請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96283完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林建中 | zh_TW |
| dc.contributor.advisor | Chien-Chung Lin | en |
| dc.contributor.author | 鄭仲辰 | zh_TW |
| dc.contributor.author | Chung-Chen Cheng | en |
| dc.date.accessioned | 2024-12-24T16:09:05Z | - |
| dc.date.available | 2024-12-25 | - |
| dc.date.copyright | 2024-12-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-12 | - |
| dc.identifier.citation | 1. Etrillard, J., et al., New self-aligned processes for III–V electronic high speed devices. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1999. 17(4): p. 1510-1515.
2. Einstein, A., 7. Zur Quantentheorie der Strahlung, in Quantentheorie. 1969, De Gruyter: Berlin, Boston. p. 209-228. 3. Schawlow, A.L. and C.H. Townes, Infrared and Optical Masers. Physical Review, 1958. 112(6): p. 1940-1949. 4. Kogelnik, H. and C.V. Shank, Stimulated Emission in a Periodic Structure. Applied Physics Letters, 1971. 18(4): p. 152-154. 5. Suematsu, Y., Long-wavelength optical fiber communication. Proceedings of the IEEE, 1983. 71(6): p. 692-721. 6. Arnon, S. and N.S. Kopeika, Laser satellite communication network-vibration effect and possible solutions. Proceedings of the IEEE, 1997. 85(10): p. 1646-1661. 7. Collis, R.T.H., Lidar. Applied Optics, 1970. 9(8): p. 1782-1788. 8. Peng, Q., et al., Lasers in medicine. Reports on Progress in Physics, 2008. 71(5): p. 056701. 9. Kaushal, H. and G. Kaddoum, Applications of Lasers for Tactical Military Operations. IEEE Access, 2017. 5: p. 20736-20753. 10. The Laser Turns 60! - SPIE. Available from: https://spie.org/news/spie-celebrates-the-60th-anniversary-of-the-laser#_=_. 11. Koyama, F., Recent Advances of VCSEL Photonics. Journal of Lightwave Technology, 2006. 24(12): p. 4502-4513. 12. Sorokin, P.P., J.D. Axe, and J.R. Lankard, Spectral Characteristics of GaAs Lasers Operating in ``Fabry-Perot'' Modes. Journal of Applied Physics, 1963. 34(9): p. 2553-2556. 13. Tadokoro, T., et al., 43 Gb/s 1.3 $\\mu$m DFB Laser for 40 km Transmission. Journal of Lightwave Technology, 2012. 30(15): p. 2520-2524. 14. Grimaldi, M.G., P. Baeri, and E. Rimini, Laser-induced free-carrier absorption in Si single crystal. Applied Physics A, 1984. 33(2): p. 107-111. 15. Siegman, A.E., Unstable optical resonators for laser applications. Proceedings of the IEEE, 1965. 53(3): p. 277-287. 16. Kogelnik, H. and C.V. Shank, Coupled-Wave Theory of Distributed Feedback Lasers. Journal of Applied Physics, 1972. 43(5): p. 2327-2335. 17. Weber, J.P. and S. Wang, A new method for the calculation of the emission spectrum of DFB and DBR lasers. IEEE Journal of Quantum Electronics, 1991. 27(10): p. 2256-2266. 18. Grillot, F., On the Effects of an Antireflection Coating Impairment on the Sensitivity to Optical Feedback of AR/HR Semiconductor DFB Lasers. IEEE Journal of Quantum Electronics, 2009. 45(6): p. 720-729. 19. Soref, R., The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2006. 12(6): p. 1678-1687. 20. Johnson, J.E., et al. Performance and Reliability of Advanced CW Lasers for Silicon Photonics Applications. in 2022 Optical Fiber Communications Conference and Exhibition (OFC). 2022. 21. Wang, H., et al. High-Power Wide-Bandwidth 1.55-μm Directly Modulated DFB Lasers for Free Space Optical Communications. in Conference on Lasers and Electro-Optics. 2019. San Jose, California: Optica Publishing Group. 22. Bagaeva, O.O., et al., Experimental studies of 1.5 – 1.6 μm high-power single-frequency semiconductor lasers. Quantum Electronics, 2020. 50(2): p. 143. 23. Mao, Y., et al. Record-High Power 1.55-μm Distributed Feedback Laser Diodes for Optical Communication. in 2021 Optical Fiber Communications Conference and Exhibition (OFC). 2021. 24. Mao, Y., et al. High Power Uncooled CW-DFB lasers with High Reliability. in 2023 Optical Fiber Communications Conference and Exhibition (OFC). 2023. 25. Mikami, O., 1.55 µm GaInAsP/InP Distributed Feedback Lasers. Japanese Journal of Applied Physics, 1981. 20(7): p. L488. 26. Ishutkin, S., et al., The Method of Low-Temperature ICP Etching of InP/InGaAsP Heterostructures in Cl2-Based Plasma for Integrated Optics Applications. Micromachines, 2021. 12(12): p. 1535. 27. Bortolotti, A., et al., Optical Lithography, in Silicon Sensors and Actuators: The Feynman Roadmap, B. Vigna, et al., Editors. 2022, Springer International Publishing: Cham. p. 169-201. 28. Lucovsky, G., et al., Formation of thin film dielectrics by remote plasma-enhanced chemical-vapor deposition (remote PECVD). Applied Surface Science, 1989. 39(1): p. 33-56. 29. Chen, B., F. Tay, and C. Iliescu, Development of thick film PECVD Amorphous silicon with low stress for MEMS applications. Proceedings of SPIE - The International Society for Optical Engineering, 2008. 7269. 30. Layadi, N., J.I. Colonell, and J.T. Lee, An introduction to plasma etching for VLSI circuit technology. Bell Labs Technical Journal, 1999. 4(3): p. 155-171. 31. Yang, S.K., et al., New self-align method for fabrication of 980 nm ridge waveguide laser diodes. Optical and Quantum Electronics, 1995. 27(5): p. 447-451. 32. Electron Beam Source for Electron Beam Deposition - JEOL. Available from: https://www.jeol.com/products/science/eb.php. 33. Long, M. and J. Newman, Image Reversal Techniques With Standard Positive Photoresist. 1984 Microlithography Conferences. Vol. 0469. 1984: SPIE. 34. LED原理與應用 Principles and Applications of Light-emitting Diode. Available from: https://www.wunan.com.tw/bookdetail?NO=10915. 35. 盧廷昌、王興宗, 半導體雷射導論 Introduction to Semiconductor Lasers. 36. Larry A. Coldren, S.W.C., Milan L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits. Available from: https://books.google.com.tw/books?id=D6Ub126rtPoC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false. 37. Mickus, D., et al., Method to measure thermal impedance for all-active lasers using the athermalisation condition. Optics Continuum, 2022. 1(3): p. 556-564. 38. Chaparala, S.C., et al., Design Guidelines for Efficient Thermal Management of Mid-Infrared Quantum Cascade Lasers. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011. 1(12): p. 1975-1982. 39. Akiba, S., et al., Temperature Dependence of Lasing Characteristics of InGaAsP/InP Distributed Feedback Lasers in 1.5 µm Range. Japanese Journal of Applied Physics, 1982. 21(12R): p. 1736. 40. Guo, R., et al., Multisection DFB Tunable Laser Based on REC Technique and Tuning by Injection Current. IEEE Photonics Journal, 2016. 8(4): p. 1-7. 41. Hillmer, H., et al., Study of wavelength shift in InGaAs/InAlGaAs QW DFB lasers based on laser parameters from a comparison of experiment and theory. IEEE Journal of Quantum Electronics, 1994. 30(10): p. 2251-2261. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96283 | - |
| dc.description.abstract | 利用向聯亞光電工業股份有限公司所購買的事先已有製作週期性光柵的InP磊晶片來製作出在長度與寬度上不同組合搭配的分布式回饋雷射(Distributed Feedback, DFB)元件。實驗內容囊括一開始的光罩、製程設計、元件製程進行與問題解決,再到最後對各尺寸元件的電性和發光特性(光功率、光譜分布)進行量測。
光罩上將元件設計為共振腔尺寸長300/500/750/1250 μm,同時搭配寬度2/4/6 μm,一共12種不同元件尺寸。 製程上在製作脊型波導共振腔時,由於元件的最小寬度在2 μm,波導兩側的向下蝕刻採用乾蝕刻而非濕蝕刻,避免脊型波導的形狀因側向蝕刻或披覆層的包覆性不佳而被破壞。另外在透過電漿輔助化學氣相沈積(PECVD)沉積鈍化層氮化矽Si_3 N_4後,同樣受限於元件尺寸,在定義掩膜開洞時採用自我對準[1]的技術,避免可能遭遇的曝光機的繞射極限以及人為對準失誤。 最後就成品的元件表現(功率、頻譜模態、熱......等)去探討在過程中可能出現的失誤。 | zh_TW |
| dc.description.abstract | This study utilizes InP epitaxial wafer, which is previously procured from LandMark Optoelectronics Corporation, to fabricate Distributed Feedback (DFB) laser devices with various combinations of lengths and widths. The experimental process includes the design of photomasks, process planning, device fabrication with troubleshooting, and the analysis of the electrical and optical characteristics (optical power and spectral distribution) of the devices.
The DFB laser devices were designed with resonant cavity lengths of 300, 500, 750, 1250 μm, paired with widths of 2,4, and 6 μm, resulting in a total of 12 device sizes respectively. Due to the minimum width of the devices was set at 2 μm, a dry etching process was implemented for the shape of waveguide instead of wet etching to preserve the shape of the ridge waveguide and avoid damage from lateral etching or poor conformality of the deposited film layer. Furthermore, after depositing a passivation layer of silicon nitride (Si_3 N_4) via Plasma-Enhanced Chemical Vapor Deposition (PECVD), self-aligned[1] techniques were adopted for the mask opening. This approach mitigated potential issues related to the diffraction limit of the mask aligner and manual alignment errors by human since the minimum width of the devices mentioned above. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:09:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-24T16:09:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
摘要 I Abstract II 圖次 VI Chapter 1 Introduction 1 1.1 Introduction of Light Amplification by Stimulated Emission of Radiation (LASER) 1 1.2 Motivation 4 1.3 Operational principles of a DFB Laser 5 1.3.1 Basic structures of a laser 5 1.3.2 Basic concepts of a Distributed Feedback (DFB) laser 8 1.4 Review of previous papers 9 Chapter2 Instruments and Principles for Process 14 2.1 Photolithography Process 14 2.2 Plasma Enhanced Chemical Vapor Deposition (PECVD) for Film Protection 17 2.3 Etching Process 19 2.4 Self-Aligned Technique 20 2.5 Ohmic Contact 21 2.6 Electron Beam (Gun) Evaporation for Metal Deposition 23 Chapter3 Device and Process Flow Design 24 3.1 A Simple View of the Device Structure 24 3.2 Process Flow of Fabrication 27 3.2.1 Alignment key 28 3.2.2 Ridge Etching 29 3.2.3 Open contact and Cleave lines 30 3.2.4 P-metal & N-metal 32 3.2.5 Cleaving and Coating 33 Chapter4 Electrical and Optical Analysis 35 4.1 Electrical Properties of DFB Lasers 35 4.1.1 Shunt Resistance Rp 38 4.1.2 Ideality Factor n 39 4.1.3 Series Resistance Rs 41 4.2 Optical Properties of DFB lasers 42 4.2.1 L-I Characteristic of the DFB lasers 42 4.2.2 Threshold Current of the DFB Lasers 46 4.2.3 Internal Loss αi 47 4.2.4 Spectrum of the DFB Lasers 49 Chapter5 Discussion and Conclusion 51 5.1 Heat Influences 52 5.1.1 Heat Impedance Zth 52 5.2 Mode-hopping and Multimode 55 5.3 Conclusion and Future Work 58 Appendices 59 Reference 62 | - |
| dc.language.iso | en | - |
| dc.subject | 脊型波導 | zh_TW |
| dc.subject | InP | zh_TW |
| dc.subject | InAlGaAs | zh_TW |
| dc.subject | 自我對準 | zh_TW |
| dc.subject | 分布式回饋雷射 | zh_TW |
| dc.subject | 長共振腔 | zh_TW |
| dc.subject | Self-Aligned | en |
| dc.subject | Distributed Feedback Laser | en |
| dc.subject | Ridge Waveguide | en |
| dc.subject | Long Cavity Length | en |
| dc.subject | Indium Phosphide (InP) | en |
| dc.subject | Indium Aluminum Gallium Arsenide (InAlGaAs) | en |
| dc.title | 長共振腔之銦鎵鋁砷/磷化銦脊型波導分佈反饋雷射的光電與熱效應研究 | zh_TW |
| dc.title | A photonic and thermal study on InAlGaAs/InP based long-resonant-cavity ridge waveguide distributed feedback lasers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳奕君;林俊廷 | zh_TW |
| dc.contributor.oralexamcommittee | I-Chun Cheng;Chun-Ting Lin | en |
| dc.subject.keyword | 長共振腔,脊型波導,分布式回饋雷射,自我對準,InAlGaAs,InP, | zh_TW |
| dc.subject.keyword | Long Cavity Length,Ridge Waveguide,Distributed Feedback Laser,Self-Aligned,Indium Aluminum Gallium Arsenide (InAlGaAs),Indium Phosphide (InP), | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202404706 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-12-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 3.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
