請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96289完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝志豪 | zh_TW |
| dc.contributor.advisor | Chih-Hao Hsieh | en |
| dc.contributor.author | 蕭仲凱 | zh_TW |
| dc.contributor.author | Jhong-Kai Siao | en |
| dc.date.accessioned | 2024-12-24T16:11:12Z | - |
| dc.date.available | 2024-12-25 | - |
| dc.date.copyright | 2024-12-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-05-07 | - |
| dc.identifier.citation | Acabado, C. S., Cheng, Y. H., Chang, M. H., & Chen, C. C. (2021). Vertical nitrate flux induced by Kelvin–Helmholtz billows over a seamount in the Kuroshio. Frontiers in Marine Science, 8, 680729.
Callaghan, A. H., Ward, B., & Vialard, J. (2014). Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 94, 107-123. Cermeno, P., Estévez‐Blanco, P., Maranón, E., & Fernóndez, E. (2005). Maximum photosynthetic efficiency of size‐fractionated phytoplankton assessed by 14C uptake and fast repetition rate fluorometry. Limnology and Oceanography, 50(5), 1438-1446. Cermeño, P., Marañón, E., Harbour, D., & Harris, R. P. (2006). Invariant scaling of phytoplankton abundance and cell size in contrasting marine environments. Ecology letters, 9(11), 1210-1215. Chen, C. C., Jan, S., Kuo, T. H., & Li, S. Y. (2017). Nutrient flux and transport by the Kuroshio east of Taiwan. Journal of Marine Systems, 167, 43-54. Chen, C. C., Lu, C. Y., Jan, S., Hsieh, C. H., & Chung, C. C. (2022). Effects of the coastal uplift on the Kuroshio ecosystem, Eastern Taiwan, the western boundary current of the North Pacific Ocean. Frontiers in Marine Science, 9, 796187. Chen, C. T. A., Huang, T. H., Wu, C. H., Yang, H., & Guo, X. (2021). Variability of the nutrient stream near Kuroshio's origin. Scientific Reports, 11(1), 5080. Du, C., Liu, Z., Kao, S. J., & Dai, M. (2017). Diapycnal fluxes of nutrients in an oligotrophic oceanic regime: The South China Sea. Geophysical Research Letters, 44(22), 11-510. García-Comas, C., Chang, C. Y., Ye, L., Sastri, A. R., Lee, Y. C., Gong, G. C., & Hsieh, C. H. (2014). Mesozooplankton size structure in response to environmental conditions in the East China Sea: how much does size spectra theory fit empirical data of a dynamic coastal area?. Progress in Oceanography, 121, 141-157. Gong, G. C., Wen, Y. H., Wang, B. W., & Liu, G. J. (2003). Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7), 1219-1236. Hales, B., Moum, J. N., Covert, P., & Perlin, A. (2005). Irreversible nitrate fluxes due to turbulent mixing in a coastal upwelling system. Journal of Geophysical Research: Oceans, 110(C10). Irwin, A. J., Finkel, Z. V., Schofield, O. M., & Falkowski, P. G. (2006). Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. Journal of plankton research, 28(5), 459-471. Kaneko, H., Yasuda, I., Komatsu, K., & Itoh, S. (2013). Observations of vertical turbulent nitrate flux across the Kuroshio. Geophysical Research Letters, 40(12), 3123-3127. Kobari, T., Honma, T., Hasegawa, D., Yoshie, N., Tsutsumi, E., Matsuno, T., ... & Nakamura, H. (2020). Phytoplankton growth and consumption by microzooplankton stimulated by turbulent nitrate flux suggest rapid trophic transfer in the oligotrophic Kuroshio. Biogeosciences, 17(9), 2441 2452. Leibovich, S. (1983). The form and dynamics of Langmuir circulations. Annual Review of Fluid Mechanics, 15(1), 391-427. Li, R., Xu, J., Cen, X., Zhong, W., Liao, J., Shi, Z., & Zhou, S. (2021). Nitrate fluxes induced by turbulent mixing in dipole eddies in an oligotrophic ocean. Limnology and Oceanography, 66(7), 2842-2854. Lin, F. S., Ho, P. C., Sastri, A. R., Chen, C. C., Gong, G. C., Jan, S., & Hsieh, C. H. (2020). Resource availability affects temporal variation of phytoplankton size structure in the Kuroshio east of Taiwan. Limnology and Oceanography, 65(2), 236-246. Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2004). Body size, energy consumption and allometric scaling: a new dimension in the diversity stability debate. Ecological Complexity, 1(2), 139-175. Maraóón, E., Cermeóo, P., Rodríguez, J., Zubkov, M. V., & Harris, R. P. (2007). Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnology and oceanography, 52(5), 2190-2198. Marañón, E., Cermeno, P., Latasa, M., & Tadonléké, R. D. (2012). Temperature, resources, and phytoplankton size structure in the ocean. Limnology and Oceanography, 57(5), 1266-1278. Marquet, P. A., Quiñones, R. A., Abades, S., Labra, F., Tognelli, M., Arim, M., & Rivadeneira, M. (2005). Scaling and power-laws in ecological systems. Journal of Experimental Biology, 208(9), 1749-1769. Mei, Z. P., Finkel, Z. V., & Irwin, A. J. (2009). Light and nutrient availability affect the size-scaling of growth in phytoplankton. Journal of theoretical biology, 259(3), 582-588. Nagai, T., Hasegawa, D., Tanaka, T., Nakamura, H., Tsutsumi, E., Inoue, R., & Yamashiro, T. (2017). First evidence of coherent bands of strong turbulent layers associated with high-wavenumber internal-wave shear in the upstream Kuroshio. Scientific Reports, 7(1), 14555. Nagai, T., Hasegawa, D., Tsutsumi, E., Nakamura, H., Nishina, A., Senjyu, T., ... & Tandon, A. (2021). The Kuroshio flowing over seamounts and associated submesoscale flows drive 100-km-wide 100-1000-fold enhancement of turbulence. Communications Earth & Environment, 2(1), 170. Nagai, T., Rosales Quintana, G. M., Duran Gomez, G. S., Hashihama, F., & Komatsu, K. (2021). Elevated turbulent and double-diffusive nutrient flux in the Kuroshio over the Izu Ridge and in the Kuroshio Extension. Journal of oceanography, 77, 55-74. Noyon, M., Rasoloarijao, Z., Huggett, J., Ternon, J. F., & Roberts, M. (2020). Comparison of mesozooplankton communities at three shallow seamounts in the South West Indian Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 176, 104759. Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of physical oceanography, 10(1), 83 89. Platt, T., & Denman, K. (1977). Organisation in the pelagic ecosystem. Helgoländer Wissenschaftliche Meeresuntersuchungen, 30, 575-581. Portalier, S. M., Cherif, M., Zhang, L., Fussmann, G. F., & Loreau, M. (2016). Size-related effects of physical factors on phytoplankton communities. Ecological Modelling, 323, 41-50. Quinones, R. A., Platt, T., & Rodríguez, J. (2003). Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Progress in Oceanography, 57(3-4), 405-427. Smyth, W. D., Hebert, D., & Moum, J. N. (1996). Local ocean response to a multiphase westerly wind burst, 1, Dynamic response (Paper 96JC02005). Journal of Geophysical Research-Part C-Oceans-Printed Edition, 101(10), 22495-22512. Sommer, U., Charalampous, E., Genitsaris, S., & Moustaka-Gouni, M. (2017). Benefits, costs and taxonomic distribution of marine phytoplankton body size. Journal of Plankton Research, 39(3), 494-508. Spingys, C. P., Williams, R. G., Tuerena, R. E., Naveira Garabato, A., Vic, C., Forryan, A., & Sharples J. (2021). Observations of nutrient supply by mesoscale eddy stirring and small‐scale turbulence in the oligotrophic North Atlantic. Global biogeochemical cycles, 35(12), e2021GB007200. Sprules, W. G., & Munawar, M. (1986). Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Canadian Journal of Fisheries and Aquatic Sciences, 43(9), 1789-1794. Sullivan, P. P., & McWilliams, J. C. (2010). Dynamics of winds and currents coupled to surface waves. Annual Review of Fluid Mechanics, 42, 19-42. Tanaka, T., Hasegawa, D., Yasuda, I., Tsuji, H., Fujio, S., Goto, Y., & Nishioka, J. (2019). Enhanced vertical turbulent nitrate flux in the Kuroshio across the Izu Ridge. Journal of oceanography, 75, 195-203. Thorpe, S. A. (1977). Turbulence and mixing in a Scottish loch. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 286(1334), 125-181. Thorpe, S. A. (2004). Langmuir circulation. Annu. Rev. Fluid Mech., 36, 55-79. Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. (2005). Body size in ecological networks. Trends in ecology & evolution, 20(7), 402-409. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96289 | - |
| dc.description.abstract | 位於臺灣東部的黑潮海域中,由於海水表層水中營養鹽枯竭,浮游植物的生長必須依賴於水流擾動將深層營養鹽運送到表層。因此,垂直營養鹽通量對於貧營養鹽海域的浮游植物生態至關重要。本研究探討紊流介導的垂直營養鹽通量對浮游植物個體大小尺寸結構的影響,並將重點放在不受海底地形干擾和沿岸影響的測站。在2018年至2021年間的四個航次中,在臺灣東部的8個測站取得了32筆樣本。進行了浮游植物和營養鹽(溶解性無機氮(DIN)、磷酸鹽(PO_4))濃度的現場採樣,並在不同深度(5、10、30、50、100、150米)進行了測量。基於營養鹽測量的垂直剖面和CTD收集的水文資料,計算了每個深度的垂直營養鹽通量。為了定量浮游植物的尺寸結構,利用 FlowCAM^® 對3至200微米範圍內的浮游植物的影像進行分析,建立了歸一化生物尺寸頻譜(NBSS),並使用線性回歸分析浮游植物歸一化尺寸頻譜的斜率(NBSS-Slope)和擬合度(NBSS-r^2)如何受垂直紊流擴散率和垂直營養鹽通量的影響。
對於浮游植物NBSS斜率,在冷季和暖季以及不分季節的分析中都沒有顯著的相關性,這表明NBSS斜率對營養鹽通量變化的反應不明顯,模型的解釋能力極低。對於NBSS的擬合度,在冷季時,PO_4通量解釋的比DIN通量更多,而在暖季沒有顯著關係。在不分季節的分析中,營養鹽通量解釋的比垂直紊流擴散率更多且呈現顯著關係。這說明NBSS擬合度的高低,對垂直營養鹽通量的變化更具反應性,相較於垂直紊流擴散度來說還高。總結來說,垂直營養鹽通量與浮游植物NBSS之間的關係很弱。這可能歸因於營養鹽對浮游植物生長影響的時間滯後效應,很難通過同時採集的營養鹽通量和浮游植物樣本得到準確解釋。因此,在未來研究上,若利用詳細的時間序列數據進行研究可能會提供更精確的分析結果。 | zh_TW |
| dc.description.abstract | In the Kuroshio east of Taiwan, the nutrients in the surface layer of seawater are generally depleted, and the growth of phytoplankton relies on turbulence to transport subsurface nutrients to the surface layer. That is, vertical nutrient flux is crucial for phytoplankton production and ecology in this oligotrophic ocean. In this research, I investigate the impact of turbulence induced vertical nutrient flux on phytoplankton size structure, focusing on the selected stations in the open ocean void of topographic interference and coastal influences. Thirty-two samples from 8 stations in the Kuroshio east of Taiwan were sampled during four cruises between 2018 and 2021: May 2018, Nov 2018, Jul 2019, and Oct 2021. Field sampling for phytoplankton and nutrient (DIN, PO_4) concentrations at various depths (5, 10, 30, 50, 100, 150 meters) were conducted. Based on the vertical profile of nutrient measurements and hydrological data collected by the CTD, I calculated vertical nutrient flux (F = −k_ρ ∂C/∂z) at each depth, in which k_ρ is vertical turbulent diffusivity. To determine the size structure of phytoplankton community, I constructed the Normalized Biovolume Size Spectrum (NBSS) from the images analyses of nano- and micro- phytoplankton within the size range of 3 to 200 μm obtained by FlowCAM^®. The NBSS was calculated as logarithmically transformed B_s⁄∆s=aS^b. Using linear regression, I examined how the slope and r^2 of phytoplankton NBSS was affected by vertical turbulent diffusivity and vertical nutrient flux. For NBSS-slopes, I found no significant correlation in both the warm and cold season, as well as in the analysis pooling both seasons, indicating that the response of the NBSS-slope to nutrient flux variations was not evident and the model had low explanatory power. For the goodness of NBSS fit, PO_4 flux explained more variations compared to DIN flux in the cold season, while no significant relationship was found in the warm season. In the analysis pooling both seasons, nutrient flux explained more variations compared to vertical turbulent diffusivity. This indicates that the goodness of NBSS fit was slightly more responsive to changes in vertical nutrient flux compared to vertical turbulent diffusivity. In summary, the relationships between vertical nutrient flux and phytoplankton NBSS are weak. This might be attributed to the time-lag effect of nutrients on phytoplankton growth that is difficult to be revealed by the simultaneous sampling of nutrient flux and phytoplankton. Future studies utilizing detailed time-series data may offer a more precise analysis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:11:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-24T16:11:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 ii
致謝 iii 中文摘要 iv Abstract vi 1. Introduction 1 2. Materials and Methods 4 2.1 Phytoplankton and nutrient sampling 4 2.2 FlowCAM^® analysis 5 2.3 Phytoplankton analysis 5 2.4 Estimation of vertical nutrient flux 6 2.5 Estimation of in situ nutrient concentrations 7 2.6 Optimizing seasonal regression models and GLM (pooling seasons) 8 3. Results 9 3.1 Variation of NBSS-slope & NBSS-r^2 9 3.2 Nutrient concentration in relation to fluorescence 9 3.3 Nutrient flux in relation to fluorescence 9 3.4 Nutrient concentration in relation to phytoplankton NBSS-slope 10 3.5 Nutrient flux in relation to phytoplankton NBSS-slope 10 3.6 Nutrient concentration in relation to phytoplankton NBSS-r^2 10 3.7 Nutrient flux in relation to phytoplankton NBSS-r^2 10 4. Discussion 12 4.1 Nutrient flux in relation to fluorescence 12 4.2 Nutrient flux in relation to phytoplankton NBSS-slope 13 4.3 Nutrient flux in relation to phytoplankton NBSS-r^2 15 4.4 Influences of turbulent diffusivity on phytoplankton size spectrum 16 5. Conclusion 17 6. References 18 | - |
| dc.language.iso | en | - |
| dc.subject | 體型大小結構 | zh_TW |
| dc.subject | 黑潮 | zh_TW |
| dc.subject | 貧營養海域 | zh_TW |
| dc.subject | 垂直營養鹽通量 | zh_TW |
| dc.subject | 垂直紊流擴散率 | zh_TW |
| dc.subject | 歸一化生物尺寸頻譜 | zh_TW |
| dc.subject | 浮游植物 | zh_TW |
| dc.subject | oligotrophic oceans | en |
| dc.subject | size structure | en |
| dc.subject | phytoplankton | en |
| dc.subject | normalized biovolume size spectrum | en |
| dc.subject | vertical turbulent diffusivity | en |
| dc.subject | vertical nutrient flux | en |
| dc.subject | Kuroshio | en |
| dc.title | 紊流介導垂直營養鹽通量對臺灣東部黑潮區域植物性浮游生物體型大小結構的影響 | zh_TW |
| dc.title | Impacts of turbulence induced vertical nutrient flux on phytoplankton size structure in the Kuroshio east of Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張明輝;何珮綺;張俊偉 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Huei Chang;Pei-Chi Ho;Chun-Wei Chang | en |
| dc.subject.keyword | 浮游植物,體型大小結構,歸一化生物尺寸頻譜,垂直紊流擴散率,垂直營養鹽通量,貧營養海域,黑潮, | zh_TW |
| dc.subject.keyword | phytoplankton,size structure,normalized biovolume size spectrum,vertical turbulent diffusivity,vertical nutrient flux,oligotrophic oceans,Kuroshio, | en |
| dc.relation.page | 36 | - |
| dc.identifier.doi | 10.6342/NTU202400941 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-05-08 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
