Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯zh_TW
dc.contributor.advisorLouis Geen
dc.contributor.author呂沂倩zh_TW
dc.contributor.authorYi-Qian Luen
dc.date.accessioned2024-12-24T16:15:50Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-11-20-
dc.identifier.citation[1] Hamilton, J. J. and Crawford, C. B. (1959). “Improved determination of preconsolidation pressure of a sensitive clay.” Papers on Soils 1959 Meetings, 254-271.
[2] Smith, R. E., & Wahls, H. E. (1969). “Consolidation under constant rates of strain.” Journal of the Soil Mechanics and Foundations Division, 95(2), 519-539.
[3] Aboshi, H., Yoshikuni, H. and Maruyama, S. (1970). “Constant loading rate consolidation test.” Soils and Foundations, 10(1), 43-56.
[4] Wissa, A. E. Z., Christian, J. T., Davis, E. H. and Heiberg, S. (1971) "Consolidation at constant rate of strain," Journal of the Soil Mechanics and Foundations Division,97(10), 1393-1413.
[5] Sällfors, G. B. (1975).“Preconsolidation Pressure of Soft, High-plastic Clays.” PhD thesis, Chalmers University of Technology, Gothenburg.
[6] Gorman, C. T., Hopkins, T.C., Deen, R.C. and Drnevich, V. P. (1978). “Constantrate-of-strain and controlled-gradient consolidation testing” Geotechnical Testing Journal, 1(1),3-15.
[7] Gorman, C.T. (1981) .“Strain-Rate Selection in the Constant-Rate-of-Strain Consolidation Test.” Technical Report. Lexington, KY,USA: Kentucky Transportation Research Program.
[8] Lerouel, S., Kabbaj, M., Tavenas, F., & Bouchard, R. (1985). “Stress-strain-strain rate relation for the of sensitive natural clays compressibility.” Geotechnique, 35(2),159-180.
[9] Vaid, Y. P. (1985). “Constant rate of loading nonlinear consolidation.” Soils and Foundations, 25(1), 105-108.
[10] Sandbaekken, G., Berre, T., & Lacasse, S. (1986). “Oedometer testing at the Norwegian Geotechnical Institute.” In Consolidation of soils: Testing and evaluation. ASTM International.
[11] Lee, K., Choa, V., Lee, S. H. and Quek, S. H. (1993). “Constant rate of consolidation of Singapore marine clay.” Geotechnique, 43(3),471-488.
[12] Sheahan, T. C. and Watters, P. J. (1997). “Experimental verification of CRS consolidation theory.” Journal of Geotechnical & Geoenvironnental Engineerin, 123(5),430-437.
[13] Chai, J. C., Miura, N., Zhu, H.-H. and Yudhbir. (2004) “Compression and consolidation characteristics of structured natural clay.” Canadian Geotechnical Journal, 41(6), 1250-1258.
[14] Chai, J. C., Iribe, K. and Hino, T. (2006). “Comparison of incremental load and constant rate of strain consolidation test results.” Proceedings of 4th Asia Joint Symposium on Geotechnical and Geo-environmental Engineering, Dalian, 47-52.
[15] Bo, M.W., Choa, V. and Wong, K.S. (2010), “Constant rate of loading test on ultrasoft soil”, Geotech. Test. J., 33(3), 1-9.
[16] Jia, R., Chai, J., Hino, T., & Hong, Z. (2010). “Strain-rate effect on consolidation behaviour of Ariake clay.” Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 163(5), 267-277.
[17] Yin, Z. Y., & Karstunen, M. (2011). “Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration.” Acta Mechanica Solida Sinica, 24(3), 216-230.
[18] ASTM Standard D 4186-06 (2012). Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive Soils Uing Controlled-Strain Loading, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA
[19] Ö zer, A.T., Lawton, E.C., & Bartlett, S.F. (2012). New method to determine proper strain rate for constant rate-of-strain consolidation tests. Canadian Geotechnical Journal, 49, 18-26.
[20] Jia, R., Chai, J., & Hino, T. (2013). Interpretation of coefficient of consolidation from CRS test results. Geomechanics and Engineering, 5(1), 57-70.
[21] Ahmadi, H., Rahimi, H., Soroush, A., & Alén, C. (2014).“Experimental Research on Variation of Pore Water Pressure in Constant Rate of Strain Consolidation Test.” Acta Geotechnica Slovenica, 11(2), 47-57.
[22] Mun, W., & McCartney, J. (2015). “Rate Effects in Constant Rate of Strain Compression Tests on Unsaturated Soils to High Pressures”.
PanAmerican Conference on Soil Mechanics and Geotechnical Engineering, November 15–18.
[23] Reddy, B. K., Sahu, R. B., & Ghosh, S. (2015). “Constant rate of strain consolidation of organic clay: in Kolkata region.” International Journal of Geotechnical Engineering, 9(5), 471-482.
[24] Kassim, K. A., Rashid, A. S. A., Kueh, A. B. H., Yah, C. S., & Siang, L. C. (2016).“Criteria of acceptance for constant rate of strain consolidation test for tropical cohesive soil.” Geotechnical and Geological Engineering, 34, 931-947.
[25] Díaz-Rodríguez, J. A., Tonix, W. R., & Carrizales, P. M. (2017). “Constant rate of strain consolidation of Maxico City Soil.” International Society for Soil Mechanics and Geotechnical Engineering,17-22.
[26] Henniche, A., & Belkacemi, S. (2017). “Numerical Simulation to Select Proper Strain Rates during CRS Consolidation Test.” Periodica Polytechnica-civil Engineering, 62(2), 404-412.
[27] Maleksaeedi E, Nuth M, Karray M, Bonin MD (2018) “Application of a novel oedometer setup for performing constant-rate-of-strain (CRS) test on soft soils.” GeoEdmonton 2018, Edmonton, AB, Canada
[28] Mesri, G., & Feng, T.W. (2019) “Constant rate of strain consolidation testing of soft clays and fibrous peats.” Canadian Geotechnical Journal, 56(10), 1526-1533.
[29] Merle, B., Higgins, W. H., & Pharr, G. M. (2020). “Extending the range of constant strain rate nanoindentation testing. ”Journal of Materials Research, 35(4), 343-352.
[30] Nguyen, C. O., Tran, T. T., & Dao, V. T. T. (2020). “Consolidation analysis with application of constant rate of strain consolidation tests for Vietnam clays.” Geotechnical and Geological Engineering, 38(1), 833-847.
[31] Unoi, D. N. D., Hasan, A., Amuda, A. G., & Sahdi, F. (2021).“Compressibility behaviour of sapric peat in double drainage constant rate of strain (CRS) Test.”Geotechnical Engineering, 52(1).
[32] Singh, D. J., Paramkusam, B. R., & Prasad, A. (2022).“Determination of Consolidation Parameters of Geomaterials Using Modified CRS Consolidation Testing System.” KSCE Journal of Civil Engineering, 26(3), 1066-1079.
[33] Henniche, A. (2023). Numerical model to evaluate variations of strain rates during conventional oeometer tests for CRS consolidation practice. Journal of GeoEngineering, 18(3), 117-127.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96305-
dc.description.abstract相較於加載增量壓密 (incremental loading consolidation) 試驗,等速率應變壓密 (constant rate of strain consolidation) 試驗具有較短之時間歷程,然而,在過去的文獻中,應變速率對等應變速率壓密行為的影響仍然尚不明確,以致對於等應變速率壓密試驗的可靠性和精確性仍存有疑慮。本研究針對內湖地區的薄管取樣試體進行一系列室內試驗,旨在探討等應變速率壓密試驗中,土壤試體在不同應變速率下土壤之應力應變曲線、水力傳導係數和壓密係數等壓密行為,並探討在加載完成後使用恆定載重階段消散超額孔隙水壓的必要性,再並分別以加載增量壓密試驗和三軸透水試驗對等應變速率壓密試驗之結果進行驗證,最後探討在何種應變速率下,等應變速率壓密試驗得到的壓密參數與加載增量壓密試驗所得的結果相近。
研究結果顯示,隨著應變速率的增加,土讓的應變量及水力傳導係數均隨之增加,兩者皆呈正比關係,而恆定載重階段設定對於試驗整體結果而言影響不大。此外,也透過三軸透水試驗的結果證實,在較慢的應變速率下,測得的水力傳導係數更符合實際情況。最後,比較加載增量壓密試驗和等應變速率壓密試驗的結果,發現較慢的應變速率所得結果與加載增量壓密試驗的結果更為接近。因此,本試驗結果認為,較慢的應變速率能夠更符合實際的壓密參數,故建議應變速率之選定標準需以達到瞬時應變函數和超額孔隙水壓力比的觸發標準為前提,並盡可能選擇較緩慢的速率。
zh_TW
dc.description.abstractCompared to incremental loading consolidation tests, constant rate of strain consolidation tests have a shorter duration. However, previous literature has not clarified the impact of
strain rates on the behavior of constant rate of strain consolidation, leading to doubts about the reliability and accuracy of these tests. This study conducted a series of laboratory tests on thin walled sampler from the Neihu District to investigate the consolidation behavior of soil specimens under different strain rates in constant rate of strain consolidation tests.
The study results show that as the strain rate increases, both the strain and the hydraulic conductivity of the increase, demonstrating a proportional relationship. The constant load
phase setting has little impact on the overall test results. Additionally, triaxial permeability test results confirm that the measured hydraulic conductivity at lower strain rates is more consistent with actual conditions. Finally, comparing the results of incremental loading consolidation tests and constant rate of strain consolidation tests, it was found that results obtained at slower strain rates are closer to those of incremental loading consolidation tests. Therefore, this study concludes that slower strain rates are more representative of actual consolidation parameters. It is recommended that the selection of strain rates be
The study aims to examine the stress-strain curves, hydraulic conductivity, and consolidation coefficients of soil, as well as the necessity of dissipating excess pore water
pressure during the constant load phase after loading. The results of the constant rate of strain consolidation tests were verified using incremental loading consolidation tests and
triaxial permeability tests. Finally, the study explored the strain rates at which the consolidation parameters obtained from constant rate of strain consolidation tests are similar to those obtained from incremental loading consolidation tests.Therefore, this study concludes that slower strain rates are more representative of actual consolidation parameters. It is recommended that the selection of strain rates be based on achieving the trigger standards of the transient strain function and excess pore water pressure ratio, and that slower rates be chosen whenever possible.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:15:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:15:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝...II
摘要.... III
Abstract... IV
目次... VI
圖次...X
表次... XVI
第一章 緒論... 1
1.1 研究動機與目的... 1
1.2 研究內容與架構... 2
第二章 文獻回顧... 5
2.1 單向度壓密之發展... 5
2.1.1 加載增量壓密試驗 (IL Consolidation Test) ... 5
2.1.2 等應變速率壓密試驗 (CRS Consolidation Test)... 6
2.1.3 恆定孔隙水壓梯度壓密試驗 (Constant Gradient Consolidation) ... 7
2.2 等應變速率壓密試驗之理論... 7
2.2.1 Smith 和Wahls 線性理論... 7
2.2.2 Wissa 線性理論... 10
2.3 等應變速率壓密之規範... 11
2.3.1 ASTM 標準規範...11
2.4 等應變速率壓密試驗中應變速率之影響... 13
2.4.1 超額孔隙水壓之影響... 13
2.4.2 液性限度之影響... 14
第三章 試驗計畫、設備與方法... 23
3.1 試驗計畫及流程... 23
3.2 壓密試驗儀器... 24
3.2.1 等應變速率壓密試驗儀... 24
3.2.2 加載增量壓密試驗儀... 27
3.3 等速率壓密試驗儀校正... 29
3.3.1 ASTM 校正規範... 29
3.3.2 校正步驟... 29
A. 放置假試體量測:... 30
B. 未放置假試體量測:... 30
A. 放置假試體量測:... 30
A. 增加反水壓量測:... 31
B. 固定反水壓量測.... 31
3.3.3 校正結果... 31
3.4 試體取樣與土樣性質... 32
3.4.1 試體取樣與保存... 32
A. 含水量測試: ... 32
A. 確保試體穩定性:... 32
B. 試體標號和保存程序: ... 33
3.4.2 基本物性試驗... 33
3.5 等應變速率壓密試驗步驟... 33
3.5.1 試驗前置作業... 33
3.5.2 原狀試體上機方法... 35
3.5.3 試體飽和... 36
3.5.4 等應變速率壓密試驗... 37
3.6 加載增量壓密試驗步驟... 38
3.6.1 土樣準備... 38
3.6.2 試驗步驟... 38
第四章 試驗成果... 55
4.1 材料基本物性結果... 55
4.1.1 材料顆粒粒徑分佈... 55
4.1.2 阿太堡限度和塑性試驗... 56
4.1.3 比重試驗... 57
4.1.4 土樣試驗分組... 57
4.2 等應變速率壓密試驗相關參數之準則... 57
4.2.1 瞬時應變函數之結果... 58
4.2.2 超額孔隙水壓力比之結果...59
4.3 等應變速率壓密試驗結果... 60
4.3.1 應力-應變曲線之結果... 60
4.3.2 e-logσ’曲線之結果... 61
4.3.3 水力傳導係數 (k) 趨勢之結果... 64
4.3.4 壓密係數 (Cv) 趨勢之結果... 65
第五章 分析與討論... 101
5.1 恆定載重影響之結果...101
5.1.1 不同應變速率影響水壓消散之時間... 101
5.1.2 不同應變速率影響應變量之關係... 102
5.1.3 不同應變速率影響孔隙比變化之關係... 102
5.2 與三軸透水試驗比對水力傳導係數之結果...103
5.2.1 三軸透水試驗介紹及方法... 103
5.2.2 水力傳導係數試驗結果及分析... 104
5.3 與IL壓密試驗比較之結果...104
5.3.1 比較CRS 和IL 壓密試驗的應力-應變曲線... 105
5.3.2 比較CRS 和IL 試驗的e-logσ’曲線... 106
5.3.3 比較CRS 和IL 壓密試驗的Cv 值... 107
第六章 結論與建議... 129
6.1 結論...129
6.2 建議...131
參考文獻... 133
-
dc.language.isozh_TW-
dc.subject應變速率zh_TW
dc.subject等應變速率壓密試驗zh_TW
dc.subject超額孔隙水壓影響zh_TW
dc.subject加載增量壓密試驗zh_TW
dc.subject土壤壓密行為zh_TW
dc.subjectincremental loading consolidation testsen
dc.subjectsoil consolidation behavioren
dc.subjectconstant rate of strain consolidation testsen
dc.subjectstrain ratesen
dc.subjecteffect of excess pore water pressureen
dc.title應變速率對等應變速率壓密行為之探討zh_TW
dc.titleInfluence of Strain Rate on Constant Rate of Strain Consolidation Testingen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊國鑫;黃郁惟;卓雨璇;朱民虔zh_TW
dc.contributor.oralexamcommitteeKuo-Hsin Yang;Yu-Wei Hwang;Yu-Syuan Jhuo;Min-Chien Chuen
dc.subject.keyword等應變速率壓密試驗,應變速率,土壤壓密行為,加載增量壓密試驗,超額孔隙水壓影響,zh_TW
dc.subject.keywordconstant rate of strain consolidation tests,strain rates,soil consolidation behavior,incremental loading consolidation tests,effect of excess pore water pressure,en
dc.relation.page136-
dc.identifier.doi10.6342/NTU202404342-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-11-20-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2029-11-19-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
8.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved