Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王之彥zh_TW
dc.contributor.advisorJr-Yan Wangen
dc.contributor.author許哲駿zh_TW
dc.contributor.authorChe-Chun Hsuen
dc.date.accessioned2024-12-24T16:12:04Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-16-
dc.identifier.citationAmihud, Y., 2002, Illiquidity and stock returns: Cross-section and time-series effects, Journal of Financial Markets 5, 31-56.
An, B.-J., A. Ang, T. G. Bali, and N. Cakici, 2014, The joint cross section of stocks and options, Journal of Finance 69, 2279-2338.
Bakshi, G., C. Cao, and Z. Chen, 2000, Do call prices and the underlying stock always move in the same direction?, Review of Financial Studies 13, 549-584.
Bali, T. G., and A. Hovakimian, 2009, Volatility spreads and expected stock returns, Management Science 55, 1797–1812.
Baltussen, G., B. v. d. Grient, W. d. Groot, E. Hennink, and W. Zhou, 2012, Exploiting option information in the equity market, Financial Analysts Journal 68, 56-72.
Banerjee, P. S., J. S. Doran, and D. R. Peterson, 2007, Implied volatility and future portfolio returns, Journal of Banking & Finance 31, 3183-3199.
Bergsma, K., V. Csapi, D. Diavatopoulos, and A. Fodor, 2020, Show me the money: Option moneyness concentration and future stock returns, Journal of Futures Markets 40, 761-775.
Bernales, A., 2017, The success of option listings, Journal of Empirical Finance 40, 139-161.
Biais, B., and P. Hillion, 1994, Insider and liquidity trading in stock and options markets, Review of Financial Studies 7, 743-780.
Black, F., and M. Scholes, 1973, The pricing of options and corporate liabilities, Journal of Political Economy 81, 637-654.
Black, F., 1975, Fact and fantasy in the use of options, Financial Analysts Journal 31, 36-41.
Blau, B. M., N. Nguyen, and R. J. Whitby, 2014, The information content of option ratios, Journal of Banking & Finance 43, 179-187.
Borochin, P., H. Chang, and Y. Wu, 2020, The information content of the term structure of risk-neutral skewness, Journal of Empirical Finance 58, 247-274.
Canina, L., and S. Figlewski, 1993, The informational content of implied volatility, Review of Financial Studies 6, 659-681.
Cao, H., 1999, The effect of derivative assets on information acquisition and price behavior in a rational expectations equilibrium, Review of Financial Studies 12, 131-163.
Chakravarty, S., H. Gulen, and S. Mayhew, 2004, Informed trading in stock and option markets, Journal of Finance 59, 1235-1257.
Chordia, T., T.-C. Lin, and V. Xiang, 2021, Risk-neutral skewness, informed trading, and the cross section of stock returns, Journal of Financial and Quantitative Analysis 56, 1713-1737.
Christoffersen, P., and K. Jacobs, 2004, The importance of the loss function in option valuation, Journal of Financial Economics 72, 291-318.
Claude, M., and A. Mingone, 2022, No arbitrage SVI, SIAM Journal on Financial Mathematics 13, 227-261.
Conrad, J., 1989, The price effect of option introduction, Journal of Finance 44, 487-498.
Conrad, J. S., R. F. Dittmar, and E. Ghysels, 2013, Ex ante skewness and expected stock returns, Journal of Finance 68, 85-124.
Cremers, M., and D. Weinbaum, 2010, Deviations from put-call parity and stock return predictability, Journal of Financial and Quantitative Analysis 45, 335-367.
Danielsen, B. R., and S. M. Sorescu, 2001, Why do option introductions depress stock prices? A study of diminishing short sale constraints, Journal of Financial and Quantitative Analysis 36, 451-484.
Dennis, P., S. Mayhew, and C. Stivers, 2006, Stock returns, implied volatility innovations, and the asymmetric volatility phenomenon, Journal of Financial and Quantitative Analysis 41, 381-406.
Doran, J. S., and K. Krieger, 2010, Implications for asset returns in the implied volatility skew, Financial Analysts Journal 66, 65-76.
Easley, D., M. O’Hara, and P. S. Srinivas, 1998, Option volume and stock prices: Evidence on where informed traders trade, Journal of Finance 53, 431–465.
Fama, E. F., and J. D. MacBeth, 1973, Risk, return, and equilibrium: Empirical tests, Journal of Political Economy 81, 607-636.
Fama, E. F., and K. R. French, 1992, The cross‐section of expected stock returns, Journal of Finance 47, 427-465.
Fama, E. F., and K. R. French, 2015, A five-factor asset pricing model, Journal of Financial Economics 116, 1-22.
Feng, S., Y. Zhang, and G. C. Friesen, 2015, The relationship between the option-implied volatility smile, stock returns and heterogeneous beliefs, International Review of Financial Analysis 41, 62-73.
Ferhati, T., 2020, SVI model free wings. HAL Archives, hal-02517572
Fu, X., Y. E. Arisoy, M. B. Shackleton, and M. Umutlu, 2016, Option-implied volatility measures and stock return predictability, Journal of Derivatives 24, 58-78.
Gârleanu, N., L. H. Pedersen, and A. M. Poteshman, 2009, Demand-based option pricing, Review of Financial Studies 22, 4259-4299.
Gatheral, J., A parsimonious arbitrage-free implied volatility parameterization with application to the valuation of volatility derivatives, Presentation at Global Derivatives, 2004.
Gatheral, J., and A. Jacquier, 2011, Convergence of Heston to SVI, Quantitative Finance 11, 1129–1132.
Gatheral, J., and A. Jacquier, 2014, Arbitrage-free SVI volatility surfaces, Quantitative Finance 14, 59-71.
Ge, L., T.-C. Lin, and N. D. Pearson, 2016, Why does the option to stock volume ratio predict stock returns?, Journal of Financial Economics 120, 601-622.
Giot, P., 2005, Relationships between implied volatility indices and stock index returns, Journal of Portfolio Management 31, 92-100.
Gkionis, K., A. Kostakis, G. Skiadopoulos, and P. S. Stilger, 2021, Positive stock information in out-of-the-money option prices, Journal of Banking & Finance 128, 106112.
Goyal, A., and A. Saretto, 2009, Cross-section of option returns and volatility, Journal of Financial Economics 94, 310-326.
Guo, H., and B. Qiu, 2014, Options-implied variance and future stock returns, Journal of Banking & Finance 44, 93-113.
Han, B., and G. Li, 2021, Information content of aggregate implied volatility spread, Management Science 67, 1249–1269.
Hsu, C., 2024, Activity of informed traders and stock returns, Managerial Finance 50, 908-919.
Hu, J., 2014, Does option trading convey stock price information?, Journal of Financial Economics 111, 625-645.
Jegadeesh, N., and S. Titman, 1993, Returns to buying winners and selling losers: Implications for stock market efficiency, Journal of Finance 48, 65-91.
Johnson, T. L., and E. C. So, 2012, The option to stock volume ratio and future returns, Journal of Financial Economics 106, 262-286.
Kumar, R., A. Sarin, and K. Shastri, 1998, The impact of options trading on the market quality of the underlying security: An empirical analysis, Journal of Finance 53, 717-732.
Lee, R. W., 2004, The moment formula for implied volatility at extreme strikes, Mathematical Finance 14, 469-480.
Lin, T.-C., and X. Lu, 2015, Why do options prices predict stock returns? Evidence from analyst tipping, Journal of Banking & Finance 52, 17–28.
Liu, M.-Y., W.-I. Chuang, and C.-L. Lo, 2021, Options-implied information and the momentum cycle, Journal of Financial Markets 53, 100565.
Newey, W. K., and K. D. West, 1987, A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica 55, 703-708.
Ni, S. X., N. D. Pearson, A. M. Poteshman, and J. White, 2021, Does option trading have a pervasive impact on underlying stock prices?, Review of Financial Studies 34, 1952–1986.
Pan, J., and A. Poteshman, 2006, The information in option volume for future stock prices, Review of Financial Studies 19, 871-908.
Roll, R., E. Schwartz, and A. Subrahmanyam, 2010, O/S: The relative trading activity in options and stock, Journal of Financial Economics 96, 1-17.
Ryu, D., and H. Yang, 2018, The directional information content of options volumes, Journal of Futures Markets 38, 1533-1548.
Stilger, P. S., A. Kostakis, and S.-H. Poon, 2017, What does risk-neutral skewness tell us about future stock returns?, Management Science 63, 1814–1834.
Xing, Y., X. Zhang, and R. Zhao, 2010, What does the individual option volatility smirk tell us about future equity returns?, Journal of Financial and Quantitative Analysis 45, 641-662.
Yan, S., 2011, Jump risk, stock returns, and slope of implied volatility smile, Journal of Financial Economics 99, 216–233.
Yoon, J., X. Ruan, and J. E. Zhang, 2022, VIX option-implied volatility slope and VIX futures returns, Journal of Futures Markets 42, 1002-1038.
Yue, T., S. A. Gehricke, J. E. Zhang, and Z. Pan, 2021, The implied volatility smirk in the chinese equity options market, Pacific-Basin Finance Journal 69, 1-16.
Zhang, J. E., and Y. Xiang, 2008, The implied volatility smirk, Quantitative Finance 8, 263–284.
Zhou, Y., 2022, Option trading volume by moneyness, firm fundamentals, and expected stock returns, Journal of Financial Markets 58, 1-36.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96292-
dc.description.abstract隱含在選擇權交易活動中的資訊一直以來都是研究人員以及交易員關注的重要議題。本論文建基在大量有關於隱含波動率和選擇權或者股票交易量對未來股票報酬有影響的文獻上,從隱含波動率和交易量兩個不同的角度出發,嘗試找到過去文獻未發現的不同或者額外的資訊,並使其能夠成為可以在現實當中應用的投資訊號。
Stochastic Volatility Inspired (SVI) 模型是由五個參數所構成,每個參數都代表著對於隱含波動度曲線不同的影響,例如隱含波動度曲線的曲度、水平位置以及開口方向。SVI模型可以很好的擬合指數選擇權的隱含波動度曲線,並且相較於三個參數的Zhang–Xiang模型,SVI模型的五個參數讓我們能夠對隱含波動度曲線進行更廣泛的分析。因此,在第二章,我利用由所有個股選擇資料建構的SVI 模型,檢驗其對於未來股票報酬的預測能力,以及是否含有額外的市場訊息。
Option-to-stock trading volume (O/S) ratio或put call trading volume (P/C) ratio的資訊內含已經被廣泛的討論,然而多數的文獻只關注在個股和選擇權的交易量,或是基於不同選擇權價性 (option moneyness) 對於股票市場的影響,很少探討同時考慮所有的選擇權價性的影響。因此,在第三章,我利用一個由個股交易量、選擇權交易量以及選擇權價性所購成的moneyness option-to-stock trading volume ratio (MOS)指標,並檢驗其與選擇權隱含波動度之間的相互關係以及對於股票市場的影響。
最後,結果顯示SVI不僅可以被應用在擬合指數選擇權的隱含波動度曲線,也可以應用在個股選擇權,此外,以SVI模型的參數ρ或者以MOS和隱含波動度組合變數建構的資產組合可以產生顯著的報酬。
zh_TW
dc.description.abstractWhat kind of information embedded in option market trading activities has been a critical issue for researchers and traders for a long time. This dissertation is rooted in a rich strand of existing literature about the impacts of implied volatilities and option and/or stock trading volume on future stock returns. I start from two different perspectives, trading volume and implied volatilities, and attempt to find indicators that contain different or additional information compared to those documented in the literature and that can be implemented as investment signals in real world.
The SVI model is a parametric model with five parameters, each of which represents different changes in the shape of the implied volatility curve, such as curvature, horizontal position, and opening direction of the curve. The SVI model has been shown to impressively fit the implied volatility curve of index options, and is chosen for its parameters’ abilities to capture different styles of changes in the implied volatility curve and provide a broader analysis of the implied volatility curve, compared to the Zhang–Xiang model, which has only three parameters. Thus, in Chapter 2, I apply the Stochastic Volatility Inspired (SVI) model, which considers all individual stock option data, to examine whether it demonstrates the predictive ability for future one-month stock returns and contain additional information in the option market.
The information content of the option-to-stock trading volume ratio (O/S) or put call trading volume ratio (P/C), widely discussed in the literature, is another important channel for reflecting private information. However, most previous research focuses merely on trading volumes in options and stocks or examines the impact based on specific degrees of moneyness but not the entire range of moneyness. Thus, in Chapter 3, I manage the moneyness option-to-stock trading volume ratio (MOS) measures, which incorporate information regarding the entire option moneyness into the O/S ratio, to examine their interaction effect with the option trading volume and implied volatilities on the stock market.
Finally, the excellent fitting performance of the SVI model demonstrates that it can be applied not only for index options but also for individual stock options. Interaction effects are found between the MOS measures and average implied volatilities, showing the amplifying effect on future one-week stock return. Moreover, I also suggest that the SVI parameter ρ_put and the combined variable PutMOSxIV_Put can be treated as trading signals in the real world, as they can generate substantial profits—especially the latter.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:12:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:12:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
1. Introduction 1
2. Stochastic Volatility Inspired Model and Stock Returns 7
2.1 Introduction 7
2.2 Data and Methodology 14
2.2.1 Stochastic Volatility Inspired (SVI) Model 15
2.2.2 Calibration for SVI Model 19
2.2.3 Implied-Volatility Information Measures (IVIMs) 21
2.2.4 Analysis Method and Control Variables 24
2.3 Empirical Results 26
2.3.1 Summary Statistics 26
2.3.2 Portfolio Returns Analysis 29
2.3.3 Fama–Macbeth Regressions Results 34
2.3.4 Trading Strategy Performance 44
2.4 Conclusion 46
3. Activity of Informed Traders and Stock Returns 48
3.1 Introduction 48
3.2 Data and Methodology 59
3.2.1 Moneyness O/S (MOS) Measure 60
3.2.2 Implied-Volatility Information Measures (IVIMs) 60
3.2.3 Analysis Method and Control Variables 63
3.3 Empirical Results 65
3.3.1 Summary Statistics 65
3.3.2 Portfolio Returns Analysis 68
3.3.3 Fama–Macbeth Regressions Results 75
3.3.4 Trading Strategy Performance 84
3.4 Conclusion 86
4. Conclusion 89
References 92
-
dc.language.isoen-
dc.subject隱含波動度曲線zh_TW
dc.subjectO/S比率zh_TW
dc.subjectMOS指標zh_TW
dc.subjectP/C比率zh_TW
dc.subjectSVI模型zh_TW
dc.subjectMOS measureen
dc.subjectSVI modelen
dc.subjectImplied volatility curveen
dc.subjectO/S ratioen
dc.subjectP/C ratioen
dc.title選擇權市場資訊與股票報酬的兩篇論文zh_TW
dc.titleTwo Essays on Options Market Information and Stock Returnsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee繆維中;蔡維哲;高銘淞;蕭秋銘zh_TW
dc.contributor.oralexamcommitteeWei-Chung Miao;Wei-Che Tsai;Ming-Sung Kao;Chiu-Ming Hsiaoen
dc.subject.keywordSVI模型,隱含波動度曲線,O/S比率,P/C比率,MOS指標,zh_TW
dc.subject.keywordSVI model,Implied volatility curve,O/S ratio,P/C ratio,MOS measure,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202404698-
dc.rights.note未授權-
dc.date.accepted2024-12-17-
dc.contributor.author-college管理學院-
dc.contributor.author-dept國際企業學系-
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved