請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96309
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 柯彥廷 | zh_TW |
dc.contributor.advisor | Yen-Ting Ko | en |
dc.contributor.author | 林育謙 | zh_TW |
dc.contributor.author | Yu-Chien Lin | en |
dc.date.accessioned | 2024-12-24T16:17:05Z | - |
dc.date.available | 2025-04-09 | - |
dc.date.copyright | 2024-12-24 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-13 | - |
dc.identifier.citation | Ajo-Franklin, J.B., Dou, S., Lindsey, N.J. et al. Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Sci Rep 9, 1328 (2019). https://doi.org/10.1038/s41598-018-36675-8
Alterman, Z. and Karal, F.C. (1968) Propagation of Seismic Wave in Layered Media by Finite Difference Methods. Bulletin of the Seismological Society of America, 58, 367-398. Arthur Frankel, John Vidale; A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock. Bulletin of the Seismological Society of America 1992;; 82 (5): 2045–2074. doi: https://doi.org/10.1785/BSSA0820052045 Atterholt, J., Zhan, Z., & Yang, Y. (2022). Fault Zone Imaging With Distributed Acoustic Sensing: Body‐To‐Surface Wave Scattering. Journal of Geophysical Research: Solid Earth, 127(11). doi:10.1029/2022jb025052 Biq, C.-C. (1984). Present Day Manner Of Movements Of The Coastal Range, Eastern Taiwan, As Ndicated By Triangulation Changes. Boore, D. M. (1970), Love waves in nonuniform wave guides: Finite difference calculations, J. Geophys. Res., 75(8), 1512–1527, doi:10.1029/JB075i008p01512 Chan, C.-H., Ma, K.-F., Shyu, J. B. H., Lee, Y.-T., Wang, Y.-J., Gao, J.-C., . . . Rau, R.-J. (2020). Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra, 36(1), 137-159. doi:10.1177/8755293020951587 Dunkin, J.W. (1965). Computation of modal solutions in layered, elastic media at high frequencies. Bulletin of the Seismological Society of America, 55, 335-358. Fernandez-Ruiz, M. R., Martins, H. F., Williams, E. F., Becerril, C., Magalhaes, R., Costa, L., . . . Gonzalez-Herraez, M. (2022). Seismic Monitoring With Distributed Acoustic Sensing From the Near-Surface to the Deep Oceans. Journal of Lightwave Technology, 40(5), 1453-1463. doi:10.1109/jlt.2021.3128138 Gu, N., Zhang, H., Nakata, N., & Gao, J. (2021). Fault detection by reflected surface waves based on ambient noise interferometry. Earthquake Research Advances, 1(4). doi:10.1016/j.eqrea.2021.100035 Huang, H.-H., & Wang, Y. (2022). Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model. Terrestrial, Atmospheric and Oceanic Sciences, 33(1). doi:10.1007/s44195-022-00017-z Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191. doi:10.1016/j.epsl.2014.02.026 Huang, S.-Y., Yen, J.-Y., Wu, B.-L., Yen, I. C., & Chuang, R. Y. (2019). Investigating the Milun Fault: The coseismic surface rupture zone of the 2018/02/06 ML 6.2 Hualien earthquake, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 311-335. doi:10.3319/tao.2018.12.09.03 Iván, S., Daniel S., César D., William A. (2017). Simulation of Surface Seismic Waves Propagation by 2D Finite-Difference Elastic Wave Modeling in the Presence of Complex Surface Topography. Jean Virieux, Raul Madariaga; Dynamic faulting studied by a finite difference method. Bulletin of the Seismological Society of America 1982;; 72(2): 345–369. doi: https://doi.org/10.1785/BSSA0720020345 Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., . . . Krawczyk, C. M. (2018). Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat Commun, 9(1), 2509. doi:10.1038/s41467-018-04860-y Kim B. Olsen, Ralph J. Archuleta; Three-dimensional simulation of earthquakes on the Los Angeles fault system. Bulletin of the Seismological Society of America 1996;; 86(3): 575–596. doi: https://doi.org/10.1785/BSSA0860030575 Kuo‐Chen, H., Guan, Z. K., Sun, W. F., Jhong, P. Y., & Brown, D. (2018). Aftershock Sequence of the 2018 Mw 6.4 Hualien Earthquake in Eastern Taiwan from a Dense Seismic Array Data Set. Seismological Research Letters, 90(1), 60-67. doi:10.1785/0220180233 Lessing, S., Thomas, C., Rost, S., Cobden, L., & Dobson, D. P. (2014). Mantle transition zone structure beneath India and Western China from migration of PP and SS precursors. Geophysical Journal International, 197(1), 396-413. doi:10.1093/gji/ggt511 Li, D., Helmberger, D., Clayton, R. W., & Sun, D. (2014). Global synthetic seismograms using a 2-D finite-difference method. Geophysical Journal International, 197(2), 1166-1183. doi:10.1093/gji/ggu050 Li, J., Kim, T., Lapusta, N., Biondi, E., & Zhan, Z. (2023). The break of earthquake asperities imaged by distributed acoustic sensing. Nature, 620(7975), 800-806. doi:10.1038/s41586-023-06227-w Lin, Y.-Y., Kanamori, H., Zhan, Z., Ma, K.-F., & Yeh, T.-Y. (2020). Modelling of pulse- like velocity ground motion during the 2018 Mw 6.3 Hualien earthquake, Taiwan. Geophysical Journal International, 223(1), 348-365. doi:10.1093/gji/ggaa306 Lior, I., Sladen, A., Mercerat, D., Ampuero, J.-P., Rivet, D., & Sambolian, S. (2021). Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination. Solid Earth, 12(6), 1421- 1442. doi:10.5194/se-12-1421-2021 Liu, D., Zhang, H., Wang, X., Chen, W., Shi, Z., & Zhao, Z. (2022). Separation of seismic multiple reflection-refraction based on morphological component analysis with high-resolution linear Radon transform. Geophysics, 87(4), V367-V379. doi:10.1190/geo2021-0468.1 Ma, K.-F., von Specht, S., Kuo, L.-W., Huang, H.-H., Lin, C.-R., Lin, C.-J., . . . Jousset, P. (2024). Broad-band strain amplification in an asymmetric fault zone observed from borehole optical fiber and core. Communications Earth & Environment, 5(1). doi:10.1038/s43247-024-01558-6 Madariaga, Raúl. (1976). Dynamics of an Expanding Circular Fault. Bulletin of the Seismological Society of America. 66. 639-666. 10.1785/BSSA0660030639. Rongjiang Wang; A simple orthonormalization method for stable and efficient computation of Green's functions. Bulletin of the Seismological Society of America 1999;; 89(3): 733–741. doi: https://doi.org/10.1785/BSSA0890030733 Rost, S., & Thomas, C. (2002). Array Seismology: Methods and Applications. Reviews of Geophysics, 40(3). doi:10.1029/2000rg000100 Shearer, P. M., Rychert, C. A., & Liu, Q. (2011). On the visibility of the inner-core shear wave phase PKJKP at long periods. Geophysical Journal International, 185(3), 1379-1383. doi:10.1111/j.1365-246X.2011.05011.x Shinohara, M., Yamada, T., Akuhara, T., Mochizuki, K., & Sakai, S. i. (2022). Performance of Seismic Observation by Distributed Acoustic Sensing Technology Using a Seafloor Cable Off Sanriku, Japan. Frontiers in Marine Science, 9. doi:10.3389/fmars.2022.844506 Sudarmaji, M., & Permana, T. (2014). The 2D Finite Difference Numerical Modelling of P-SV Wave Propagation In Elastic Heterogeneous Medium Using Graphic Processing Unit: Case Study of Mount Merapi Topography, Yogyakarta. Paper presented at the Proceedings of the 2014 International Conference on Physics. Ventosa, S., Simon, C., & Schimmel, M. (2012). Window length selection for optimum slowness resolution of the local-slant-stack transform. Geophysics, 77(2), V31- V40. doi:10.1190/geo2010-0326.1 Volker, A. W. F., Bloom, J. G. P., Thompson, D. O., & Chimenti, D. E. (2009). High Resolution Transforms. Paper presented at the AIP Conference Proceedings. Yang, Y., Atterholt, J. W., Shen, Z., Muir, J. B., Williams, E. F., & Zhan, Z. (2021). Sub‐ Kilometer Correlation Between Near‐Surface Structure and Ground Motion Measured With Distributed Acoustic Sensing. Geophysical Research Letters, 49(1). doi:10.1029/2021gl096503 Yang, Y., Zhan, Z., Shen, Z., & Atterholt, J. (2022). Fault Zone Imaging With Distributed Acoustic Sensing: Surface‐To‐Surface Wave Scattering. Journal of Geophysical Research: Solid Earth, 127(6). doi:10.1029/2022jb024329 Yen, J. Y., Lu, C. H., Dorsey, R. J., Kuo‐Chen, H., Chang, C. P., Wang, C. C., . . . Chang, W. Y. (2018). Insights into Seismogenic Deformation during the 2018 Hualien, Taiwan, Earthquake Sequence from InSAR, GPS, and Modeling. Seismological Research Letters, 90(1), 78-87. doi:10.1785/0220180228 Yilmaz, O. (2001) Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists. doi:https://doi.org/10.1190/1.9781560801580 Zhang, W., Zha, X. (2015). Radon Transform Wave field separation and MATLAB implementation. Zhu, T., Shen, J., & Martin, E. R. (2021). Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: an urban experiment in Pennsylvania, USA. Solid Earth, 12(1), 219-235. doi:10.5194/se-12-219-2021 王仁佐, 王修賢, 江宏偉, ...姚昭智. (2018)。2018年2月6日花蓮地震勘災報告。 國家地震工程研究中心。 吳文傑. (2022)。MiDAS計畫井場岩心處理介紹。台灣地震科學中心簡訊,35,3。 郭俊翔, 黃雋彥, 林哲民, ...林金泉. (2018)。0206花蓮地震強地動記錄與近斷層波 形特徵。地工技術,156。 陳文山, 吳逸民, 葉柏逸, 賴奕修, 柯明淳, 柯孝勳, &林義凱. (2018)。臺灣東部 碰撞帶孕震構造。經濟部中央地質調查所特刊,33,123-155。 陳文山, 顔一勤, 楊志成, ...劉彥求.(2004)。1951年花蓮地震斷層的古地震研究- 瑞穗鄉鶴岡村安定橋。經濟部中央地質調查所特刊,15,137-145。 陳文山. (1993)。海岸山脈地區花東縱谷斷層的活動性淺談。地工技術雜誌,44, 52-57。 賴序衡, 鄧屬予.(2016)。花蓮七星潭礫灘的地形及沉積特性。地理研究,64。 游艾琦. (2008)。臺灣車籠埔斷層鑽探計畫A井岩心之破裂能研究。國立臺灣大 學地質科學研究所。 曾雅筑.(2019)。台灣東部花蓮地區米崙活動斷層之古地震研究。國立中央大學 應 用地質研究所。 黃暄琇.(2022)。以臺灣陣列探討南琉球隱沒帶中深層地震頻散特徵與二維地震波場 模擬。國立臺灣大學地質科學系碩士 顏宏宇. (2022)。以二維地震波模擬探討臺灣東北部雙重P波之觀測。國立中央大 學地球科學學系碩士 E-DREaM. (2024)。花蓮米崙斷層科學鑽探:地震活動及前兆井下監測。檢索自 https://e-dream.tw/midas_project/ 中央氣象署地震測報中心. (2018)。 1951/10/22 縱谷地震系列。檢索自 https://scweb.cwa.gov.tw/zh-tw/page/disaster/13 中研院地球所. (2021)。電子室–The MiDAS project。檢索自 https://www.elab.earth.sinica.edu.tw/midas 黃信樺、馬國鳳. (2022)。地震學的光世代與花蓮米崙斷層深鑽計畫。檢索自 https://pb.ps-taiwan.org/modules/news/article.php?storyid=662 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96309 | - |
dc.description.abstract | 光纖感測技術,或稱分布式聲學感測技術(Distributed Acoustic Sensing, DAS),藉由其高空間解析度及在多環境下的適應性,展現了相較於傳統地震儀的諸多優勢,並在地震學中逐漸成為一個熱門的研究領域。2020年起,花蓮地區啟動米崙斷層鑽井計畫(Milun fault Drilling and All-inclusive Sensing, MiDAS),透過此研究安裝在米崙斷層區域的光纖地震儀資料,並結合附近的傳統地震儀,我們針對傳遞至米崙斷層的地震體波到達斷層後轉換成在其兩側傳遞的轉換波相,或稱斷層帶轉換波相(Fault zone converted phase, FZCP)進行特徵分析。本研究使用二維有限差分模擬法(2-D Finite Difference Method, 2-D FDM)針對斷層進行模擬,目的為利用FZCP特徵重建米崙斷層的真實構造。在模擬中,我們針對多種不同的斷層結構及速度模型進行模擬。研究發現,當模型中置入花蓮地區的淺層速度模型時,將可清楚地在S波後方辨別出FZCP,類似的波相也在MiDAS的觀測資料中被觀測到。研究中還使用了傾斜疊加法,幫助我們提高辨別FZCP及計算其波速的能力。綜上所述,光纖地震儀為一種新型觀測工具,突破了傳統地震儀在解析細微結構上的限制,並透過FZCP及2-D FDM的綜合分析,本研究得以針對米崙斷層的真實構造提出了解釋模型。 | zh_TW |
dc.description.abstract | Fiber optic sensing, also referred to as Distributed Acoustic Sensing (DAS), has emerged as a vibrant area within seismology due to its high spatial resolution and adaptability to diverse environments using fiber optic cables, offering advantages over traditional seismometers. This study leverages data from fiber optic seismographs deployed as part of the Milun fault Drilling and All-inclusive Sensing project (MiDAS) initiated in 2020 in the Hualien region, alongside nearby conventional seismometer stations. Through comprehensive waveform characterization analysis of seismic waves propagating to the Milun Fault, we specifically investigate converted phase resulting from the conversion of body waves propagating to both sides of the fault upon reaching it, known as fault zone converted phases (FZCP). This analysis incorporates 2D Finite Difference simulations to reconstruct the actual structure of the Milun Fault. The simulations integrate various fault structures and velocity models to replicate the fault's real conditions. Ultimately, we found that when the shallow velocity model of the Hualien region is included in the simulations, the FZCP becomes most prominent, appearing after the S waves. Similar wave phases are also identified in the MiDAS observational data. Moreover, the application of the Slant Stack method enhances our ability to identify FZCP and calculate their wave velocities. Overall, integrating fiber optic seismometers offers a pathway to overcome limitations in resolving subtle structures that were previously constrained by traditional seismometers. Through the combined analysis of fault zone converted phases, layer reflections, and 2-D Finite Difference Method simulations, our study provides valuable insights into the structural aspects of the Milun fault zone. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:17:05Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-12-24T16:17:05Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract IV 目次 V 圖次 VIII 表次 XI 第一章 緒論 1 1.1花蓮地區地質背景及斷層構造 1 1.2 米崙斷層 3 1.3 歷史地震事件 4 1.4 斷層帶轉換波相(Fault Zone Converted Phase, FZCP) 6 1.5 研究目標 7 第二章、研究方法與資料 10 2.1 米崙斷層鑽井研究計畫(Milun fault Drilling and All-inclusive Sensing project, MiDAS) 10 2.1.1 分佈式聲學感測技術(Distributed Acoustic Sensing, DAS) 10 2.1.2 MiDAS計畫之DAS測站分布 16 2.1.3 MiDAS計畫鑽探及地物探勘方法與成果 18 2.2 二維有限差分法(2-D Finite Difference Method, 2-D FDM) 20 2.2.1歷史演進 20 2.2.2數值運算 21 2.2.3 交錯網格之應用 26 2.2.4 平行化處理及邊界條件 26 2.2.5 本研究之2-D FDM模型參數設計 27 2.3 波場快照(Wavefield Snapshot) 28 第三章 資料處理流程 30 3.1 二維有限差分法模擬之合成波形 30 3.1.1 前處理(Preprocessing)及帶通濾波(Bandpass filter) 30 3.1.2 標準化(Normalize) 30 3.1.3 傾斜疊加法(Slant stack method) 31 3.2 MiDAS光纖地震儀觀測資料 33 3.2.1 地震事件挑選及標準 34 3.2.2 疊加 (Stack) 34 3.3 傳統地震儀資料 34 第四章 結果 38 4.1 相異模型參數下之合成波形表現差異 38 4.1.1 速度模型差異 38 4.1.2 淺層速度差異對FZCP的影響 51 4.2 斷層構造差異 53 4.3 地震事件差異 73 4.4 模擬波形與MiDAS觀測資料之比較 73 4.4.1 資料差異 74 4.4.2比較結果 74 第五章 結論 83 參考文獻 85 附錄 92 A 本研究之2-D FDM模擬結果與波場快照 92 B 傾斜疊加法之運用及其餘地震事件擬和結果 97 C 其餘補充附錄 107 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用二維有限差分法分析斷層帶轉換波相並與MiDAS資料進行比較 | zh_TW |
dc.title | Detailed analysis of fault zone converted phases using 2-D finite difference method and their comparison with MiDAS data | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 温士忠;謝銘哲;黃信樺 | zh_TW |
dc.contributor.oralexamcommittee | Strong Wen;Ming-Che Hsieh;Hsin-Hua Huang | en |
dc.subject.keyword | 分佈式聲學感測技術,斷層帶轉換波相,有限差分法, | zh_TW |
dc.subject.keyword | Distributed acoustic sensing,Fault zone converted phase,Finite Difference Method, | en |
dc.relation.page | 108 | - |
dc.identifier.doi | 10.6342/NTU202404714 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-12-13 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2025-04-09 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 13.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。