lower circulating low-density lipoprotein (LDL), liver cholesterol, and inflammatory cytokines in mice fed a high-fat diet. Journal of agricultural and food chemistry, 64(48), 9161-9171.
Jani, A. D., T. D. Meadows, M. A. Eckman, and R. S. Ferrarezi. (2021). Automated ebb-and-flow subirrigation conserves water and enhances citrus liner growth compared to capillary mat and overhead irrigation methods. Agricultural Water Management, 246, 106711.
Jiang, X., H. Huang, Z. Xiao, L. Yu, Q. Pham, L. Yu, Y. Luo, and T. T. Wang. (2016). Lipids and Cholesterol‐Lowering Activity of Red Cabbage Microgreens. The FASEB Journal, 30, 431.438-431.438.
Jocher, G. (2020). ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation.
Kaur, C., and H. C. Kapoor. (2001). Antioxidants in fruits and vegetables–the millennium’s health. International journal of food science & technology, 36(7), 703-725.
Khairunnisa, N., W. Warnita, and D. Hervani. (2023). Impact of Growing Media and Nutrition on Growth and Yield of Broccoli Microgreens (Brassica oleracea). International Journal of Environment, Agriculture and Biotechnology, 8(3).
KnowingNature. (2023). Windowsill Planter. Retrieved July 28, 2024, from https://knowingnature.com/collections/gardens/products/windowsill-planter-tray-lime-green
Kratsch, H. A., W. R. Graves, and R. J. Gladon. (2006). Aeroponic system for control of root-zone atmosphere. Environmental and Experimental Botany, 55(1-2), 70-76.
Kulkarni, S., R. Acharya, A. Nair, N. Rajurkar, and A. Reddy. (2006). Determination of elemental concentration profiles in tender wheatgrass (Triticum aestivum L.) using instrumental neutron activation analysis. Food chemistry, 95(4), 699-707.
Kyriacou, M. C., Y. Rouphael, F. Di Gioia, A. Kyratzis, F. Serio, M. Renna, S. De Pascale, and P. Santamaria. (2016). Micro-scale vegetable production and the rise of microgreens. Trends in food science & technology, 57, 103-115.
Lee, S.-W., J. M. Seo, M.-K. Lee, J.-H. Chun, P. Antonisamy, M. V. Arasu, T. Suzuki, N. A. Al-Dhabi, and S.-J. Kim. (2014). Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. Industrial Crops and Products, 54, 320-326.
Li, Q., X. Li, B. Tang, and M. Gu. (2018). Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture. Horticulturae, 4(4), 35.
Liu, K., M. Gao, H. Jiang, S. Ou, X. Li, R. He, Y. Li, and H. Liu. (2022). Light intensity and photoperiod affect growth and nutritional quality of brassica microgreens. Molecules, 27(3), 883.
Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in nutrition, 4(3), 384S-392S.
Liu, S., L. Qi, H. Qin, J. Shi, and J. Jia. (2018). Path aggregation network for instance segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition,
Living-Inch. (2024). 三立新聞《薪動大未來》專題報導丨純淨栽培,過程不施加農藥、營養液肥的超級食物. Retrieved July 28, 2024, from https://www.living-inch.com.tw/pages/blogs-set-news-interview
López-Ribera, I., and C. M. Vicient. (2017). Use of ultrasonication to increase germination rates of Arabidopsis seeds. Plant methods, 13, 1-6.
Meas, S., K. Luengwilai, and T. Thongket. (2020). Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Scientia Horticulturae, 265, 109204.
Mendonca, V. (2023). Modern food habits and its impact on human health. International Journal of Innovative Research in Engineering & Management, 10(4), 182-185.
Miyashita, Y., Y. Kitaya, T. Kozai, and T. Kimura. (1994). Effects of Red and Far-red Light on the Growth and Morphology of Potato Plantlets in Vitro: Using Light Emitting Diode as a Light Source for Micropropagation. Environmental Effects and their Control in Plant Tissue Culture 393, 189-194.
Moore, L. V., A. V. Diez Roux, J. A. Nettleton, D. R. Jacobs, and M. Franco. (2009). Fast-food consumption, diet quality, and neighborhood exposure to fast food: the multi-ethnic study of atherosclerosis. American journal of epidemiology, 170(1), 29-36.
Movahedi, Z., and M. Rostami. (2020). Production of some medicinal plants in aeroponic system. Journal of Medicinal Plants and By-products, 9(1), 91-99.
Murphy, C. J., K. F. Llort, and W. G. Pill. (2010). Factors affecting the growth of microgreen table beet. International journal of vegetable science, 16(3), 253-266.
Nyenhuis, J., and J. W. Drelich. (2015). Essential micronutrient biofortification of sprouts grown on mineral fortified fiber mats. Intern. Schol. Sci. Res. Innov, 9, 981-984.
Park, W. (2020). The farms growing beneath our cities. BBC.
Partap, M., D. Sharma, H. Deekshith, M. Thakur, V. Verma, and B. Bhargava. (2023). Microgreen: A tiny plant with superfood potential. Journal of Functional Foods, 107, 105697.
Pérez, C., H. Barrientos, J. Román, and A. Mahn. (2014). Optimization of a blanching step to maximize sulforaphane synthesis in broccoli florets. Food chemistry, 145, 264-271.
Pill, W., C. Collins, N. Gregory, and T. Evans. (2011). Application method and rate of Trichoderma species as a biological control against Pythium aphanidermatum (Edson) Fitzp. in the production of microgreen table beets (Beta vulgaris L.). Scientia Horticulturae, 129(4), 914-918.
Prasad, M. (1996). Physical, chemical and biological properties of coir dust. International Symposium Growing Media and Plant Nutrition in Horticulture 450,
Ramakrishna, R., D. Sarkar, A. Manduri, S. G. Iyer, and K. Shetty. (2017). Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy. Journal of Food Science and Technology, 54, 3666-3678.
Saaid, M., N. Yahya, M. Noor, and M. M. Ali. (2013). A development of an automatic microcontroller system for Deep Water Culture (DWC). 2013 IEEE 9th international colloquium on signal processing and its applications,
Sari, S. N., T. Rohman, M. Alfanny, and A. Wicaksono. (2022). Design and Build an Environmental Conditioning System on a Smart Growth Box for Microgreens. 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS),
Septembre-Malaterre, A., F. Remize, and P. Poucheret. (2018). Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International, 104, 86-99.
Shah, M. A., M. Sarker, and M. Gousuddin. (2016). Antidiabetic potential of Brassica Oleracea Var. Italica in type 2 diabetic sprague dawley (sd) rats. Int. J. Pharmacogn. Phytochem. Res, 8(3), 462-469.
Shakuntala, N., K. Kavya, S. I. Macha, V. Kurnalliker, and M. Patil. (2020). Studies on standardization of water soaking duration on seed quality in cucumber (Cucumis sativus L.) seeds. Journal of Pharmacognosy and Phytochemistry, 9(4), 1400-1404.
Shapiro, T. A., J. W. Fahey, K. L. Wade, K. K. Stephenson, and P. Talalay. (2001). Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiology Biomarkers & Prevention, 10(5), 501-508.
Shi, H., G. Liu, Y. Wei, and Z. Chan. (2018). The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis. Plant molecular biology, 97, 165-176.
Singh, A. K., R. J. McAvoy, B. Bravo-Ureta, and X. Yang. (2021). An experimental study on GREENBOX technology: feasibility and performance. 2021 ASABE Annual International Virtual Meeting,
Siriwoharn, T., R. E. Wrolstad, C. E. Finn, and C. B. Pereira. (2004). Influence of cultivar, maturity, and sampling on blackberry (Rubus L. Hybrids) anthocyanins, polyphenolics, and antioxidant properties. Journal of agricultural and food chemistry, 52(26), 8021-8030.
Sumanta, N., C. I. Haque, J. Nishika, and R. Suprakash. (2014). Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci, 2231, 606X.
Vlamis, J., and A. Davis. (1943). Germination, growth, and respiration of rice and barley seedlings at low oxygen pressures. Plant Physiology, 18(4), 685.
Wang, C.-Y., H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops,
Wang, C., I. Yeh, and H. Liao. (2024). YOLOv9: Learning what you want to learn using programmable gradient information. arXiv 2024. arXiv preprint arXiv:2402.13616.
Wang, Y. (2010). Fiber and textile waste utilization. Waste and biomass valorization, 1, 135-143.
Woisky, R. G., and A. Salatino. (1998). Analysis of propolis: some parameters and procedures for chemical quality control. Journal of apicultural research, 37(2), 99-105.
Wootton-Beard, P. (2019). Growing without soil: an overview of hydroponics.
Wright, K. M., and N. J. Holden. (2018). Quantification and colonisation dynamics of Escherichia coli O157: H7 inoculation of microgreens species and plant growth substrates. International Journal of Food Microbiology, 273, 1-10.
Wu, M.-C., C.-Y. Hou, C.-M. Jiang, Y.-T. Wang, C.-Y. Wang, H.-H. Chen, and H.-M. Chang. (2007). A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food chemistry, 101(4), 1753-1758.
Xiao, Z., G. E. Lester, Y. Luo, and Q. Wang. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of agricultural and food chemistry, 60(31), 7644-7651.
Ying, Q., Y. Kong, and Y. Zheng. (2020). Applying blue light alone, or in combination with far-red light, during nighttime increases elongation without compromising yield and quality of indoor-grown microgreens. HortScience, 55(6), 876-881.
Yong-Feng-Organic-Farm. (1998). Retrieved July 28, 2024, from https://www.fengfood.com.tw/index.php
Zhang, T., and K. M. Folta. (2012). Green light signaling and adaptive response. Plant signaling & behavior, 7(1), 75-78.
Zhao, L., T. Peng, C.-Y. Chen, R. Ji, D. Gu, T. Li, D. Zhang, Y.-T. Tu, K. Wu, and X. Liu. (2019). HY5 interacts with the histone deacetylase HDA15 to repress hypocotyl cell elongation in photomorphogenesis. Plant Physiology, 180(3), 1450-1466.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96310-
dc.description.abstract本研究透過樹莓派單板電腦建立微型蔬菜生長箱,於微型蔬菜生長箱內以不同灌溉方式包括潮汐式、氣霧式,進行紫甘藍(Brassica oleracea var. capitata f. rubra)、青花菜(Brassica oleracea var. italica)、小麥(Triticum aestivum L.)等微型蔬菜的栽培,旨在建立居家栽培的微型蔬菜生長箱,透過簡易的種植,能夠收穫高營養價值作物為目的。探討灌溉方式外,經由水溫的控制、光照天數、灌溉的時間間隔與二次代謝物間的綜合影響。
本研究建立特定微型蔬菜之環境溫度、相對濕度、水溫、光線及灌溉方式等完整生長過程,並量測每一作物在收穫期之總酚類化合物、類黃酮化合物、葉綠素、類胡蘿蔔素等含量。結果顯示,氣霧式灌溉相較於潮汐式灌溉顯著促進了下胚軸的生長。延長浸種時間增加了花青素含量,這表明延長的水分暴露增強了種子的抗氧化能力。超音波清洗也對總酚類和花青素含量有顯著提升。此外,光照和水溫對於類黃酮的積累有顯著的影響。類黃酮化合物含量隨著光照時間的延長而增加,在四天時達到峰值。較低的水溫 (20oC)加速了類黃酮的合成,但四天後,最終含量與較高溫度(25oC)下的類黃酮含量相似。
使用 YOLOv9 影像辨識技術在檢測發芽階段辨識準確率達 99%。本研究可提供優化環境參數可以顯著提高自產微型蔬菜的營養價值,可助於家庭使用與小規模栽培者做為參考。
zh_TW
dc.description.abstractThis study utilized Raspberry Pi single-board computer (SBC) to establish a microgreens growth chamber, cultivating red cabbage (Brassica oleracea var. capitata f. rubra), broccoli (Brassica oleracea var. italica), and wheat (Triticum aestivum L.) using different irrigation methods, including ebb and flood and aeroponic. The aim was to develop a home microgreens growth chamber that enables the harvesting of high-nutrient crops through simple planting techniques. Besides exploring irrigation methods, the study also investigated the comprehensive effects of water temperature control, light periods, irrigation intervals, and secondary metabolite accumulation.
The research established a complete growth process for specific microgreens, including environmental temperature, relative humidity, water temperature, lighting, and irrigation methods. Each crop's total phenolics, total flavonoids, chlorophyll, and carotenoid contents were measured at harvest. The results showed that aeroponic significantly promoted hypocotyl growth compared to the ebb and flood method. Extended soaking time increased anthocyanin content, indicating enhanced antioxidant capacity due to prolonged water soaking. Ultrasonic cleaning significantly boosted the content of total phenolics and anthocyanins. Additionally, light periods and water temperature had significant effects on total flavonoids accumulation. Total flavonoids content increased with longer light periods, peaking at four days. Lower water temperature (20°C) accelerated flavonoid synthesis, but the final content after four days was similar to that at a higher temperature (25°C).
Using YOLOv9 image recognition technology achieved a 99% accuracy rate in detecting germination stages. This study demonstrates that optimizing environmental parameters can significantly enhance the nutritional value of home-grown microgreens, providing valuable insights for household use and small-scale cultivators.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:17:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:17:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
Table of Contents iv
List of Figures ix
List of Tables xv
1 Chapter 1 Introduction 1
2 Chapter 2 Literature Review 6
2.1 Indoor Hydroponic and Modern Agriculture 6
2.2 Controlled Environmental Agriculture 7
2.2.1 Hydroponic Systems 7
2.2.2 Aeroponic Systems 9
2.2.3 Light 9
2.2.4 Light Intensity 10
2.2.5 Light Quality 12
2.2.6 Photoperiod 17
2.2.7 Growing Media 21
2.2.8 Ambient Temperature 22
2.3 Cultivation of Microgreens 23
2.3.1 Commercial Cultivation Methods of Microgreens 23
2.3.2 Commercial Cultivation Methods of Microgreens in Taiwan 27
2.4 Experimental Crops 29
2.4.1 Red Cabbage 29
2.4.2 Broccoli 30
2.4.3 Wheatgrass 30
2.5 Network Architecture Differences between YOLOv5 and YOLOv9 32
2.5.1 YOLO Basic Architecture 32
2.5.2 YOLOv5 Architecture 33
2.5.3 YOLOv9 Architecture 36
2.5.4 Pros of YOLOv9 Over YOLOv5 39
3 Chapter 3 Materials and Methods 41
3.1 Experimental Site 41
3.2 Environmental Control and Data Recording 44
3.2.1 Environmental Data Recording and Water Temperature Control 44
3.2.2 Artificial Light Control 45
3.2.3 Camera 46
3.3 Microgreens Growth Chamber, Cultivation Crops, and Methods 47
3.3.1 Microgreens Growth Chamber Materials 47
3.3.2 Ebb and Flood Method 48
3.3.3 Aeroponic Method 48
3.3.4 Cultivation Crops 49
3.3.5 Cultivation Water 49
3.3.6 Seed Cleaning 49
3.4 Measurement Instruments and Equipment 50
3.5 Measurement Methods 50
3.5.1 Sample Preparation 50
3.5.2 Plant Fresh Weight and Height 54
3.5.3 Total Phenolics Content 54
3.5.4 Total Flavonoids Content 55
3.5.5 Anthocyanins 56
3.5.6 Chlorophyll a, b, and carotenoid Content 57
3.6 Deep Learning Method for analyzing microgreens germination rates 58
3.6.1 Environmental Setup 58
3.6.2 Data Collection 58
3.6.3 Data Labeling for YOLO 58
3.6.4 Data Pre-processing 61
3.7 Statistical Analysis 62
3.8 Series experiments for specific explorations 63
3.8.1 Effects of Irrigation Methods on Red Cabbage Growth 63
3.8.2 Effects of Aeroponic Irrigation Duration on Red Cabbage Growth 65
3.8.3 Effects of Soaking Duration on Red Cabbage Seeds 67
3.8.4 Effects of Seed Cleaning Methods on Red Cabbage Microgreens Growth 69
3.8.5 Effects of Light Periods on the Growth of Ultrasonically Treated Red Cabbage Seeds 71
3.8.6 Effects of Light Periods and Water Temperature on Microgreens Growth 73
3.9 Application of Deep Learning Models for Germination Rate Identification and Analysis of Object Feature Relationships in Microgreens 75
3.9.1 Experimental Setup and Data Collection 75
3.9.2 Evaluation Metrics 75
3.9.3 Image Feature Classification 76
4 Chapter 4 Results and Discussion 79
4.1 Effects of Irrigation Methods on Hypocotyl Length of Red Cabbage Microgreens 79
4.2 Effects of Aeroponic Irrigation Duration on Hypocotyl Length of Red Cabbage Microgreens 80
4.3 Effects of Seed Soaking Duration on Red Cabbage Microgreens 82
4.4 Effects of Seed Cleaning Methods on Secondary Metabolite Content in Red Cabbage Microgreens 84
4.5 Effects of Light Periods on Secondary Metabolites in Ultrasonically Treated Seeds 87
4.6 Effects of Light Periods and Water Temperature on Microgreens Growth 89
4.6.1 Effects of Light Periods and Water Temperature on Secondary Metabolites 90
4.6.2 Combined Flavonoid Synthesis Limits 93
4.6.3 Hypocotyl Length Trends at 20°C and 25°C 95
4.6.4 Finding the Balance between Flavonoid Content and Hypocotyl Length 97
4.7 Comparison with Commercially Available Red Cabbage and Broccoli Microgreens 105
4.8 Application of Deep Learning Models for Germination Rate Identification and Analysis of Object Feature Relationships in Microgreens 116
4.8.1 Impact of Object Features and Quantities on Model Performance 116
4.8.2 Cross-application of YOLOv9 Model 117
4.8.3 Effects of Soaking Duration on the Germination of Red Cabbage Microgreens 118
4.8.4 Effects of Ultrasonic Cleaning on the Germination of Red Cabbage and Broccoli Microgreens 119
5 Chapter 5 Conclusions and Prospective 121
5.1 Conclusions 121
5.2 Prospective 125
References 127
-
dc.language.isoen-
dc.subject微型蔬菜zh_TW
dc.subject高營養價值作物zh_TW
dc.subject植物生長箱zh_TW
dc.subject芽菜zh_TW
dc.subject生長條件zh_TW
dc.subjecthigh-nutrient cropsen
dc.subjectsproutsen
dc.subjectmicrogreensen
dc.subjectplant growth chamberen
dc.subjectgrowth conditionsen
dc.title植物生長箱栽培微型蔬菜與其二次代謝物之探討zh_TW
dc.titleExploration of Microgreens Cultivation and Secondary Metabolites in Plant Growth Chamberen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee方煒;林淑怡zh_TW
dc.contributor.oralexamcommitteeFang Wei;Shu-I Linen
dc.subject.keyword植物生長箱,微型蔬菜,芽菜,高營養價值作物,生長條件,zh_TW
dc.subject.keywordplant growth chamber,microgreens,sprouts,high-nutrient crops,growth conditions,en
dc.relation.page134-
dc.identifier.doi10.6342/NTU202404667-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-12-11-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2029-12-10-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
11.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved