請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96287完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭龍磻 | zh_TW |
| dc.contributor.advisor | Lung-Pan Cheng | en |
| dc.contributor.author | 林瑋儒 | zh_TW |
| dc.contributor.author | Wei-Ju Lin | en |
| dc.date.accessioned | 2024-12-24T16:10:37Z | - |
| dc.date.available | 2024-12-25 | - |
| dc.date.copyright | 2024-12-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-04 | - |
| dc.identifier.citation | [1] M. Alalawi, N. Pacik-Nelson, J. Zhu, B. Greenspan, A. Doan, B. M. Wong, B. Owen-Block, S. K. Mickens, W. J. Schoeman, M. Wessely, A. Danielescu, and S. Mueller. MechSense: A Design and Fabrication Pipeline for Integrating Rotary Encoders into 3D Printed Mechanisms. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23, pages 1–14, New York, NY, USA, Apr. 2023. Association for Computing Machinery.
[2] L. Albaugh, J. McCann, S. E. Hudson, and L. Yao. Engineering Multifunctional Spacer Fabrics Through Machine Knitting. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, pages 1–12, New York, NY, USA, May 2021. Association for Computing Machinery. [3] J. W. Baur, A. C. Abbott, P. R. Barnett, G. P. Tandon, J. Furmanski, N. A. Stranberg, and T. B. Alvarado. Mechanical properties of additively printed, UV cured, continuous fiber unidirectional composites for multifunctional applications. Journal of Composite Materials, 57(4):865–882, Feb. 2023. [4] K. M. M. Billah, J. L. Coronel, L. Chavez, Y. Lin, and D. Espalin. Additive manufacturing of multimaterial and multifunctional structures via ultrasonic embedding of continuous carbon fiber. Composites Part C: Open Access, 5:100149, July 2021. [5] K. M. M. Billah, J. L. Coronel, M. C. Halbig, R. B. Wicker, and D. Espalin. Electrical and Thermal Characterization of 3D Printed Thermoplastic Parts With Embedded Wires for High Current-Carrying Applications. IEEE Access, 7:18799–18810, 2019. [6] X. A. Chen, S. Coros, and S. E. Hudson. Medley: A Library of Embeddables to Explore Rich Material Properties for 3D Printed Objects, page 1–12. Association for Computing Machinery, New York, NY, USA, 2018. [7] X. A. Chen, S. Coros, J. Mankoff, and S. E. Hudson. Encore: 3D Printed Augmentation of Everyday Objects with Printed-Over, Affixed and Interlocked Attachments. In UIST ’15: Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology, pages 73–82, Charlotte, NC, USA, 2015. ACM Press. [8] A. Del Valle, M. Toka, A. Aponte, and J. Jacobs. PunchPrint: Creating Composite Fiber-Filament Craft Artifacts by Integrating Punch Needle Embroidery and 3D Printing. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23, pages 1–15, New York, NY, USA, Apr. 2023. Association for Computing Machinery. [9] H. Deshpande, H. Takahashi, and J. Kim. Escapeloom: Fabricating new affordances for hand weaving. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery. [10] L. Devendorf and K. Ryokai. Being the Machine: Reconfiguring Agency and Control in Hybrid Fabrication. In CHI ’15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 2477–2486, Seoul, Korea, 2015. ACM Press. [11] S. Endow, M. A. N. Rakib, A. Srivastava, S. Rastegarpouyani, and C. Torres. Embr: A Creative Framework for Hand Embroidered Liquid Crystal Textile Displays. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, pages 1–14, New York, NY, USA, Apr. 2022. Association for Computing Machinery. [12] S. Endow, M. A. N. Rakib, A. Srivastava, S. Rastegarpouyani, and C. Torres. Embr: A creative framework for hand embroidered liquid crystal textile displays. In Proceedings of the 2022 CHI Conference on Human Factorsin Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery. [13] D. Espalin, D. W. Muse, E. MacDonald, and R. B. Wicker. 3D Printing multifunctionality: Structures with electronics. The International Journal of Advanced Manufacturing Technology, 72(5):963–978, May 2014. [14] A. Everitt, A. K. Eady, and A. Girouard. Enabling Multi-Material 3D Printing for Designing and Rapid Prototyping of Deformable and Interactive Wearables. In Proceedings of the 20th International Conference on Mobile and Ubiquitous Multimedia, MUM ’21, pages 1–11, New York, NY, USA, Feb. 2022. Association for Computing Machinery. [15] J. Forman, M. D. Dogan, H. Forsythe, and H. Ishii. DefeXtiles: 3D Printing Quasi-Woven Fabric via Under-Extrusion. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, UIST ’20, pages 1222–1233, New York, NY, USA, Oct. 2020. Association for Computing Machinery. [16] J. Forman, O. Kilic Afsar, S. Nicita, R. H.-J. Lin, L. Yang, M. Hofmann, A. Kothakonda, Z. Gordon, C. Honnet, K. Dorsey, N. Gershenfeld, and H. Ishii. FibeRobo: Fabricating 4D Fiber Interfaces by Continuous Drawing of Temperature Tunable Liquid Crystal Elastomers. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, pages 1– 17, San Francisco CA USA, Oct. 2023. ACM. [17] J. Forman, T. Tabb, Y. Do, M.-H. Yeh, A. Galvin, and L. Yao. ModiFiber: Two-Way Morphing Soft Thread Actuators for Tangible Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 1–11, New York, NY, USA, May 2019. Association for Computing Machinery. [18] M. Friske, S. Wu, and L. Devendorf. AdaCAD: Crafting Software For Smart Textiles Design. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 1–13, New York, NY, USA, May 2019. Association for Computing Machinery. [19] W. Gao, Y. Zhang, D. C. Nazzetta, K. Ramani, and R. J. Cipra. Revomaker: Enabling multi-directional and functionally-embedded 3d printing using a rotational cuboidal platform. In Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology, UIST ’15, page 437–446, New York, NY, USA, 2015. Association for Computing Machinery. [20] J. Gong, Y. Wu, L. Yan, T. Seyed, and X.-D. Yang. Tessutivo: Contextual Interactions on Interactive Fabrics with Inductive Sensing. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST ’19, pages 29–41, New York, NY, USA, 2019. ACM. [21] M. Goudswaard, A. Abraham, B. Goveia da Rocha, K. Andersen, and R.-H. Liang. Fabriclick: Interweaving pushbuttons into fabrics using 3d printing and digital embroidery. In Proceedings of the 2020 ACM Designing Interactive Systems Conference, DIS ’20, page 379–393, New York, NY, USA, 2020. Association for Computing Machinery. [22] B. Goveia da Rocha, J. M. L. van der Kolk, and K. Andersen. Exquisite Fabrication: Exploring Turn-taking between Designers and Digital Fabrication Machines. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, pages 1–9, New York, NY, USA, May 2021. Association for Computing Machinery. [23] D. Groeger, E. Chong Loo, and J. Steimle. HotFlex: Post-print Customization of 3D Prints Using Embedded State Change. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, pages 420–432, New York, NY, USA, May 2016. Association for Computing Machinery. [24] D. Groeger, M. Feick, A. Withana, and J. Steimle. Tactlets: Adding Tactile Feedback to 3D Objects Using Custom Printed Controls. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST ’19, pages 923–936, New York, NY, USA, Oct. 2019. Association for Computing Machinery. [25] R. Guseinov, E. Miguel, and B. Bickel. Curveups: Shaping objects from flat plates with tension-actuated curvature. ACM Trans. Graph., 36(4), July 2017. [26] R. Hashemi Sanatgar, C. Campagne, and V. Nierstrasz. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Applied Surface Science, 403:551– 563, 2017. [27] F. Hong, C. Myant, and D. E. Boyle. Thermoformed Circuit Boards: Fabrication of highly conductive freeform 3D printed circuit boards with heat bending. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, pages 1–10, New York, NY, USA, May 2021. Association for Computing Machinery. [28] J. Hook, T. Nappey, S. Hodges, P. Wright, and P. Olivier. Making 3d printed objects interactive using wireless accelerometers. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’14, page 1435–1440. Association for Computing Machinery, New York, NY, USA, 2014. [29] S. E. Hudson. Printing Teddy Bears: A Technique for 3D Printing of Soft Interactive Objects. In CHI’14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 459–468, New York, New York, USA, 2014. ACM Press. [30] Y. Ibrahim, G. W. Melenka, and R. Kempers. Additive manufacturing of Continuous Wire Polymer Composites. Manufacturing Letters, 16:49–51, Apr. 2018. [31] A. Ion, R. Kovacs, O. S. Schneider, P. Lopes, and P. Baudisch. Metamaterial Textures. In CHI ’18: Proceedings of the 36th Annual ACM Conference on Human Factors in Computing Systems, pages 336–12, New York, New York, USA, Apr. 2018. ACM. [32] V. Iyer, J. Chan, I. Culhane, J. Mankoff, and S. Gollakota. Wireless Analytics for 3D Printed Objects. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 141–152, Berlin, Germany, 2018. ACM. [33] M. N. Jahangir, K. M. M. Billah, Y. Lin, D. A. Roberson, R. B. Wicker, and D. Espalin. Reinforcement of material extrusion 3D printed polycarbonate using continuous carbon fiber. Additive Manufacturing, 28:354–364, Aug. 2019. [34] S. Jain, T. Stalin, E. Kanhere, and P. V. y Alvarado. Flexible Fiber Interconnects for Soft Mechatronics. IEEE Robotics and Automation Letters, 5(3):3907–3914, July 2020. [35] S. Je, Y. Abileva, A. Bianchi, and J.-C. Bazin. A computational approach for spider web-inspired fabrication of string art. Computer Animation and Virtual Worlds, 30(3-4):e1904, 2019. [36] H.-L. C. Kao, M. Mohan, C. Schmandt, J. A. Paradiso, and K. Vega. ChromoSkin: Towards Interactive Cosmetics Using Thermochromic Pigments. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’16, pages 3703–3706, New York, NY, USA, May 2016. Association for Computing Machinery. [37] O. Kilic Afsar, A. Shtarbanov, H. Mor, K. Nakagaki, J. Forman, K. Modrei, S. H. Jeong, K. Hjort, K. Höök, and H. Ishii. OmniFiber: Integrated Fluidic Fiber Actuators for Weaving Movement based Interactions into the ‘Fabric of Everyday Life’. In The 34th Annual ACM Symposium on User Interface Software and Technology, UIST ’21, pages 1010–1026, New York, NY, USA, Oct. 2021. Association for Computing Machinery. [38] C. Kim, D. Espalin, A. Cuaron, M. A. Perez, M. Lee, E. MacDonald, and R. B. Wicker. Cooperative Tool Path Planning for Wire Embedding on Additively Manufactured Curved Surfaces Using Robot Kinematics. Journal of Mechanisms and Robotics, 7(2):021003, May 2015. [39] H. Kim, A. Everitt, C. Tejada, M. Zhong, and D. Ashbrook. MorpheesPlug: A Toolkit for Prototyping Shape-Changing Interfaces. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–13, Online Virtual Conference, 2021. Association for Computing Machinery. [40] D. Ko, J. B. Yim, Y. Lee, J. Pyun, and W. Lee. Designing Metamaterial Cells to Enrich Thermoforming 3D Printed Object for Post-Print Modification. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, pages 1–12, New York, NY, USA, May 2021. Association for Computing Machinery. [41] H. C. Koch, D. Schmelzeisen, and T. Gries. 4D Textiles Made by Additive Manufacturing on Pre-Stressed Textiles—An Overview. Actuators, 10(2):31, Feb. 2021. [42] G. Laput, X. A. Chen, and C. Harrison. 3D Printed Hair: Fused Deposition Modeling of Soft Strands, Fibers, and Bristles. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST ’15, pages 593–597, New York, NY, USA, Nov. 2015. Association for Computing Machinery. latzky. Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 71(7):1439–1459, Oct. 2009. [44] D. Ledo, F. Anderson, R. Schmidt, L. Oehlberg, S. Greenberg, and T. Grossman. Pineal: Bringing Passive Objects to Life with Embedded Mobile Devices. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 2583–2593, New York, NY, USA, May 2017. Association for Computing Machinery. [45] J. Leong, J. Martinez, F. Perteneder, K. Nakagaki, and H. Ishii. WraPr: SpoolBased Fabrication for Object Creation and Modification. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’20, pages 581–588, Sydney NSW, Australia, Feb. 2020. Association for Computing Machinery. [46] Y. Li, J. Montes, B. Thomaszewski, and S. Coros. Programmable Digital Weaves. IEEE Robotics and Automation Letters, 7(2):2891–2896, Apr. 2022. [47] Z. Li, L. Wang, G. Ma, J. Sanjayan, and D. Feng. Strength and ductility enhancement of 3D printing structure reinforced by embedding continuous micro-cables. Construction and Building Materials, 264:120196, Dec. 2020. [48] M. Livesu, S. Ellero, J. Martínez, S. Lefebvre, and M. Attene. From 3D models to 3D prints: An overview of the processing pipeline. Computer Graphics Forum, 36(2):537–564, May 2017. [49] Y. Luo, K. Wu, T. Palacios, and W. Matusik. KnitUI: Fabricating Interactive and Sensing Textiles with Machine Knitting. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, pages 1–12, New York, NY, USA, May 2021. Association for Computing Machinery. [50] Y. Luo, K. Wu, A. Spielberg, M. Foshey, D. Rus, T. Palacios, and W. Matusik. Digital Fabrication of Pneumatic Actuators with Integrated Sensing by Machine Knitting. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, pages 1–13, New York, NY, USA, Apr. 2022. Association for Computing Machinery. [51] E. MacDonald and R. Wicker. Multiprocess 3D printing for increasing component functionality. Science, 353(6307):10, Sept. 2016. [52] K. Marky, A. Weiß, A. Matviienko, F. Brandherm, S. Wolf, M. Schmitz, F. Krell, F. Müller, M. Mühlhäuser, and T. Kosch. Let's frets! assisting guitar students during practice via capacitive sensing. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery. [53] J. McCann, L. Albaugh, V. Narayanan, A. Grow, W. Matusik, J. Mankoff, and J. Hodgins. A compiler for 3D machine knitting. ACM Transactions on Graphics, 35(4):49:1–49:11, July 2016. [54] V. Mechtcherine, R. Buswell, H. Kloft, F. P. Bos, N. Hack, R. Wolfs, J. Sanjayan, B. Nematollahi, E. Ivaniuk, and T. Neef. Integrating reinforcement in digital fabrication with concrete: A review and classification framework. Cement and Concrete Composites, 119:103964, May 2021. [55] A. Muehlbradt, G. Whiting, S. Kane, and L. Devendorf. Knitting Access: Exploring Stateful Textiles with People with Disabilities. In Proceedings of the 2022 ACM Designing Interactive Systems Conference, DIS ’22, pages 1058–1070, New York, NY, USA, June 2022. Association for Computing Machinery. [56] S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guimbretière, and P. Baudisch. WirePrint: 3D printed previews for fast prototyping. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST ’14, pages 273–280, New York, NY, USA, Oct. 2014. Association for Computing Machinery. [57] S. Muthukumarana, M. A. Messerschmidt, D. J. Matthies, J. Steimle, P. M. Scholl, and S. Nanayakkara. ClothTiles: A Prototyping Platform to Fabricate Customized Actuators on Clothing using 3D Printing and Shape-Memory Alloys. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, pages 1–12, New York, NY, USA, May 2021. Association for Computing Machinery. [58] S. Nabil, J. Kučera, N. Karastathi, D. S. Kirk, and P. Wright. Seamless Seams: Crafting Techniques for Embedding Fabrics with Interactive Actuation. In Proceedings of the 2019 on Designing Interactive Systems Conference, DIS ’19, pages 987–999, New York, NY, USA, June 2019. Association for Computing Machinery. [59] K. Nakagaki, S. Follmer, A. Dementyev, J. A. Paradiso, and H. Ishii. Designing Line-Based Shape-Changing Interfaces. IEEE Pervasive Computing, 16(4):36–46, Oct. 2017. [60] nervous. Nervous System | Kinematics. https://n-e-r-v-o-u-s.com/shop/line.php? code=15, kinematics. [61] A. Olwal, J. Moeller, G. Priest-Dorman, T. Starner, and B. Carroll. I/O Braid: Scalable Touch-Sensitive Lighted Cords Using Spiraling, Repeating Sensing Textiles and Fiber Optics. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 485–497, New York, NY, USA, Oct. 2018. Association for Computing Machinery. [62] J. Pardomuan, N. Takahashi, and H. Koike. ASTRE: Prototyping Technique for Modular Soft Robots With Variable Stiffness. IEEE Access, 10:80495–80504, 2022. [63] Y.-W. Park, J. Park, and T.-J. Nam. The Trial of Bendi in a Coffeehouse: Use of a Shape-Changing Device for a Tactile-Visual Phone Conversation. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 2181–2190, New York, NY, USA, Apr. 2015. Association for Computing Machinery. [64] H. Peng, F. Guimbretière, J. McCann, and S. Hudson. A 3D Printer for Interactive Electromagnetic Devices. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, pages 553–562, New York, NY, USA, Oct. 2016. Association for Computing Machinery. [65] H. Peng, J. Mankoff, S. E. Hudson, and J. McCann. A Layered Fabric 3D Printer for Soft Interactive Objects. In CHI ’15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 1789–1798, New York, New York, USA, 2015. ACM Press [66] A. R. Plamootil Mathai, T. Stalin, and P. Valvivia y Alvarado. Flexible Fiber Inductive Coils for Soft Robots and Wearable Devices. IEEE Robotics and Automation Letters, 7(2):5711–5718, Apr. 2022. [67] A. Pointner, T. Preindl, S. Mlakar, R. Aigner, M. A. Haberfellner, and M. Haller. Knitted Force Sensors. In Adjunct Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST ’22 Adjunct, pages 1–3, New York, NY, USA, Oct. 2022. Association for Computing Machinery. [68] Protopasta. Protopasta electrically conductive composite pla, 2023. https://www. proto-pasta.com/products/conductive-pla. [69] P. Punpongsanon, X. Wen, D. S. Kim, and S. Mueller. ColorMod: Recoloring 3D Printed Objects using Photochromic Inks. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 1–12, New York, NY, USA, Apr. 2018. Association for Computing Machinery. [70] J. Qiao, Y. Li, and L. Li. Ultrasound-assisted 3D printing of continuous fiberreinforced thermoplastic (FRTP) composites. Additive Manufacturing, 30:100926, Dec. 2019. [71] C. Richter, S. Schmülling, A. Ehrmann, and K. Finsterbusch. FDM printing of 3D forms with embedded fibrous materials. In Design, Manufacturing and Mechatronics, pages 961–969, Wuhan, China, Aug. 2015. WORLD SCIENTIFIC. [72] M. L. Rivera, J. Forman, S. E. Hudson, and L. Yao. Hydrogel-Textile Composites: Actuators for Shape-Changing Interfaces. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, CHI EA ’20, pages 1– 9, New York, NY, USA, Apr. 2020. Association for Computing Machinery. [73] M. L. Rivera, M. Moukperian, D. Ashbrook, J. Mankoff, and S. E. Hudson. Stretching the Bounds of 3D Printing with Embedded Textiles, page 497–508. Association for Computing Machinery, New York, NY, USA, 2017. [74] M. L. Rivera, M. Moukperian, D. Ashbrook, J. Mankoff, and S. E. Hudson. Stretching the Bounds of 3D Printing with Embedded Textiles. In CHI ’17: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 497– 508, New York, NY, USA, Jan. 2017. Association for Computing Machinery. [75] V. Savage, C. Chang, and B. Hartmann. Sauron: Embedded single-camera sensing of printed physical user interfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, page 447–456, New York, NY, USA, 2013. Association for Computing Machinery. [76] V. Savage, R. Schmidt, T. Grossman, G. Fitzmaurice, and B. Hartmann. A series of tubes: Adding interactivity to 3D prints using internal pipes. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST ’14, pages 3–12, New York, NY, USA, Oct. 2014. Association for Computing Machinery. [77] V. Savage, C. Tejada, M. Zhong, R. Ramakers, D. Ashbrook, and H. Kim. AirLogic: Embedding Pneumatic Computation and I/O in 3D Models to Fabricate ElectronicsFree Interactive Objects. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST ’22, pages 1–12, New York, NY, USA, Oct. 2022. Association for Computing Machinery. [78] M. Schmitz, M. Khalilbeigi, M. Balwierz, R. Lissermann, M. Mühlhäuser, and J. Steimle. Capricate: A Fabrication Pipeline to Design and 3D Print Capacitive Touch Sensors for Interactive Objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST ’15, pages 253–258, New York, NY, USA, Nov. 2015. Association for Computing Machinery. [79] M. Schmitz, J. Riemann, F. Müller, S. Kreis, and M. Mühlhäuser. Oh, Snap! A Fabrication Pipeline to Magnetically Connect Conventional and 3D-Printed Electronics. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, pages 1–11, Online Virtual Conference, 2021. Association for Computing Machinery. [80] T. Stalin, S. Jain, N. K. Thanigaivel, J. E. M. Teoh, P. M. A. Raj, and P. V. Y. Alvarado. Automated Fiber Embedding for Soft Mechatronic Components. IEEE Robotics and Automation Letters, 6(2):4071–4078, Apr. 2021. [81] T. Stalin, N. Thanigaivel, V. Joseph, and P. V. Alvarado. Automated Fiber Embedding for Tailoring Mechanical and Functional Properties of Soft Robot Components. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), pages 762–767, Seoul, South Korea, Apr. 2019. IEEE. [82] L. J. Stiltner, A. M. Elliott, and C. B. Williams. A method for creating actuated joints via fiber embedding in a polyjet 3D printing process. In 22nd Annual International Solid Freeform Fabrication Symposium, pages 583–592, Austin, Texas, USA, 2011. University of Texas at Austin. [83] J. Sun, B. Tighe, Y. Liu, and J. Zhao. Twisted-and-coiled actuators with free strokes enable soft robots with programmable motions. Soft robotics, 8(2):213–225, 2021. [84] L. Sun, J. Li, Y. Chen, Y. Yang, Z. Yu, D. Luo, J. Gu, L. Yao, Y. Tao, and G. Wang. FlexTruss: A Computational Threading Method for Multi-material, Multi-form and Multi-use Prototyping. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–12, New York, NY, USA, May 2021. Association for Computing Machinery. [85] S. Swaminathan, J. Fagert, M. Rivera, A. Cao, G. Laput, H. Y. Noh, and S. E. Hudson. OptiStructures: Fabrication of Room-Scale Interactive Structures with Embedded Fiber Bragg Grating Optical Sensors and Displays. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2):50:1– 50:21, June 2020. [86] H. Takahashi and J. Kim. 3D Printed Fabric: Techniques for Design and 3D Weaving Programmable Textiles. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST ’19, pages 43–51, New York, NY, USA, Oct. 2019. Association for Computing Machinery. [87] C. Tejada, O. Fujimoto, Z. Li, and D. Ashbrook. Blowhole: BlowingActivated Tags for Interactive 3D-Printed Models. In Proceedings of the 44th Graphics Interface Conference, GI ’18, pages 131–137, Waterloo, CAN, June 2018. Canadian Human-Computer Communications Society. [88] C. E. Tejada, R. Ramakers, S. Boring, and D. Ashbrook. AirTouch: 3D-printed Touch-Sensitive Objects Using Pneumatic Sensing. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, pages 1–10, New York, NY, USA, Apr. 2020. Association for Computing Machinery. [89] C. Torres, J. O’Leary, M. Nicholas, and E. Paulos. Illumination Aesthetics: Light as a Creative Material within Computational Design. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 6111– 6122, New York, NY, USA, May 2017. Association for Computing Machinery. [90] N. Umetani, A. Panotopoulou, R. Schmidt, and E. Whiting. Printone: Interactive resonance simulation for free-form print-wind instrument design. ACM Transactions on Graphics, 35(6):184:1–184:14, Dec. 2016 [91] N. Umetani and R. Schmidt. SurfCuit: Surface-Mounted Circuits on 3D Prints. IEEE Computer Graphics and Applications, 37(3):52–60, May 2017. [92] M. Vázquez, E. Brockmeyer, R. Desai, C. Harrison, and S. E. Hudson. 3D Printing Pneumatic Device Controls with Variable Activation Force Capabilities. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages 1295–1304, New York, NY, USA, Apr. 2015. Association for Computing Machinery. [93] J. F. Veneman, R. Ekkelenkamp, R. Kruidhof, F. C. van der Helm, and H. van der Kooij. A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots. The International Journal of Robotics Research, 25(3):261–281, Mar. 2006. [94] A. Vogl, P. Parzer, T. Babic, J. Leong, A. Olwal, and M. Haller. StretchEBand: Enabling Fabric-based Interactions through Rapid Fabrication of Textile Stretch Sensors. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 2617–2627, New York, NY, USA, May 2017. Association for Computing Machinery. [95] L. W. Wall, A. Jacobson, D. Vogel, and O. Schneider. Scrappy: Using Scrap Material as Infill to Make Fabrication More Sustainable. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, pages 1–12, New York, NY, USA, May 2021. Association for Computing Machinery. [96] G. Wang, F. Qin, H. Liu, Y. Tao, Y. Zhang, Y. J. Zhang, and L. Yao. MorphingCircuit: An Integrated Design, Simulation, and Fabrication Workflow for Selfmorphing Electronics. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(4):157:1–157:26, Dec. 2020. [97] H. Wang, C. Wang, W. Chen, X. Liang, and Y. Liu. Three-dimensional dynamics for cable-driven soft manipulator. IEEE/ASME Transactions on Mechatronics, 22(1):18–28, 2017. [98] K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev. Printed optics: 3d printing of embedded optical elements for interactive devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST ’12, page 589–598, New York, NY, USA, 2012. Association for Computing Machinery. [99] K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev. Printed optics: 3D printing of embedded optical elements for interactive devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST ’12, pages 589–598, New York, NY, USA, Oct. 2012. Association for Computing Machinery. [100] R. Wimmer. Flyeye: grasp-sensitive surfaces using optical fiber. In Proceedings of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’10, page 245–248, New York, NY, USA, 2010. Association for Computing Machinery. [101] R. Wimmer and P. Baudisch. Modular and deformable touch-sensitive surfaces based on time domain reflectometry. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST ’11, pages 517– 526, New York, NY, USA, Oct. 2011. Association for Computing Machinery. [102] Z. Yan, H. Lee, L. He, and H. Peng. 3d printing magnetophoretic displays. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST ’23, New York, NY, USA, 2023. Association for Computing Machinery. [103] C. Yang, X. Tian, T. Liu, Y. Cao, and D. Li. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance. Rapid Prototyping Journal, 23(1):209–215, Jan. 2017. [104] H. Yang, T. Johnson, K. Zhong, D. Patel, G. Olson, C. Majidi, M. Islam, and L. Yao. ReCompFig: Designing Dynamically Reconfigurable Kinematic Devices Using Compliant Mechanisms and Tensioning Cables. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, pages 1–14, New York, NY, USA, Apr. 2022. Association for Computing Machinery. [105] F. Ziervogel, L. Boxberger, A. Bucht, and W.-G. Drossel. Expansion of the Fused Filament Fabrication (FFF) Process Through Wire Embedding, Automated Cutting, and Electrical Contacting. IEEE Access, 9:43036–43049, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96287 | - |
| dc.description.abstract | 我們提出了Rhapso,一種在打印過程中將多種連續纖維材料嵌入3D物體的3D列印系統。這種方法使得低成本熱塑性3D列印可以直接整合拉伸強度、光傳輸、導電性和熱產生等特性。這些功能性物體可以具有複雜的驅動、自我組裝和感測能力,且幾乎不需要手動干預。為了實現這一點,我們改造了一台低成本的熱熔融層積(FFF)3D列印機,在列印床上方添加掛有纖維線卷機構的齒輪環,並由一步進馬達控制齒輪環。除了硬體之外,我們還提供了分析軟體,用於精確的纖維放置,生成用於控制列印印機操作的 G代碼。為了展示我們系統的多功能性,我們展示了幾個應用,展示了其廣泛的設計潛力。此外,我們提供了全面的文檔和開放設計,使他人能夠複製我們的系統並探索其可能性。 | zh_TW |
| dc.description.abstract | We introduce Rhapso, a 3D printing system designed to embed a diverse range of continuous fiber materials within 3D objects during the printing process. This approach enables integrating properties like tensile strength, light transmission, electrical conductivity, and heat generation directly into low-cost thermoplastic 3D prints. These functional objects can have intricate actuation, self-assembly, and sensing capabilities with little to no manual intervention. To achieve this, we modify a low-cost Fused Filament Fabrication (FFF) 3D printer, adding a stepper motor-controlled fiber spool mechanism on a gear ring above the print bed. In addition to hardware, we provide parsing software for precise fiber placement, which generates G-code for printer operation. To illustrate the versatility of our system, we present applications that showcase its extensive design potential. Additionally, we offer comprehensive documentation and open designs, empowering others to replicate our system and explore its possibilities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:10:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-24T16:10:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi Chapter 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2 Related Works 7 2.1 Fiber-like materials in 3D printing . . . . . . . . . . . . . . . . . . . 7 2.1.1 Automated solutions for embedding fibers . . . . . . . . . . . . . . 8 2.2 Fabrics and 3D printing . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Other uses of fabrics and fibers in HCI . . . . . . . . . . . . . . . . 10 2.3 Multimaterial processes and non-printable materials . . . . . . . . . 10 Chapter 3 Design Space of Printing with Fiber 11 3.1 Pre-Print: fiber properties . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 Aesthetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Functional properties . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 During-print: fiber/print assembly actions . . . . . . . . . . . . . . . 15 3.2.1 Fixation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.4 Fiber arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Post-print: signal & force transmission and interaction . . . . . . . . 17 3.3.1 Originate signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.2 Transmit signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.3 Blend signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.4 Consume/transform signals . . . . . . . . . . . . . . . . . . . . . . 19 3.3.5 Dissipate/reflect signals . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 4 Rhapso 21 4.1 Abstract system architecture . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 Requirements and representations . . . . . . . . . . . . . . . . . . 22 4.1.2 Basic routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.3 Pre-routing setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.4 Complete routing procedure . . . . . . . . . . . . . . . . . . . . . 28 Chapter 5 Implementations 29 5.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.2 Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.3 Fiber-routing implementation . . . . . . . . . . . . . . . . . . . . . 34 5.2.4 Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3 Manual printing implementation . . . . . . . . . . . . . . . . . . . . 35 5.4 Implementation discussion . . . . . . . . . . . . . . . . . . . . . . . 36 5.4.1 Fabrication-related material considerations . . . . . . . . . . . . . . 36 5.4.2 Fiber-fixing techniques . . . . . . . . . . . . . . . . . . . . . . . . 37 Chapter 6 Applications 43 6.1 Articulated puppets . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 Abacus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3 Pull-to-assemble box . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.4 Self-assembling boxes . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.5 Tensioned Pop-Up Mechanism . . . . . . . . . . . . . . . . . . . . . 46 6.6 Robot finger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.7 Grabber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.8 Fiber “hair” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.9 Extended hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.10 Design patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.10.1 Slide-guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.10.2 Mechanical motion transfer . . . . . . . . . . . . . . . . . . . . . . 50 6.10.3 Hinges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.10.4 Elastic “springs” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.10.5 Extending objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Chapter 7 Conclusion 53 References 55 | - |
| dc.language.iso | en | - |
| dc.subject | 多種材料 | zh_TW |
| dc.subject | G 代碼 | zh_TW |
| dc.subject | 纖維 | zh_TW |
| dc.subject | 積層製造 | zh_TW |
| dc.subject | 製造 | zh_TW |
| dc.subject | G-code | en |
| dc.subject | fabrication | en |
| dc.subject | additive manufacturing | en |
| dc.subject | fiber | en |
| dc.subject | multi-material | en |
| dc.title | Rhapso: 自動將纖維材料嵌入 3D 打印以增強互動性 | zh_TW |
| dc.title | Rhapso: Automatically Embedding Fiber Materials into 3D Prints | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | Daniel Ashbrook;陳炳宇;詹力韋 | zh_TW |
| dc.contributor.oralexamcommittee | Daniel Ashbrook;Bing-Yu Chen;Li-Wei Chan | en |
| dc.subject.keyword | 製造,積層製造,纖維,多種材料,G 代碼, | zh_TW |
| dc.subject.keyword | fabrication,additive manufacturing,fiber,multi-material,G-code, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202404664 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-12-05 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 24.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
