Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96285
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林永松zh_TW
dc.contributor.advisorYeong-Sung Linen
dc.contributor.author戴光彥zh_TW
dc.contributor.authorKuang-Yen Taien
dc.date.accessioned2024-12-24T16:09:53Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-17-
dc.identifier.citationReferences
Aburukba, R. O., AliKarrar, M., Landolsi, T., & El-Fakih, K. (2020). Scheduling Internet of Things requests to minimize latency in hybrid Fog–Cloud computing. Future Generation Computer Systems, 111, 539-551.
Aceto, G., Persico, V., & Pescapé, A. (2019). A survey on information and communication technologies for industry 4.0: State-of-the-art, taxonomies, perspectives, and challenges. IEEE Communications Surveys & Tutorials, 21(4), 3467-3501.
Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128.
Amutha, J., Sharma, S., & Nagar, J. (2020). WSN strategies based on sensors, deployment, sensing models, coverage and energy efficiency: Review, approaches and open issues. Wireless Personal Communications, 111, 1089-1115.
Arafat, M. Y., Poudel, S., & Moh, S. (2020). Medium access control protocols for flying ad hoc networks: A review. IEEE Sensors Journal, 21(4), 4097-4121.
Asadi, S., Nilashi, M., Samad, S., Rupani, P. F., Kamyab, H., & Abdullah, R. (2021). A proposed adoption model for green IT in manufacturing industries. Journal of Cleaner Production, 297, 126629.
Atieh, A. T. (2021). The next generation cloud technologies: a review on distributed cloud, fog and edge computing and their opportunities and challenges. ResearchBerg Review of Science and Technology, 1(1), 1-15.
Biran, O., Feder, O., Moatti, Y., Kiourtis, A., Kyriazis, D., Manias, G., & Baroni, S. (2022). PolicyCLOUD: A prototype of a cloud serverless ecosystem for policy analytics. Data & Policy, 4, e44.
Bose, R., Roy, S., Mondal, H., Chowdhury, D. R., & Chakraborty, S. (2021). Energy-efficient approach to lower the carbon emissions of data centers. Computing, 103(8), 1703-1721.
Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., & Shen, H. (2018). A manifesto for future generation cloud computing: Research directions for the next decade. ACM computing surveys (CSUR), 51(5), 1-38.
Carrano, R. C., Passos, D., Magalhaes, L. C., & Albuquerque, C. V. (2013). Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 181-194.
Chan, L., Gomez Chavez, K., Rudolph, H., & Hourani, A. (2020). Hierarchical routing protocols for wireless sensor network: A compressive survey. Wireless Networks, 26, 3291-3314.
Chou, D. C., Chen, H. G., & Lin, B. (2023). Green IT and corporate social responsibility for sustainability. Journal of Computer Information Systems, 63(2), 322-333.
Deng, W., Xu, J., Zhao, H., & Song, Y. (2020). A novel gate resource allocation method using improved PSO-based QEA. IEEE Transactions on Intelligent Transportation Systems, 23(3), 1737-1745.
Fang, J., & Ma, A. (2020). Iot application modules placement and dynamic task processing in edge-cloud computing. IEEE Internet of Things Journal, 8(16), 12771-12781.
Fang, J., Wang, M., & Wei, Z. (2020). A memory scheduling strategy for eliminating memory access interference in heterogeneous system. The Journal of Supercomputing, 76, 3129-3154.
Feng, Z., Xu, W., & Cao, J. (2023). Distributed Nash equilibrium computation under round-robin scheduling protocol. IEEE Transactions on Automatic Control, 69(1), 339-346.
Fisher, M. L. (1981). The Lagrangian relaxation method for solving integer programming problems. Management science, 27(1), 1-18.
Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G. S., & Friday, A. (2021). The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations. Patterns, 2(9).
Gai, K., Qin, X., & Zhu, L. (2020). An energy-aware high performance task allocation strategy in heterogeneous fog computing environments. IEEE Transactions on Computers, 70(4), 626-639.
Gulagi, A., Bogdanov, D., & Breyer, C. (2018). The role of storage technologies in energy transition pathways towards achieving a fully sustainable energy system for India. Journal of Energy Storage, 17, 525-539.
Hao, Y., Guo, Y., & Wu, H. (2022). The role of information and communication technology on green total factor energy efficiency: does environmental regulation work?. Business Strategy and the Environment, 31(1), 403-424.
Helali, L., & Omri, M. N. (2021). A survey of data center consolidation in cloud computing systems. Computer Science Review, 39, 100366.
Houssein, E. H., Gad, A. G., Wazery, Y. M., & Suganthan, P. N. (2021). Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends. Swarm and Evolutionary Computation, 62, 100841.
Hsieh, S. Y., Liu, C. S., Buyya, R., & Zomaya, A. Y. (2020). Utilization-prediction-aware virtual machine consolidation approach for energy-efficient cloud data centers. Journal of Parallel and Distributed Computing, 139, 99-109.
Hu, B., Cao, Z., & Zhou, M. (2021). Energy-minimized scheduling of real-time parallel workflows on heterogeneous distributed computing systems. IEEE Transactions on Services Computing, 15(5), 2766-2779.
Huang, X., Yu, R., Ye, D., Shu, L., & Xie, S. (2021). Efficient workload allocation and user-centric utility maximization for task scheduling in collaborative vehicular edge computing. IEEE Transactions on Vehicular Technology, 70(4), 3773-3787.
Huang, Y., Xu, H., Gao, H., Ma, X., & Hussain, W. (2021). SSUR: an approach to optimizing virtual machine allocation strategy based on user requirements for cloud data center. IEEE Transactions on Green Communications and Networking, 5(2), 670-681.
Hussain, M., Wei, L. F., Lakhan, A., Wali, S., Ali, S., & Hussain, A. (2021). Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing. Sustainable Computing: Informatics and Systems, 30, 100517.
Jari, A., & Avokh, A. (2021). PSO-based sink placement and load-balanced anycast routing in multi-sink WSNs considering compressive sensing theory. Engineering Applications of Artificial Intelligence, 100, 104164.
Katal, A., Dahiya, S., & Choudhury, T. (2023). Energy efficiency in cloud computing data centers: a survey on software technologies. Cluster Computing, 26(3), 1845-1875.
Kavitha, V. R., & Moorthi, M. (2019). A quality of service load balanced connected dominating set–stochastic diffusion search (CDS–SDS) network backbone for MANET. Computer Networks, 151, 124-131.
Khaleghzadeh, H., Fahad, M., Shahid, A., Manumachu, R. R., & Lastovetsky, A. (2020). Bi-objective optimization of data-parallel applications on heterogeneous HPC platforms for performance and energy through workload distribution. IEEE Transactions on Parallel and Distributed Systems, 32(3), 543-560.
Khalil, S. M., Bahsi, H., & Korõtko, T. (2023). Threat modeling of industrial control systems: A systematic literature review. Computers & Security, 103543.
Khan, A. A., & Zakarya, M. (2021). Energy, performance and cost efficient cloud datacentres: A survey. Computer Science Review, 40, 100390.
Khasteh, S. H., & Rokhsati, H. (2023). On transmission range of sensors in sparse wireless sensor networks. Results in Engineering, 18, 101108.
Kim, S., & Choi, Y. R. (2020). Constraint-aware VM placement in heterogeneous computing clusters. Cluster Computing, 23, 71-85.
Knop, D., Pilipczuk, M., & Wrochna, M. (2020). Tight complexity lower bounds for integer linear programming with few constraints. ACM Transactions on Computation Theory (TOCT), 12(3), 1-19.
Koronen, C., Åhman, M., & Nilsson, L. J. (2020). Data centres in future European energy systems—energy efficiency, integration and policy. Energy Efficiency, 13(1), 129-144.
Krzywaniak, A., Czarnul, P., & Proficz, J. (2022). DEPO: A dynamic energy‐performance optimizer tool for automatic power capping for energy efficient high‐performance computing. Software: Practice and Experience, 52(12), 2598-2634.
Kulkarni, R. V., Förster, A., & Venayagamoorthy, G. K. (2010). Computational intelligence in wireless sensor networks: A survey. IEEE communications surveys & tutorials, 13(1), 68-96.
Li, X., Huang, L., Wang, H., Bi, S., & Zhang, Y. J. A. (2022). An integrated optimization-learning framework for online combinatorial computation offloading in MEC networks. IEEE Wireless Communications, 29(1), 170-177.
Liando, J. C., Gamage, A., Tengourtius, A. W., & Li, M. (2019). Known and unknown facts of LoRa: Experiences from a large-scale measurement study. ACM Transactions on Sensor Networks (TOSN), 15(2), 1-35.
Liang, X., Liang, J., & Zhang, W. (2020). Constructing d-robust connected dominating sets in wireless sensor networks with unstable transmission ranges. IEEE Transactions on Communications, 69(1), 398-415.
Lin, W., Shi, F., Wu, W., Li, K., Wu, G., & Mohammed, A. A. (2020). A taxonomy and survey of power models and power modeling for cloud servers. ACM Computing Surveys (CSUR), 53(5), 1-41.
Liu, C., Liu, K., Guo, S., Xie, R., Lee, V. C., & Son, S. H. (2020). Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles. IEEE Internet of Things Journal, 7(9), 7999-8011.
Liu, X., Zhao, M., Liu, A., & Wong, K. K. L. (2020). Adjusting forwarder nodes and duty cycle using packet aggregation routing for body sensor networks. Information Fusion, 53, 183-195.
Liu, Z., Dai, P., Xing, H., Yu, Z., & Zhang, W. (2021). A distributed algorithm for task offloading in vehicular networks with hybrid fog/cloud computing. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(7), 4388-4401.
Mansouri, N., Ghafari, R., & Zade, B. M. H. (2020). Cloud computing simulators: A comprehensive review. Simulation Modelling Practice and Theory, 104, 102144.
Mao, W., Zhao, Z., Chang, Z., Min, G., & Gao, W. (2021). Energy-efficient industrial internet of things: Overview and open issues. IEEE transactions on industrial informatics, 17(11), 7225-7237.
Masdari, M., & Zangakani, M. (2020). Green cloud computing using proactive virtual machine placement: challenges and issues. Journal of Grid Computing, 18(4), 727-759.
Matraeva, L., Solodukha, P., Erokhin, S., & Babenko, M. (2019). Improvement of Russian energy efficiency strategy within the framework of" green economy" concept (based on the analysis of experience of foreign countries). Energy Policy, 125, 478-486.
Mohiuddin, I., & Almogren, A. (2019). Workload aware VM consolidation method in edge/cloud computing for IoT applications. Journal of Parallel and Distributed Computing, 123, 204-214.
Montori, F., Bedogni, L., Fiandrino, C., Capponi, A., & Bononi, L. (2020). Performance evaluation of hybrid crowdsensing systems with stateful CrowdSenSim 2.0 simulator. Computer Communications, 161, 225-237.
Muralidhar, R., Borovica-Gajic, R., & Buyya, R. (2022). Energy efficient computing systems: Architectures, abstractions and modeling to techniques and standards. ACM Computing Surveys (CSUR), 54(11s), 1-37.
Naouri, A., Wu, H., Nouri, N. A., Dhelim, S., & Ning, H. (2021). A novel framework for mobile-edge computing by optimizing task offloading. IEEE Internet of Things Journal, 8(16), 13065-13076.
Pandey, D., & Kushwaha, V. (2020). An exploratory study of congestion control techniques in wireless sensor networks. Computer Communications, 157, 257-283.
Pang, P., Chen, Q., Zeng, D., & Guo, M. (2020). Adaptive preference-aware co-location for improving resource utilization of power constrained datacenters. IEEE Transactions on Parallel and Distributed Systems, 32(2), 441-456.
Park, E., Lee, M. S., Kim, H. S., & Bahk, S. (2020). AdaptaBLE: Adaptive control of data rate, transmission power, and connection interval in bluetooth low energy. Computer Networks, 181, 107520.
Park, J., Han, K., & Lee, B. (2023). Green cloud? An empirical analysis of cloud computing and energy efficiency. Management Science, 69(3), 1639-1664.
Petrariu, A. I., Lavric, A., Coca, E., & Popa, V. (2020). Hybrid power management system for LoRa communication using renewable energy. IEEE Internet of Things Journal, 8(10), 8423-8436.
Qiu, L., Hu, D., & Wang, Y. (2020). How do firms achieve sustainability through green innovation under external pressures of environmental regulation and market turbulence?. Business Strategy and the Environment, 29(6), 2695-2714.
Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., & Wu, D. O. (2020). Edge computing in industrial internet of things: Architecture, advances and challenges. IEEE Communications Surveys & Tutorials, 22(4), 2462-2488.
Ren, J., Zhang, D., He, S., Zhang, Y., & Li, T. (2019). A survey on end-edge-cloud orchestrated network computing paradigms: Transparent computing, mobile edge computing, fog computing, and cloudlet. ACM Computing Surveys (CSUR), 52(6), 1-36.
Rosenfeld, V., Breß, S., & Markl, V. (2022). Query processing on heterogeneous CPU/GPU systems. ACM Computing Surveys (CSUR), 55(1), 1-38.
Saeedi, P., & Hosseini Shirvani, M. (2021). An improved thermodynamic simulated annealing-based approach for resource-skewness-aware and power-efficient virtual machine consolidation in cloud datacenters. Soft Computing, 25, 5233-5260.
Saidi, K., & Bardou, D. (2023). Task scheduling and VM placement to resource allocation in Cloud computing: challenges and opportunities. Cluster Computing, 26(5), 3069-3087.
Serena, L., Marzolla, M., D’Angelo, G., & Ferretti, S. (2023). A review of multilevel modeling and simulation for human mobility and behavior. Simulation Modelling Practice and Theory, 102780.
Shayan, M. E., Najafi, G., Ghobadian, B., Gorjian, S., Mamat, R., & Ghazali, M. F. (2022). Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm. Renewable Energy, 201, 179-189.
Shen, B., Wang, Z., Wang, D., & Liu, H. (2019). Distributed state-saturated recursive filtering over sensor networks under round-robin protocol. IEEE Transactions on Cybernetics, 50(8), 3605-3615.
Silva, C. A., Vilaça, R., Pereira, A., & Bessa, R. J. (2024). A review on the decarbonization of high-performance computing centers. Renewable and Sustainable Energy Reviews, 189, 114019.
Singh, H., Tyagi, S., Kumar, P., Gill, S. S., & Buyya, R. (2021). Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions. Simulation Modelling Practice and Theory, 111, 102353.
Singh, P., Dutta, M., & Aggarwal, N. (2017). A review of task scheduling based on meta-heuristics approach in cloud computing. Knowledge and Information Systems, 52, 1-51.
Tran-Dang, H., & Kim, D. S. (2021). FRATO: Fog resource based adaptive task offloading for delay-minimizing IoT service provisioning. IEEE Transactions on Parallel and Distributed Systems, 32(10), 2491-2508.
Varasteh, A., & Goudarzi, M. (2015). Server consolidation techniques in virtualized data centers: A survey. IEEE Systems Journal, 11(2), 772-783.
Walia, G. K., Kumar, M., & Gill, S. S. (2023). AI-empowered fog/edge resource management for IoT applications: A comprehensive review, research challenges and future perspectives. IEEE Communications Surveys & Tutorials, 26(1), 619 - 669.
Wang, L., Wang, S., Gong, Y., & Peng, L. (2023). Optimizing a multi-echelon location-inventory problem with joint replenishment: A Lipschitz ϵ-optimal approach using Lagrangian relaxation. Computers & Operations Research, 151, 106128.
Wang, Q., & Chu, X. (2020). GPGPU performance estimation with core and memory frequency scaling. IEEE Transactions on Parallel and Distributed Systems, 31(12), 2865-2881.
Worlu, C., Jamal, A. A., & Mahiddin, N. A. (2019). Wireless sensor networks, internet of things, and their challenges. International Journal of Innovative Technology and Exploring Engineering, 8(12S2), 556-566.
Xu, M., & Buyya, R. (2020). Managing renewable energy and carbon footprint in multi-cloud computing environments. Journal of Parallel and Distributed Computing, 135, 191-202.
Yuan, H., Liu, H., Bi, J., & Zhou, M. (2020). Revenue and energy cost-optimized biobjective task scheduling for green cloud data centers. IEEE Transactions on Automation Science and Engineering, 18(2), 817-830.
Zakarya, M., & Gillam, L. (2017). Energy efficient computing, clusters, grids and clouds: A taxonomy and survey. Sustainable Computing: Informatics and Systems, 14, 13-33.
Zakarya, M., Gillam, L., Khan, A. A., & Rahman, I. U. (2021). Perficientcloudsim: a tool to simulate large-scale computation in heterogeneous clouds. The Journal of Supercomputing, 77, 3959-4013.
Zhang, G., Wu, Q., Cui, M., & Zhang, R. (2019). Securing UAV communications via joint trajectory and power control. IEEE Transactions on Wireless Communications, 18(2), 1376-1389.
Zhong, Z., & Buyya, R. (2020). A cost-efficient container orchestration strategy in kubernetes-based cloud computing infrastructures with heterogeneous resources. ACM Transactions on Internet Technology (TOIT), 20(2), 1-24.
Zhu, H., Zhang, D., Goh, H. H., Wang, S., Ahmad, T., Mao, D., ... & Wu, T. (2023). Future data center energy-conservation and emission-reduction technologies in the context of smart and low-carbon city construction. Sustainable Cities and Society, 89, 104322.
Zhu, J., Li, X., Ruiz, R., Li, W., Huang, H., & Zomaya, A. Y. (2020). Scheduling periodical multi-stage jobs with fuzziness to elastic cloud resources. IEEE Transactions on Parallel and Distributed Systems, 31(12), 2819-2833.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96285-
dc.description.abstract現代資訊科技的進步造就了數位化和人工智慧的蓬勃發展,同時也推動著產業的轉型。然而,這種快速進步伴隨著對於雲端運算的需求,其大量的能源消耗也將對環境的影響日漸加劇,如何有效率的運用運算資源儼然成為一個重要的議題。本研究以綠色資訊科技(Green IT)中的運算能源消耗議題的角度切入,討論在各種雲端運算的情境下,如何透過最佳化演算法的分配有效運用其運算資源來達到節省能耗及加快工作效率之目的。
本研究將分為三個主軸討論,由具備異質運算資源的雲端運算中心出發,考量不同運算資源所適合執行之任務類型,將其在所需應用執行的時限內最佳化分配來降低能源消耗。在單一運算中心內部分配後,本研究將所討論之情境延伸至不同運算單元間的分散式雲端運算,考量在邊緣運算的環境下之運算、傳輸與等待問題,從運算端點到核心運算中心間如何透過運算任務之分配有效降低其能源消耗。此外,在環境監測和物聯網等無線感測網路應用時,由於使用電池供電的感測器和無線通訊存在其獨特的能耗挑戰,本研究也探索在樹狀感測的網路架構中最佳化能源消耗之議題。研究使用拉格朗日鬆弛法來開發在雲端運算各種情境中之最佳化演算法。期望在提高運算效率的同時減低科技發展對於環境的影響及營運成本,也提供未來資訊技術研究可以參考之觀點。
zh_TW
dc.description.abstractThe contemporary landscape witnesses an unprecedented fusion of digitalization and artificial intelligence, driving transformative advancements across industries. However, this rapid progress is accompanied by a critical concern—the escalating environmental impact resulting from the intricate interplay between information technology and emergent industries. In response, Green Information Technology (Green IT) emerges as a strategic paradigm, prioritizing objectives such as mitigating environmental degradation and conserving energy resources. This research delves into efforts and strategies aimed at optimizing energy consumption, particularly within cloud computing environments. Motivated by significant energy consumption challenges associated with cloud computing and data transmission, exacerbated by growing data volumes and mobile device proliferation, this research focuses on enhancing energy efficiency and optimizing resource allocation within heterogeneous cloud computing centers. Aims to reduce total power consumption in distributed systems and improve energy management strategies for wireless sensor networks.
Cloud computing, integral to modern infrastructure, offers scalability and cost-effectiveness but also drives substantial energy consumption within data centers. Additionally, data transmission requires significant energy, especially across geographical locations. Wireless sensor networks, crucial for applications like environmental monitoring and IoT, pose unique energy challenges due to battery-powered sensors and wireless communication. This research seeks to unravel energy optimization intricacies based on Lagrangian Relaxation within cloud computing across diverse scenarios not only mitigates environmental impact but also enhances operational efficiency and reduces costs in the digital age. The proposed optimization algorithms aim to address multifaceted challenges in heterogeneous landscapes, offering insights crucial for contemporary and future IT paradigms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:09:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:09:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation 2
1.3 Research Purpose and Developments 3
1.4 Remainder of the Dissertation 6
Chapter 2 Literature Review 8
2.1 Optimizing Energy Efficiency and Resource Distribution in Diverse Cloud Computing Centers 8
2.2 Reducing Total Power Usage while Meeting Task Completion Deadlines in Distributed Cloud Computing Platforms 15
2.3 Energy Management Strategy Addressing Quality of Services and Fairness Needs in Wireless Sensor Networks with Tree Structure 19
Chapter 3 An Optimization-Based Integrated Algorithm for Energy Efficiency and Resource Management in Heterogeneous Cloud Computing Centers 23
3.1 Introduction and Overviews about Energy Efficiency and Resource Allocation in Heterogeneous Cloud Computing Centers 23
3.2 Energy Efficiency and Resource Allocation Mathematical Model 25
3.3 Approach 31
3.4 Computational Experiments 43
3.5 Results 48
Chapter 4 Minimization of Overall Power Consumption Subject to Task Turnaround Time Constraints in Distributed Cloud Computing Platforms 50
4.1 Introduction and Overviews About Energy Consumption of Task Turnaround Time Constraints in Distributed Cloud Computing Platforms 50
4.2 Mathematical Model of Task Turnaround Time Constraints in Distributed Cloud Computing Platforms 53
4.3 Approach 57
4.4 Computational Experiments 65
4.5 Results 69
Chapter 5 Energy Management Strategy Incorporating QoS and Fairness in Tree-Structured Wireless Sensor Networks 70
5.1 Introduction and Overviews about Energy Management Mechanism in Tree Structure Wireless Sensor Networks 70
5.2 Energy Management Mathematical Model of QoS and Fairness Requirements in Tree Structure Wireless Sensor Networks 73
5.3 Approach 81
5.4 Computational Experiments 84
5.5 Results 90
Chapter 6 Conclusions 92
6.1 Research Conclusions 92
6.1.1 Research Contribution 92
6.2 Research Limitations 98
6.3 Future Works 99
References 101
-
dc.language.isoen-
dc.subject能源消耗zh_TW
dc.subject綠色資訊科技zh_TW
dc.subject拉格朗日鬆弛法zh_TW
dc.subject最佳化zh_TW
dc.subject異質雲端運算zh_TW
dc.subjectOptimizationen
dc.subjectHeterogeneous Cloud Computingen
dc.subjectGreen ITen
dc.subjectEnergy Consumptionen
dc.subjectLagrangian Relaxationen
dc.title運用最佳化技術於異質雲端運算環境能源效率與資源整合管理研究zh_TW
dc.titleOptimization-based Algorithm for Management of Energy Efficiency and Resource Allocation in Heterogeneous Cloud Computing Environmenten
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee李家岩;呂俊賢;陳澤雄;鐘玉芳zh_TW
dc.contributor.oralexamcommitteeChia-Yen Lee;Jiun-Shien Lu;Tzer-Shyong Chen;Yu-Fang Chungen
dc.subject.keyword綠色資訊科技,能源消耗,異質雲端運算,最佳化,拉格朗日鬆弛法,zh_TW
dc.subject.keywordGreen IT,Energy Consumption,Heterogeneous Cloud Computing,Optimization,Lagrangian Relaxation,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202404743-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-17-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2029-12-17-
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-113-1.pdf
  Until 2029-12-17
3.12 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved