Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96301
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林建中zh_TW
dc.contributor.advisorChien-Chung Linen
dc.contributor.author黃子嘉zh_TW
dc.contributor.authorTzu-Chia Huangen
dc.date.accessioned2024-12-24T16:14:40Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-13-
dc.identifier.citation[1] M. Meneghini, L. -R. Trevisanello, G. Meneghesso and E. Zanoni, "A Review on the Reliability of GaN-Based LEDs," in IEEE Transactions on Device and Materials Reliability, vol. 8, no. 2, pp. 323-331, June 2008, doi:10.1109/TDMR.2008.921527.
[2] Buffolo, M., A. Caria, F. Piva, N. Roccato, C. Casu, C. De Santi, N. Trivellin, G.Meneghesso, E. Zanoni and M. Meneghini (2022). "Defects and Reliability of GaN-Based LEDs: Review and Perspectives." physica status solidi (a) 219(8).
[3] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso and E. Zanoni, "A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs," in IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 108-118, Jan. 2010, doi:10.1109/TED.2009.2033649.
[4] Li, G., W. Wang, W. Yang, Y. Lin, H. Wang, Z. Lin and S. Zhou (2016). "GaN-based light-emitting diodes on various substrates: a critical review." Reports on Progress in Physics 79(5): 056501.
[5] Zhao, L., S. Zhu, C. Wu, C. Yang, Z. Yu, H. Yang and L. Liu (2016). "GaN-based LEDs for light communication." Science China Physics, Mechanics & Astronomy 59(10).
[6] Ü. Ozgur, H. Liu, X. Li, X. Ni and H. Morkoç, "GaN-Based Light-Emitting Diodes:Efficiency at High Injection Levels," in Proceedings of the IEEE, vol. 98, no. 7, pp.1180-1196, July 2010, doi: 10.1109/JPROC.2010.2043210.
[7] Steranka, F. M., J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner,P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M.Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier and J. J. Wierer (2002). "High Power LEDs – Technology Status and Market Applications." physica status solidi (a) 194(2): 380-388.
[8] Y. Wang, J. M. Alonso and X. Ruan, "A Review of LED Drivers and Related Technologies," in IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp.5754-5765, July 2017, doi: 10.1109/TIE.2017.2677335.
[9] Lee, V. W., N. Twu and I. Kymissis (2016). "Micro-LED Technologies and Applications." Information Display 32(6): 16-23.
[10] Bergh, A. A. (2004). "Blue laser diode (LD) and light emitting diode (LED) applications." physica status solidi (a) 201(12): 2740-2754.
[11] Photos of red, blue, and green LEDs Available from:https://en.wikipedia.org/wiki/Light-emitting_diode#Blue_LED
[12] Jamieson, T., R. Bakhshi, D. Petrova, R. Pocock, M. Imani and A. M. Seifalian(2007). "Biological applications of quantum dots." Biomaterials 28(31): 4717-4732
[13] Kouwenhoven, L. and C. Marcus (1998). "Quantum dots." Physics World 11(6): 35.
[14] Grabolle, M., M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller and U. Resch-Genger (2009). "Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties." Analytical Chemistry 81(15): 6285-6294.
[15] Gill, S. C. and P. H. von Hippel (1989). "Calculation of protein extinction coefficients from amino acid sequence data." Analytical Biochemistry 182(2): 319-326.
[16] Kargozar, S., et al. (2020). "Quantum Dots: A Review from Concept to Clinic." Biotechnol J 15(12): e2000117.
[17] Das, R., R. Bandyopadhyay and P. Pramanik (2018). "Carbon quantum dots from natural resource: A review." Materials Today Chemistry 8: 96-109.
[18] Garcia de Arquer, F. P., D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer and E. H.Sargent (2021). "Semiconductor quantum dots: Technological progress and future challenges." Science 373(6555).
[19] Mansur, H. S. (2010). "Quantum dots and nanocomposites." Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(2): 113-129.
[20] Medintz, I. L., H. Mattoussi and A. R. Clapp (2008). "Potential clinical applications of quantum dots." Int J Nanomedicine 3(2): 151-167.
[21] Y. Arakawa, "Progress in GaN-based quantum dots for optoelectronics applications," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 4, pp. 823-832, July-Aug. 2002, doi: 10.1109/JSTQE.2002.801675.
[22] Kagan, C. R., E. Lifshitz, E. H. Sargent and D. V. Talapin (2016). "Building devices from colloidal quantum dots." Science 353(6302).
[23] Morris-Cohen, A. J., M. Malicki, M. D. Peterson, J. W. J. Slavin and E. A. Weiss(2013). "Chemical, Structural, and Quantitative Analysis of the Ligand Shells of Colloidal Quantum Dots." Chemistry of Materials 25(8): 1155-1165.
[24] Liu, M., N. Yazdani, M. Yarema, M. Jansen, V. Wood and E. H. Sargent (2021). "Colloidal quantum dot electronics." Nature Electronics 4(8): 548-558.
[25] Troparevsky, M. C., L. Kronik and J. R. Chelikowsky (2003). "Optical properties of CdSe quantum dots." The Journal of Chemical Physics 119(4): 2284-2287.
[26] Surana, K., P. K. Singh, H.-W. Rhee and B. Bhattacharya (2014). "Synthesis, characterization and application of CdSe quantum dots." Journal of Industrial and Engineering Chemistry 20(6): 4188-4193.
[27] Martin, Y., M. Eldardiri, D. J. Lawrence-Watt and J. R. Sharpe (2011). "Microcarriers and Their Potential in Tissue Regeneration." Tissue Engineering Part B: Reviews 17(1): 71-80.
[28] Chang, C., G.-T. Lin, C.-P. Huang and C.-C. Lin (2023). Colloidal Quantum Dot LEDs Package with Porous Microcarrier . CLEO 2023, San Jose, CA, Optica Publishing Group.
[29] Photos of microcarriers Available from:https://www.tantti.com/products/page/?id=22
[30] Kawaguchi, H. (2000). "Functional polymer microspheres." Progress in Polymer Science 25(8): 1171-1210.
[31] O'Donnell, P. B. and J. W. McGinity (1997). "Preparation of microspheres by the solvent evaporation technique." Advanced Drug Delivery Reviews 28(1): 25-42.
[32] Qu, Q., Y. Min, L. Zhang, Q. Xu and Y. Yin (2015). "Silica Microspheres with Fibrous Shells: Synthesis and Application in HPLC." Analytical Chemistry 87(19): 9631-9638.
[33] Photos of porous silica microspheres Available from: https://www.researchgate.net/figure/The-SEM-images-of-porous-silica-microspheres-prepared-at-different-molar-ratio-of_fig7_337224185
[34] Demir, H. V., Nizamoglu, S., Erdem, T., Mutlugun, E., Gaponik, N., & Eychmüller,A. (2011). Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today, 6(6), 632-647.
[35] Han, H. V., H. Y. Lin, C. C. Lin, W. C. Chong, J. R. Li, K. J. Chen, P. Yu, T. M. Chen, H.M. Chen, K. M. Lau and H. C. Kuo (2015). "Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology." Opt Express 23(25):32504-32515.
[36] Li, C., Z. Zang, W. Chen, Z. Hu, X. Tang, W. Hu, K. Sun, X. Liu and W. Chen (2016)."Highly pure green light emission of perovskite CsPbBr(3) quantum dots and their application for green light-emitting diodes." Opt Express 24(13): 15071-15078.
[37] Li, J., Y. Tang, Z. Li, X. Ding, B. Yu and L. Lin (2019). "Largely Enhancing Luminous Efficacy, Color-Conversion Efficiency, and Stability for Quantum-Dot White LEDs Using the Two-Dimensional Hexagonal Pore Structure of SBA-15 Mesoporous Particles." ACS Appl Mater Interfaces 11(20): 18808-18816.
[38] Mandal, S., A. C. Reber, M. Qian, P. S. Weiss, S. N. Khanna and A. Sen (2013)."Controlling the Band Gap Energy of Cluster-Assembled Materials." Accounts of Chemical Research 46(11): 2385-2395.
[39] R. Paschotta, article on "Band Gap" in the <ahref="https://doi.org/10.61835/enc">RP Photonics Encyclopedia</a>, retrieved 2024-11-18, https://doi.org/10.61835/9f5" title="
[40] An illustrative diagram showing the light-emission principle of LEDs Available from: https://toshiba-semicon-storage.com/cn/semiconductor/knowledge/e-learning/discrete/chap5/chap5-2.html
[41] W. Dong, "LEDs’ Working Principle and Its Technological Breakthrough of GaN," 2021 International Conference on Electronics, Circuits and Information Engineering (ECIE), Zhengzhou, China, 2021, pp. 60-64, doi: 10.1109/ECIE52353.2021.00020.
[42] Y. Wang, J. M. Alonso and X. Ruan, "A Review of LED Drivers and Related Technologies," in IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp.5754-5765, July 2017, doi: 10.1109/TIE.2017.2677335.
[43] Osypiw, A. R. C., S. Lee, S.-M. Jung, S. Leoni, P. M. Smowton, B. Hou, J. M. Kim and G. A. J. Amaratunga (2022). "Solution-processed colloidal quantum dots for light emission." Materials Advances 3(17): 6773-6790.
[44] Chang, W.-Y., Y. Kuo, Y.-W. Kiang and C. C. Yang (2019). "Simulation study on light color conversion enhancement through surface plasmon coupling." Optics Express 27(12): A629-A642.
[45] 林冠騰(2022), “微載體混合膠體量子點發光二極體封裝結構,” 國立陽明交通大學, 臺灣博碩士論文知識加值系統.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96301-
dc.description.abstract量子點在現今顯示技術中扮演的角色日益重要, 在光電領域中被廣泛應用,包括發光二極體 (LED)、顯示器、太陽能電池和生物成像等。量子點具備高亮度、色域廣、半高寬窄和良好的穩定性等優點 ,使其成為提升顏色轉換效率和光學性能的理想材料。不過,量子點的自聚集和再吸收效應可能影響其應用性能,需要透過精細的封裝和材料選擇來進行優化。
本論文中,我們使用的 LED 導線架規格為 5050,實驗前後皆會用積分球量測LED 的光譜、光強度及發光效率等。而實驗中,我們主要使用硫化鋅包覆硒化鎘量子點甲苯溶液及二甲基矽氧甲烷(PDMS) ,與多孔二氧化矽微球混合 ,用“膠體混合”以及 “層狀結構+”兩種不同的封裝結構與之前的樣品比較其光譜及顏色轉換效率之變化。
實驗結果顯示,只有 PDMS 混合膠體量子點的樣品的顏色轉換效率較以往又更進步了一些,而“膠體混合”封裝在中、低濃度時,多孔二氧化矽微球的顏色轉換效率也相較以往使用微載體進行混合時提升了不少;至於“層狀結構+”封裝,多孔二氧化矽微球在中濃度時較微載體好上許多,但到了高濃度時,則有略為下降的趨勢。
zh_TW
dc.description.abstractQuantum dots play an increasingly important role in modern display technology and are widely used in the optoelectronic field, including applications such as light-emitting diodes (LEDs), displays, solar cells, and bio-imaging. Quantum dots offer advantages such as high brightness, a wide color gamut, narrow full-width at half-maximum (FWHM), and excellent stability, making them ideal materials for improving color conversion efficiency and optical performance. However, quantum dot self-aggregation and reabsorption effects may impact their performance, necessitating optimization through precise encapsulation and material selection.
In this study, we used LED lead frames with 5050 specifications and measured the spectrum, light intensity, and luminous efficiency of the LEDs with an integrating sphere before and after the experiments. The primary materials used in the experiments included cadmium selenide (CdSe)-coated zinc sulfide (ZnS) quantum dots in toluene solution and polydimethylsiloxane (PDMS), mixed with porous silica microspheres. We compared the spectral and color conversion efficiency (CCE) changes using two different encapsulation structures, "mixed" and "layered+," against previous samples.
The experimental results showed that samples with colloidal quantum dots mixed solely with PDMS exhibited further improvements in color conversion efficiency compared to previous iterations. For "mixed" encapsulation, the color conversion efficiency of porous silica microspheres at medium and low concentrations was significantly enhanced compared to mixing with microcarriers in the past. Regarding the "layered+" encapsulation, porous silica microspheres performed much better than microcarriers at medium concentrations but exhibited a slight decline at high concentrations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:14:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:14:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝................................................................................................................................. i
摘要................................................................................................................................ ii
Abstract ........................................................................................................................ iii
Content ........................................................................................................................... v
List of Figure ................................................................................................................ vii
List of Table .................................................................................................................. xi
Chapter 1 Introduction ................................................................................................ 1
1.1 Light Emitting Diode (LED) ...................................................................... 1
1.2 Quantum dots .............................................................................................. 3
1.3 Colloidal quantum dots ............................................................................... 5
1.4 Microcarriers ............................................................................................... 7
1.5 Porous silica microspheres .......................................................................... 8
1.6 Experiment motivation .............................................................................. 10
1.7 Literature review ....................................................................................... 11
Chapter 2 Theoretical Background ........................................................................... 14
2.1 Semiconductor energy band theory .......................................................... 14
2.2 The working principle of LEDs ................................................................ 16
2.3 Emission Principle of Colloidal Quantum Dots ...................................... 18
2.4 Definition of color conversion efficiency ............................................... 19
Chapter 3 Experiment and Measurement Setup ....................................................... 21
3.1 CdSe Colloidal Quantum Dots................................................................. 21
3.2 Fabrication of CdSe CQD LEDs .............................................................. 23
3.3 Integrating Sphere System ....................................................................... 25
Chapter 4 Optical characteristic analysis .................................................................. 27
4.1 Preparation for the experiment ................................................................. 27
4.2 CQDs/PDMS QDLED Package ................................................................ 28
4.3 Mixed CQDs/PDMS QDLED Package ................................................... 35
4.4 Layered plus CQDs/PDMS QDLED Package ......................................... 42
4.5 Optical result of the in-chip structures ..................................................... 47
4.6 Optical result of the mixed structures ....................................................... 49
4.7 Optical result of the layered plus structure ............................................... 51
Chapter 5 Conclusion and Future Work ................................................................... 54
Reference ..................................................................................................................... 56
-
dc.language.isoen-
dc.subject封裝zh_TW
dc.subject量子點zh_TW
dc.subject二氧化矽微球zh_TW
dc.subject多孔zh_TW
dc.subject顏色轉換效率zh_TW
dc.subjectcolor conversion efficiencyen
dc.subjectquantum dotsen
dc.subjectporousen
dc.subjectsilica microspheresen
dc.subjectencapsulationen
dc.title高顏色轉換效率之膠體量子點發光二極體封裝於二氧化矽多孔性微球之研究zh_TW
dc.titleHigh color conversion efficiency colloidal quantum dot light emitting diode packaging study with porous silica microspheresen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林俊廷;陳奕君zh_TW
dc.contributor.oralexamcommitteeJin-Ting Lin;Yi-Jun Chenen
dc.subject.keyword量子點,多孔,二氧化矽微球,封裝,顏色轉換效率,zh_TW
dc.subject.keywordquantum dots,porous,silica microspheres,encapsulation,color conversion efficiency,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202404719-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf13.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved