Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96276
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor諶玉真zh_TW
dc.contributor.advisorYu-Jane Shengen
dc.contributor.author張心瑀zh_TW
dc.contributor.authorHsin-Yu Changen
dc.date.accessioned2024-11-28T16:31:47Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-09-18-
dc.identifier.citation1-5 Reference
[1] T. Mason, J. Bibette, D. Weitz, Elasticity of compressed emulsions, Phys. Rev. Lett. 75(10) (1995) 2051.
[2] C.-Y. Lu, J. Yu, Dielectric response of a dilute oil-in-water emulsion solution, Chin. J. Phys. 40(1) (2002) 60-68.
[3] H. Princen, A. Kiss, Rheology of foams and highly concentrated emulsions: III. Static shear modulus, J. Colloid Interface Sci. 112(2) (1986) 427-437.
[4] S. Torquato, T.M. Truskett, P.G. Debenedetti, Is random close packing of spheres well defined?, Phys. Rev. Lett. 84(10) (2000) 2064.
[5] R. Foudazi, S. Qavi, I. Masalova, A.Y. Malkin, Physical chemistry of highly concentrated emulsions, Adv. Colloid Interface Sci. 220 (2015) 78-91.
[6] T. Zhang, R.A. Sanguramath, S. Israel, M.S. Silverstein, Emulsion templating: porous polymers and beyond, Macromolecules 52(15) (2019) 5445-5479.
[7] S.-W. Hu, P.-J. Sung, T.P. Nguyen, Y.-J. Sheng, H.-K. Tsao, UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing, ACS Appl. Mater. Interfaces 12(21) (2020) 24450-24457.
[8] V.G. Babak, M.-J. Stébé, Highly concentrated emulsions: physicochemical principles of formulation, J. Dispers. Sci. Technol. 23(1-3) (2002) 1-22.
[9] G. Sun, Z. Li, T. Ngai, Inversion of particle‐stabilized emulsions to form high‐internal‐phase emulsions, Angew. Chem. 122(12) (2010) 2209-2212.
[10] H. Tan, G. Sun, W. Lin, C. Mu, T. Ngai, Gelatin particle-stabilized high internal phase emulsions as nutraceutical containers, ACS Appl. Mater. Interfaces 6(16) (2014) 13977-13984.
[11] T.P. Nguyen, S.-W. Hu, Y.-J. Lin, Y.-J. Sheng, H.-K. Tsao, Coexistence of liquid-like emulsion and solid-like emulsion glass beyond the close-packing limit, J. Taiwan Inst. Chem. Eng. 115 (2020) 28-34.
[12] T.P. Nguyen, S.-W. Hu, Y.-J. Sheng, H.-K. Tsao, Scanty-water oil-in-water emulsion glasses synthesized through a low-energy process: Nucleation and growth mechanism, J. Taiwan Inst. Chem. Eng. 109 (2020) 129-136.
[13] D. Langevin, S. Poteau, I. Hénaut, J. Argillier, Crude oil emulsion properties and their application to heavy oil transportation, Oil Gas Sci. Technol. 59(5) (2004) 511-521.
[14] N.R. Cameron, High internal phase emulsion templating as a route to well-defined porous polymers, Polymer 46(5) (2005) 1439-1449.
[15] J. Bibette, D. Morse, T. Witten, D. Weitz, Stability criteria for emulsions, Phys. Rev. Lett. 69(16) (1992) 2439.
[16] A. Speltini, G. Tripodo, F. Rinaldi, G. Massolini, A. Profumo, E. Calleri, Carbon nanotubes-modified poly-high internal phase emulsions for pharmaceuticals pre-concentration and determination, J. Pharm. Biomed. Anal. 207 (2022) 114391.
[17] E.M. Shchukina, D.G. Shchukin, Layer-by-layer coated emulsion microparticles as storage and delivery tool, Curr. Opin. Colloid Interface Sci. 17(5) (2012) 281-289.
[18] H. Zhang, H. Makse, Jamming transition in emulsions and granular materials, Phys. Rev. E 72(1) (2005) 011301.
[19] C. Zhang, C.B. O'Donovan, E.I. Corwin, F. Cardinaux, T.G. Mason, M.E. Möbius, F. Scheffold, Structure of marginally jammed polydisperse packings of frictionless spheres, Phys. Rev. E 91(3) (2015) 032302.
[20] A. Jamil, S. Caubet, B. Grassl, T. Kousksou, K. El Omari, Y. Zeraouli, Y. Le Guer, Thermal properties of non-crystallizable oil-in-water highly concentrated emulsions, Colloids Surf. A Physicochem. Eng. Asp. 382(1-3) (2011) 266-273.
[21] R. Pal, A novel method to correlate emulsion viscosity data, Colloids Surf. A Physicochem. Eng. Asp. 137(1-3) (1998) 275-286.
[22] P. Partal, A. Guerrero, M. Berjano, C. Gallegos, Influence of concentration and temperature on the flow behavior of oil‐in‐water emulsions stabilized by sucrose palmitate, J. Am. Oil Chem. Soc. 74(10) (1997) 1203-1212.
[23] K. Jørgensen, Calorimetric detection of a sub-main transition in long-chain phosphatidylcholine lipid bilayers, Biochim. Biophys. Acta Biomembr. 1240(2) (1995) 111-114.
[24] D. Clausse, F. Gomez, I. Pezron, L. Komunjer, C. Dalmazzone, Morphology characterization of emulsions by differential scanning calorimetry, Adv. Colloid Interface Sci. 117(1-3) (2005) 59-74.
[25] J. Brujić, S.F. Edwards, D.V. Grinev, I. Hopkinson, D. Brujić, H.A. Makse, 3D bulk measurements of the force distribution in a compressed emulsion system, Faraday Discuss. 123 (2003) 207-220.
[26] T. Mason, M.-D. Lacasse, G.S. Grest, D. Levine, J. Bibette, D. Weitz, Osmotic pressure and viscoelastic shear moduli of concentrated emulsions, Phys. Rev. E 56(3) (1997) 3150.
[27] M.-D. Lacasse, G.S. Grest, D. Levine, T. Mason, D. Weitz, Model for the elasticity of compressed emulsions, Phys. Rev. Lett. 76(18) (1996) 3448.
[28] P. Espanol, P. Warren, Statistical mechanics of dissipative particle dynamics, EPL 30(4) (1995) 191.
[29] P. Hoogerbrugge, J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, EPL 19(3) (1992) 155.
[30] R.D. Groot, P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107(11) (1997) 4423-4435.
[31] A.F. Jakobsen, Constant-pressure and constant-surface tension simulations in dissipative particle dynamics, J. Chem. Phys. 122(12) (2005) 124901.
[32] T.-Y. Wang, H.-K. Tsao, Y.-J. Sheng, Perforated Vesicles of ABA Triblock Copolymers with ON/OFF-Switchable Nanopores, Macromolecules 53(23) (2020) 10582-10590.
[33] K.-C. Huang, C.-M. Lin, H.-K. Tsao, Y.-J. Sheng, The interactions between surfactants and vesicles: Dissipative particle dynamics, J. Chem. Phys. 130(24) (2009) 06B622.
[34] Y.-L. Yang, Y.-J. Sheng, H.-K. Tsao, Hybridization of lipids to monolayer and bilayer membranes of triblock copolymers, J. Colloid Interface Sci. 544 (2019) 53-60.
[35] Y.-S. Peng, Z. Wang, K.-C. Chu, Y.-J. Sheng, H.-K. Tsao, Favorable partition of nanoswimmers toward a confined slit, Phys. Rev. E 100(4) (2019) 042604.
[36] I. Pagonabarraga, M. Hagen, D. Frenkel, Self-consistent dissipative particle dynamics algorithm, EPL 42(4) (1998) 377.
[37] H.-Y. Chang, P.-H. Chiu, H.-K. Tsao, Y.-J. Sheng, Strengthening mechanism of the mechanical properties of graft copolymers with incompatible pendant groups: nano-clusters and weak cross-linking, Soft Matter 17(23) (2021) 5730-5737.
[38] Y.-L. Lin, C.-S. Chiou, S.K. Kumar, J.-J. Lin, Y.-J. Sheng, H.-K. Tsao, Self-assembled superstructures of polymer-grafted nanoparticles: effects of particle shape and matrix polymer, J. Phys. Chem. C 115(13) (2011) 5566-5577.
[39] S.-W. Hu, Y.-J. Sheng, H.-K. Tsao, Self-assembly of organophilic nanoparticles in a polymer matrix: Depletion interactions, J. Phys. Chem. C 116(2) (2012) 1789-1797.
[40] F. Alvarez, E. Flores, L. Castro, J. Hernández, A. López, F. Vazquez, Dissipative particle dynamics (DPD) study of crude oil− water emulsions in the presence of a functionalized co-polymer, Energy fuels 25(2) (2011) 562-567.
[41] J. Zhang, L. Chen, A. Wang, Z. Yan, Dissipative particle dynamics simulation of ionic liquid-based microemulsion: Quantitative properties and emulsification mechanism, Ind. Eng. Chem. Res. 59(2) (2019) 763-773.
[42] M. Li, H. Zhang, Z. Wu, Z. Zhu, X. Jia, DPD Simulation on the Transformation and Stability of O/W and W/O Microemulsions, Molecules 27(4) (2022) 1361.
[43] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Pressure-gated capillary nanovalves based on liquid nanofilms, J. Colloid Interface Sci. 560 (2020) 485-491.
[44] H. Liu, G. Cao, Effectiveness of the Young-Laplace equation at nanoscale, Sci. Rep. 6(1) (2016) 1-10.
[45] M. Matsumoto, K. Tanaka, Nano bubble—Size dependence of surface tension and inside pressure, Fluid Dyn. Res. 40(7-8) (2008) 546.
[46] H.-L. Wu, Y.-J. Sheng, H.-K. Tsao, Phase behaviors and membrane properties of model liposomes: Temperature effect, J. Chem. Phys. 141(12) (2014) 09B619_1.
[47] I. Masalova, A.Y. Malkin, Rheology of highly concentrated emulsions–Concentration and droplet size dependencies, Appl. Rheol. 17(4) (2007) 42250-1-42250-9.

2-5 Reference
[1] Z.A. Chen, F. Huang, P.A. Tsai, A. Komrakova, Numerical study of microfluidic emulsion dynamics under the influence of heterogeneous surface wettability, Int. J. Multiph. Flow 147 (2022) 103863. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103863.
[2] J.I. Contreras-Ramírez, J.A. Gallegos-Infante, W. Rosas-Flores, R.F. González-Laredo, J.F. Toro-Vázquez, J.D. Pérez-Martínez, Relationship of rheological and thermal properties in organogel emulsions (W/O): Influence of temperature, time, and surfactant concentration on thermomechanical behavior, J. Mol. Liq. 337 (2021) 116403. https://doi.org/10.1016/j.molliq.2021.116403.
[3] G. Chen, D. Tao, An experimental study of stability of oil-water emulsion, Fuel Process. Technol. 86(5) (2005) 499-508. https://doi.org/10.1016/j.fuproc.2004.03.010.
[4] A.K. Barkat, A. Naveed, M.S.K. Haji, W. Khalid, M. Tariq, R. Akhtar, I. Muhammad, K. Haroon, Basics of pharmaceutical emulsions: A review, Afr. J. Pharmacy Pharmacol. 5(25) (2011) 2715-2725. https://doi.org/10.1016/j.msec.2019.01.137.
[5] R. Foudazi, S. Qavi, I. Masalova, A.Y. Malkin, Physical chemistry of highly concentrated emulsions, Adv. Colloid Interface Sci. 220 (2015) 78-91. https://doi.org/10.1016/j.cis.2015.03.002.
[6] H. Gao, L. Ma, C. Cheng, J. Liu, R. Liang, L. Zou, W. Liu, D.J. McClements, Review of recent advances in the preparation, properties, and applications of high internal phase emulsions, Trends Food Sci. Technol. 112 (2021) 36-49. https://doi.org/10.1016/j.tifs.2021.03.041.
[7] T.P. Nguyen, S.-W. Hu, Y.-J. Lin, Y.-J. Sheng, H.-K. Tsao, Coexistence of liquid-like emulsion and solid-like emulsion glass beyond the close-packing limit, J. Taiwan Inst. Chem. Eng. 115 (2020) 28-34. https://doi.org/10.1016/j.jtice.2020.10.006.
[8] J. Su, Y. Cai, K. Tai, Q. Guo, S. Zhu, L. Mao, Y. Gao, F. Yuan, P. Van der Meeren, High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: Enhanced survivability and controlled release, Food Funct. 12(1) (2021) 70-82. https://doi.org/10.1039/D0FO01659D.
[9] W. Liu, H. Gao, D.J. McClements, L. Zhou, J. Wu, L. Zou, Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels, Food Hydrocoll. 88 (2019) 210-217. https://doi.org/10.1016/j.foodhyd.2018.10.012.
[10] T. Mason, New fundamental concepts in emulsion rheology, Curr. Opin. Colloid Interface Sci. 4(3) (1999) 231-238. https://doi.org/10.1016/S1359-0294(99)00035-7.
[11] S.-W. Hu, P.-J. Sung, T.P. Nguyen, Y.-J. Sheng, H.-K. Tsao, UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing, ACS Appl. Mater. Interfaces 12(21) (2020) 24450-24457. https://doi.org/10.1021/acsami.0c04121.
[12] T.P. Nguyen, S.-W. Hu, Y.-J. Sheng, H.-K. Tsao, Scanty-water oil-in-water emulsion glasses synthesized through a low-energy process: Nucleation and growth mechanism, J. Taiwan Inst. Chem. Eng. 109 (2020) 129-136. https://doi.org/10.1016/j.jtice.2020.02.018.
[13] T.H. Vo, P.K. Lam, Y.-J. Sheng, H.-K. Tsao, Amphibious superamphiphilic polystyrene monolith with underwater superoleophilicity: Capture of underwater oil, Appl. Surf. Sci. 570 (2021) 151142. https://doi.org/10.1016/j.apsusc.2021.151142.
[14] Y.-T. Xu, C.-H. Tang, B.P. Binks, High internal phase emulsions stabilized solely by a globular protein glycated to form soft particles, Food Hydrocoll. 98 (2020) 105254. https://doi.org/10.1016/j.foodhyd.2019.105254.
[15] H. Tan, G. Sun, W. Lin, C. Mu, T. Ngai, Gelatin particle-stabilized high internal phase emulsions as nutraceutical containers, ACS Appl. Mater. Interfaces 6(16) (2014) 13977-13984. https://doi.org/10.1021/am503341j.
[16] H.-Y. Chang, Y.-J. Sheng, H.-K. Tsao, Packing microstructures and thermal properties of compressed emulsions: effect of droplet size, J. Mol. Liq. (2022) 120025. https://doi.org/10.1016/j.molliq.2022.120025.
[17] J. Brujić, S.F. Edwards, I. Hopkinson, H.A. Makse, Measuring the distribution of interdroplet forces in a compressed emulsion system, Phys. A: Stat. Mech. Appl. 327(3-4) (2003) 201-212. https://doi.org/10.1016/S0378-4371(03)00477-1.
[18] M. Cates, J. Wittmer, J.-P. Bouchaud, P. Claudin, Jamming and static stress transmission in granular materials, Chaos: An Interdisciplinary Journal of Nonlinear Science 9(3) (1999) 511-522. https://doi.org/10.1063/1.166456.
[19] G.A. van Aken, Flow-induced coalescence in protein-stabilized highly concentrated emulsions, Langmuir 18(7) (2002) 2549-2556. https://doi.org/10.1021/la011540s.
[20] H. Williams, Measuring Young’s modulus with a tensile tester, Phys. Educ. 57(2) (2022) 025016. http://dx.doi.org/10.1088/1361-6552/ac3f75.
[21] H. Gholizadeh, R. Burton, G. Schoenau, Fluid bulk modulus: a literature survey, Int. J. Fluid Power. 12(3) (2011) 5-15. https://doi.org/10.1080/14399776.2011.10781033.
[22] Britannica, The Editors of Encyclopaedia. “bulk modulus”. Encyclopedia Britannica, 1 Jun. 2006, https://www.britannica.com/science/bulk-modulus. Accessed 12 September 2022.
[23] R. Nave, Bulk elastic properties, HyperPhysics, Georgia State University2016.
[24] Y.-J. Lee, S.-M. Lim, S.-M. Yi, J.-H. Lee, S.-g. Kang, G.-M. Choi, H.N. Han, J.-Y. Sun, I.-S. Choi, Y.-C. Joo, Auxetic elastomers: mechanically programmable meta-elastomers with an unusual Poisson’s ratio overcome the gauge limit of a capacitive type strain sensor, Extreme Mech. Lett. 31 (2019) 100516. https://doi.org/10.1016/j.eml.2019.100516.
[25] G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials, Nat. Mater. 10(11) (2011) 823-837. https://doi.org/10.1038/nmat3134.
[26] H.-Y. Chang, P.-H. Chiu, H.-K. Tsao, Y.-J. Sheng, Strengthening mechanism of the mechanical properties of graft copolymers with incompatible pendant groups: nano-clusters and weak cross-linking, Soft Matter 17(23) (2021) 5730-5737. https://doi.org/10.1039/D1SM00472G.
[27] H.-Y. Chang, Y.-J. Sheng, H.-K. Tsao, Structural and mechanical characteristics of polymersomes, Soft Matter 10(34) (2014) 6373-6381. https://doi.org/10.1039/C4SM01092B.
[28] Y.-J. Sheng, T.-Y. Wang, W.M. Chen, H.-K. Tsao, A-B diblock copolymer micelles: Effects of soluble-block length and component compatibility, J. Phys. Chem. B 111(37) (2007) 10938-10945. https://doi.org/10.1021/jp073408s.
[29] F. Alvarez, E. Flores, L. Castro, J. Hernández, A. López, F. Vazquez, Dissipative particle dynamics (DPD) study of crude oil-water emulsions in the presence of a functionalized co-polymer, Energy Fuels 25(2) (2011) 562-567. https://doi.org/10.1021/ef1012038.
[30] Y.-L. Yang, Y.-J. Sheng, H.-K. Tsao, Hybridization of lipids to monolayer and bilayer membranes of triblock copolymers, J. Colloid Interface Sci. 544 (2019) 53-60. https://doi.org/10.1016/j.jcis.2019.02.071.
[31] Y.-S. Peng, Z. Wang, K.-C. Chu, Y.-J. Sheng, H.-K. Tsao, Favorable partition of nanoswimmers toward a confined slit, Phys. Rev. E 100(4) (2019) 042604. https://doi.org/10.1103/PhysRevE.100.042604.
[32] R.D. Groot, P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107(11) (1997) 4423-4435. http://dx.doi.org/10.1063/1.474784.
[33] J. Xu, C. Yang, Y.-J. Sheng, H.-K. Tsao, Apparent hydrodynamic slip induced by density inhomogeneities at fluid-solid interfaces, Soft Matter 11(35) (2015) 6916-6920. https://doi.org/10.1039/C5SM01627D.
[34] H.-C. Tsai, Y.-L. Yang, Y.-J. Sheng, H.-K. Tsao, Formation of asymmetric and symmetric hybrid membranes of lipids and triblock copolymers, Polymers 12(3) (2020) 639. https://doi.org/10.3390/polym12030639.
[35] Y. Wei, Y. Xie, Z. Cai, Y. Guo, M. Wu, P. Wang, R. Li, H. Zhang, Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach, J. Colloid Interface Sci. 580 (2020) 480-492. https://doi.org/10.1016/j.jcis.2020.07.048.
[36] R. Zheng, J. Tian, B.P. Binks, Z. Cui, W. Xia, J. Jiang, Oil-in-Water emulsions stabilized by alumina nanoparticles with organic electrolytes: Fate of particles, J. Colloid Interface Sci. 627 (2022) 749-760. https://doi.org/10.1016/j.jcis.2022.07.085.
[37] F. Ravera, K. Dziza, E. Santini, L. Cristofolini, L. Liggieri, Emulsification and emulsion stability: The role of the interfacial properties, Adv. Colloid Interface Sci. 288 (2021) 102344. https://doi.org/10.1016/j.cis.2020.102344.
[38] T. Jiang, L. Wang, J. Lin, Mechanical properties of designed multicompartment gels formed by ABC graft copolymers, Langmuir 29(39) (2013) 12298-12306. https://doi.org/10.1021/la403098p.
[39] T. Zhang, S. Biswas, J. Cuthbert, T. Kowalewski, K. Matyjaszewski, A.C. Balazs, Understanding the origin of softness in structurally tailored and engineered macromolecular (STEM) gels: A DPD study, Polymer 208 (2020) 122909. https://doi.org/10.1016/j.polymer.2020.122909.
[40] A. Rajabpour, L. Seidabadi, M. Soltanpour, Calculating the bulk modulus of iron and steel using equilibrium molecular dynamics simulation, Procedia Materials Science 11 (2015) 391-396. http://dx.doi.org/10.1016/j.mspro.2015.11.005.
[41] J. Irving, J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18(6) (1950) 817-829. https://doi.org/10.1063/1.1747782.
[42] J.G. Kirkwood, F.P. Buff, The statistical mechanical theory of surface tension, J. Chem. Phys. 17(3) (1949) 338-343. https://doi.org/10.1063/1.1747248.
[43] Y.-H. Tsao, T.-Y. Wang, H.-K. Tsao, Y.-J. Sheng, Thermally assisted mobility of nanodroplets on surfaces with weak defects, J. Colloid Interface Sci. 604 (2021) 150-156. https://doi.org/10.1016/j.jcis.2021.06.163.
[44] M. Khandelwal, P. Ranjith, Z. Pan, J.G. Sanjayan, Effect of strain rate on strength properties of low-calcium fly-ash-based geopolymer mortar under dry condition, Arab. J. Geosci. 6 (2013) 2383-2389. http://dx.doi.org/10.1007/s12517-011-0507-0.
[45] R. Pal, Effect of droplet size on the rheology of emulsions, AIChE J. 42(11) (1996) 3181-3190. https://doi.org/10.1002/aic.690421119.
[46] W. Chantrapornchai, F. Clydesdale, D.J. McClements, Influence of droplet size and concentration on the color of oil-in-water emulsions, J. Agric. Food Chem. 46(8) (1998) 2914-2920. https://doi.org/10.1021/jf980278z.
[47] T. Mason, J. Bibette, D. Weitz, Elasticity of compressed emulsions, Phys. Rev. Lett. 75(10) (1995) 2051. https://doi.org/10.1103/PhysRevLett.75.2051.
[48] H. Princen, A. Kiss, Rheology of foams and highly concentrated emulsions: III. Static shear modulus, J. Colloid Interface Sci. 112(2) (1986) 427-437. https://doi.org/10.1016/0021-9797(86)90111-6.
[49] I. Masalova, A.Y. Malkin, Rheology of highly concentrated emulsions-concentration and droplet size dependencies, Appl. Rheol. 17(4) (2007) 42250-1-42250-9. https://doi.org/10.1515/arh-2007-0011.
[50] T. Honorio, F. Masara, F. Benboudjema, Heat capacity, isothermal compressibility, isosteric heat of adsorption and thermal expansion of water confined in CSH, Cement 6 (2021) 100015. https://doi.org/10.1016/j.cement.2021.100015.
[51] D. Wong, A. Andriyana, B.C. Ang, J.J.L. Lee, E. Verron, M. Elma, Poisson’s ratio and volume change accompanying deformation of randomly oriented electrospun nanofibrous membranes, Plastics, Plast. Rubber Compos. 48(10) (2019) 456-465. https://doi.org/10.1080/14658011.2019.1660838.

3-5 Reference
[1] J. Cai, T. Jin, J. Kou, S. Zou, J. Xiao, Q. Meng, Lucas-Washburn equation-based modeling of capillary-driven flow in porous systems, Langmuir 37 (2021) 1623.
[2] P. Kolliopoulos, S. Kumar, Capillary flow of liquids in open microchannels: overview and recent advances, npj Microgravity 7 (2021) 51.
[3] H. Mehrabian, P. Gao, J. J. Feng, Wicking flow through microchannels, Phys. Fluids 23 (2011) 122108.
[4] T.-Y. Wang, H.-Y. Chang, G.-Y. He, H.-K. Tsao, Y.-J. Sheng, Anomalous spontaneous capillary flow of water through graphene nanoslits: Channel width-dependent density, J. Mol. Liq. 352 (2022) 118701.
[5] A.-A. Berthiaume, F. Schmid, S. Stamenkovic, V. Coelho-Santos, C. D. Nielson, B. Weber, M. W. Majesky, A. Y. Shih, Pericyte remodeling is deficient in the aged brain and contributes to impaired capillary flow and structure, Nat. Commun. 13 (2022) 5912.
[6] D. Shou, J. Fan, Design of nanofibrous and microfibrous channels for fast capillary flow, Langmuir 34 (2018) 1235.
[7] A. Olanrewaju, M. Beaugrand, M. Yafia, D. Juncker, Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits, Lab Chip 18 (2018) 2323.
[8] J. Park, D. H. Han, J.-K. Park, Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices, Lab Chip 20 (2020) 1191.
[9] M. Cao, K. Jochem, W. J. Hyun, L. F. Francis, C. D. Frisbie, Self-aligned inkjet printing of resistors and low-pass resistor-capacitor filters on roll-to-roll imprinted plastics with resistances ranging from 10 to 106 Ω, Flex. Print. Electron. 3 (2018) 045003.
[10] K. S. Jochem, W. J. Suszynski, C. D. Frisbie, L. F. Francis, High-resolution, high-aspect-ratio printed and plated metal conductors utilizing roll-to-roll microscale UV imprinting with prototype imprinting stamps, Ind. Eng. Chem. Res. 57 (2018) 16335.
[11] R. J. Mashl, S. Joseph, N. Aluru, E. Jakobsson, Anomalously immobilized water: a new water phase induced by confinement in nanotubes, Nano Lett. 3 (2003) 589.
[12] E. Dujardin, T. Ebbesen, H. Hiura, K. Tanigaki, Capillarity and wetting of carbon nanotubes, Science 265 (1994) 1850.
[13] K. Koga, G. Gao, H. Tanaka, X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412 (2001) 802.
[14] G. Hummer, J. Rasaiah, J. Noworyta, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature 414 (2001) 188.
[15] Y.-T. Cheng, H.-Y. Chang, H.-K. Tsao, Y.-J. Sheng, Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects, Phys. Fluids 34 (2022) 112003.
[16] C. D. Williams, Z. Wei, M. R. bin Shaharudin, P. Carbone, A molecular simulation study into the stability of hydrated graphene nanochannels used in nanofluidics devices, Nanoscale 14 (2022) 3467.
[17] G. Salussolia, C. Kamal, J. Stafford, N. Pugno, L. Botto, Simulation of interacting elastic sheets in shear flow: Insights into buckling, sliding, and reassembly of graphene nanosheets in sheared liquids, Phys. Fluids 34 (2022) 053311.
[18] Z. Zhao, C. Sun, R. Zhou, Thermal conductivity of confined-water in graphene nanochannels, Int. J. Heat Mass Transf. 152 (2020) 119502.
[19] K. Gopinadhan, S. Hu, A. Esfandiar, M. Lozada-Hidalgo, F. Wang, Q. Yang, A. Tyurnina, A. Keerthi, B. Radha, A. Geim, Complete steric exclusion of ions and proton transport through confined monolayer water, Science 363 (2019) 145.
[20] R. Nair, H. Wu, P. N. Jayaram, I. V. Grigorieva, A. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335 (2012) 442.
[21] C. Sun, M. Liu, B. Bai, Molecular simulations on graphene-based membranes, Carbon 153 (2019) 481.
[22] B. Radha, A. Esfandiar, F. Wang, A. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, Molecular transport through capillaries made with atomic-scale precision, Nature 538 (2016) 222.
[23] G. Hummer, J. C. Rasaiah, J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414 (2001) 188.
[24] J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312 (2006) 1034.
[25] J. Y. Lu, Q. Ge, H. Li, A. Raza, T. Zhang, Direct prediction of calcite surface wettability with first-principles quantum simulation, J. Phys. Chem. Lett. 8 (2017) 5309.
[26] A. Kozbial, C. Trouba, H. Liu, L. Li, Characterization of the intrinsic water wettability of graphite using contact angle measurements: Effect of defects on static and dynamic contact angles, Langmuir 33 (2017) 959.
[27] J. Włoch, A. P. Terzyk, P. Kowalczyk, New forcefield for water nanodroplet on a graphene surface, Chem. Phys. Lett. 674 (2017) 98.
[28] Y. Xu, C. J. Dibble, N. G. Petrik, R. S. Smith, B. D. Kay, G. A. Kimmel, Complete wetting of Pt (111) by nanoscale liquid water films, J. Phys. Chem. Lett. 7 (2016) 541.
[29] M. F. Pucci, B. Duchemin, M. Gomina, J. Bréard, Dynamic wetting of molten polymers on cellulosic substrates: model prediction for total and partial wetting, Front. Mater. 7 (2020) 143.
[30] M. E. Diaz, M. D. Savage, R. L. Cerro, The effect of temperature on contact angles and wetting transitions for n-alkanes on PTFE, J. Colloid Interface Sci. 503 (2017) 159.
[31] V. Madhurima, J. Lalnunsiama, Concentration dependent wetting by aniline-ethanol binary system, Mediterr. J. Chem. 2 (2012) 365.
[32] C.-C. Chang, Y.-J. Sheng, H.-K. Tsao, Wetting hysteresis of nanodrops on nanorough surfaces, Phys. Rev. E 94 (2016) 042807.
[33] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Spontaneous spreading of nanodroplets on partially wetting surfaces with continuous grooves: Synergy of imbibition and capillary condensation, J. Mol. Liq. 339 (2021) 117270.
[34] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci, J. Colloid Interface Sci. 538 (2019) 340.
[35] W. Xiong, J. Z. Liu, M. Ma, Z. Xu, J. Sheridan, Q. Zheng, Strain engineering water transport in graphene nanochannels, Phys. Rev. E 84 (2011) 056329.
[36] J. Su, H. Guo, Effect of nanochannel dimension on the transport of water molecules, J. Phys. Chem. B 116 (2012) 5925.
[37] E. Wagemann, E. Oyarzua, J. H. Walther, H. A. Zambrano, Slip divergence of water flow in graphene nanochannels: the role of chirality, Phys. Chem. Chem. Phys. 19 (2017) 8646.
[38] A. T. Celebi, C. T. Nguyen, R. Hartkamp, A. Beskok, The role of water models on the prediction of slip length of water in graphene nanochannels, J. Chem. Phys. 151 (2019) 174705.
[39] M. Kargar, A. Lohrasebi, Water flow modeling through a graphene-based nanochannel: Theory and simulation, Phys. Chem. Chem. Phys. 21 (2019) 3304.
[40] L. Yang, Y. Guo, Dynamics of water confined in a graphene nanochannel: dependence of friction on graphene chirality, Nanotechnology 31 (2020) 235702.
[41] A. K. Metya, S. Khan, J. K. Singh, Wetting transition of the ethanol-water droplet on smooth and textured surfaces, J. Phys. Chem. C 118 (2014) 4113.
[42] W. Dilokekunakul, S. Chaemchuen, N. Klomkliang, Molecular Insights into the Effect of Temperature and Functional Groups on the Nonwetting, Prewetting, Partial Wetting, and Complete Wetting Transitions of Ethanol on Graphite, Ind. Eng. Chem. Res. 60 (2021) 13040.
[43] E. Bordes, L. Douce, E. L. Quitevis, A. A. Pádua, M. Costa Gomes, Ionic liquids at the surface of graphite: Wettability and structure, J. Chem. Phys. 148 (2018) 193840.
[44] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26 (2005) 1781.
[45] J. C. Phillips, D. J. Hardy, J. D. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, Scalable molecular dynamics on CPU and GPU architectures with NAMD, J. Chem. Phys. 153 (2020) 044130.
[46] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph. 14 (1996) 33.
[47] S. A. Deshmukh, G. Kamath, S. K. Sankaranarayanan, Comparison of the interfacial dynamics of water sandwiched between static and free-standing fully flexible graphene sheets, Soft Matter 10 (2014) 4067.
[48] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields, J. Comput. Chem. 31 (2010) 671.
[49] D. Mohammad-Aghaie, M. M. Papari, J. Moghadasi, B. Haghighi, Assessment of the effect of mixing rules on transport properties of gas mixtures, Bull. Chem. Soc. Jpn. 81 (2008) 1219.
[50] Q. Guan, B. Shan, R. Wang, G. Feng, Z. Guo, Evaluation of different particle-actuation modes in molecular dynamics and their impact on nanoscale flow behaviors, Phys. Fluids 34 (2022) 072006.
[51] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995) 8577.
[52] J. Irving, J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950) 817.
[53] J. G. Kirkwood, F. P. Buff, The statistical mechanical theory of surface tension, J. Chem. Phys. 17 (1949) 338.
[54] M. T. Hossain, I. D. Gates, G. Natale, Dynamics of Brownian Janus rods at a liquid-liquid interface, Phys. Fluids 34 (2022) 012117.
[55] M. K. Gilson, J. A. Given, B. L. Bush, J. A. McCammon, The statistical-thermodynamic basis for computation of binding affinities: a critical review, Biophys. J. 72 (1997) 1047.
[56] J. Hénin, J. Gumbart, C. Chipot, In silico alchemy: A tutorial for alchemical free-energy perturbation calculations with NAMD, Centre National de la Recherche Scientifique, University of Illinois, Urbana-Champaign (2017).
[57] W. G. Hoover, Nonequilibrium molecular dynamics, Annu. Rev. Phys. Chem. 34 (1983) 103.
[58] M. Martínez-Jiménez, M. Serrano-Ocaña, J. Alejandre, United atom model for ionic liquids: UAM-IL, J. Mol. Liq. 329 (2021) 115488.
[59] F. Gonçalves, A. Trindade, C. Costa, J. Bernardo, I. Johnson, I. Fonseca, A. Ferreira, PVT, viscosity, and surface tension of ethanol: New measurements and literature data evaluation, J. Chem. Thermodyn. 42 (2010) 1039.
[60] L. Chen, E. Bonaccurso, Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops, Phys. Rev. E 90 (2014) 022401.
[61] P. G. Bange, G. Upadhyay, N. D. Patil, R. Bhardwaj, Isothermal and non-isothermal spreading of a viscous droplet on a solid surface in total wetting condition, Phys. Fluids 34 (2022) 112115.
[62] L. Tanner, The spreading of silicone oil drops on horizontal surfaces, J. Phys. D Appl. Phys. 12 (1979) 1473.
[63] S.-W. Hu, C.-Y. Wang, Y.-J. Sheng, H.-K. Tsao, Peculiar Wetting of N, N-dimethylformamide: Expansion, contraction, and self-running, J. Phys. Chem. C 123 (2019) 24477.
[64] Y.-H. Weng, C.-J. Wu, H.-K. Tsao, Y.-J. Sheng, Spreading dynamics of a precursor film of nanodrops on total wetting surfaces, Phys. Chem. Chem. Phys. 19 (2017) 27786.
[65] Q. Xie, M. A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel, J. Kong, H. G. Park, C. Duan, Fast water transport in graphene nanofluidic channels, Nat. Nanotechnol. 13 (2018) 238.
[66] G.-Y. He, H.-K. Tsao, Y.-J. Sheng, Wicking dynamics into two-rail open channel with periodical branches, Phys. Fluids 34 (2022) 102004.
[67] R. Zhou, Z. Qiu, C. Sun, B. Bai, Entrance loss of capillary flow in narrow slit nanochannels, Phys. Fluids 35 (2023) 042005.

4-5 Reference
[1] J. Zhong, M. A. Alibakhshi, Q. Xie, J. Riordon, Y. Xu, C. Duan, D. Sinton, Exploring anomalous fluid behavior at the nanoscale: Direct visualization and quantification via nanofluidic devices, Acc. Chem. Res. 53 (2020) 347.
[2] P. Kolliopoulos, K. S. Jochem, D. Johnson, W. J. Suszynski, L. F. Francis, S. Kumar, Capillary-flow dynamics in open rectangular microchannels, J. Fluid Mech. 911 (2021) A32.
[3] P. Kolliopoulos, S. Kumar, Capillary flow of liquids in open microchannels: overview and recent advances, npj Microgravity 7 (2021) 51.
[4] M. Nazari, A. Davoodabadi, D. Huang, T. Luo, H. Ghasemi, On interfacial viscosity in nanochannels, Nanoscale 12 (2020) 14626.
[5] A. Kamitani, S. Morishita, H. Kotaki, S. Arscott, Microfabricated microfluidic fuel cells, Sens. Actuators B Chem. 154 (2011) 174.
[6] J. Cai, Y. Chen, Y. Liu, S. Li, C. Sun, Capillary imbibition and flow of wetting liquid in irregular capillaries: A 100-year review, Adv. Colloid Interface Sci. 304 (2022) 102654.
[7] C. J. Ridgway, P. A. Gane, J. Schoelkopf, Effect of capillary element aspect ratio on the dynamic imbibition within porous networks, J. Colloid Interface Sci. 252 (2002) 373.
[8] G. Martic, T. Blake, J. De Coninck, Dynamics of imbibition into a pore with a heterogeneous surface, Langmuir 21 (2005) 11201.
[9] K. Schmid, S. Geiger, Universal scaling of spontaneous imbibition for water‐wet systems, Water Resour. Res. 48 (2012) W03507.
[10] R. Zhou, Z. Qiu, C. Sun, B. Bai, Entrance loss of capillary flow in narrow slit nanochannels, Phys. Fluids 35 (2023) 042005.
[11] N. Kavokine, R. R. Netz, L. Bocquet, Fluids at the nanoscale: From continuum to subcontinuum transport, Annu. Rev. Fluid Mech. 53 (2021) 377.
[12] W. Xiong, J. Z. Liu, M. Ma, Z. Xu, J. Sheridan, Q. Zheng, Strain engineering water transport in graphene nanochannels, Phys. Rev. E 84 (2011) 056329.
[13] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498.
[14] H. Li, L. Zou, L. Pan, Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environ. Sci. Technol. 44 (2010) 8692.
[15] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS nano 4 (2010) 380.
[16] B. Radha, A. Esfandiar, F. Wang, A. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, Molecular transport through capillaries made with atomic-scale precision, Nature 538 (2016) 222.
[17] J. R. Werber, C. O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater. 1 (2016) 1.
[18] G. Wei, L. Du, H. Zhang, J. Xing, S. Chen, X. Quan, Electrochemical Opening of Impermeable Nanochannels in Laminar Graphene Membranes for Ultrafast Nanofiltration, Environ. Sci. Technol. 57 (2023) 3843.
[19] E. Sadeghinezhad, M. A. Q. Siddiqui, H. Roshan, K. Regenauer-Lieb, On the interpretation of contact angle for geomaterial wettability: Contact area versus three-phase contact line, J. Pet. Sci. Eng. 195 (2020) 107579.
[20] T.-Y. Wang, H.-Y. Chang, G.-Y. He, H.-K. Tsao, Y.-J. Sheng, Anomalous spontaneous capillary flow of water through graphene nanoslits: Channel width-dependent density, J. Mol. Liq. 352 (2022) 118701.
[21] A. Kozbial, C. Trouba, H. Liu, L. Li, Characterization of the intrinsic water wettability of graphite using contact angle measurements: Effect of defects on static and dynamic contact angles, Langmuir 33 (2017) 959.
[22] J. Włoch, A. P. Terzyk, P. Kowalczyk, New forcefield for water nanodroplet on a graphene surface, Chem. Phys. Lett. 674 (2017) 98.
[23] Y. Xu, C. J. Dibble, N. G. Petrik, R. S. Smith, B. D. Kay, G. A. Kimmel, Complete wetting of Pt (111) by nanoscale liquid water films, J. Phys. Chem. Lett. 7 (2016) 541.
[24] K. Nuthalapati, Y.-J. Sheng, H.-K. Tsao, Atypical wetting behavior of binary mixtures of partial and total wetting liquids: leak-out phenomena, Colloids Surf. A Physicochem. Eng. Asp. 666 (2023) 131299.
[25] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Spontaneous spreading of nanodroplets on partially wetting surfaces with continuous grooves: Synergy of imbibition and capillary condensation, J. Mol. Liq. 339 (2021) 117270.
[26] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci, J. Colloid Interface Sci. 538 (2019) 340.
[27] A. I. Aria, P. R. Kidambi, R. S. Weatherup, L. Xiao, J. A. Williams, S. Hofmann, Time evolution of the wettability of supported graphene under ambient air exposure, J. Phys. Chem. C 120 (2016) 2215.
[28] Y.-T. Cheng, H.-Y. Chang, H.-K. Tsao, Y.-J. Sheng, Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects, Phys. Fluids 34 (2022) 112003.
[29] R. Raj, S. C. Maroo, E. N. Wang, Wettability of graphene, Nano Lett. 13 (2013) 1509.
[30] Y. Arao, F. Mori, M. Kubouchi, Efficient solvent systems for improving production of few-layer graphene in liquid phase exfoliation, Carbon 118 (2017) 18.
[31] A. Moosa, M. Abed, Graphene preparation and graphite exfoliation, Turk. J. Chem. 45 (2021) 493.
[32] T. Purkait, R. Ahammed, A. De Sarkar, R. S. Dey, The role of exfoliating solvents for control synthesis of few-layer graphene-like nanosheets in energy storage applications: Theoretical and experimental investigation, Appl. Surf. Sci. 509 (2020) 145375.
[33] Y. Xu, H. Cao, Y. Xue, B. Li, W. Cai, Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges, Nanomaterials 8 (2018) 942.
[34] H.-Y. Chang, H.-K. Tsao, Y.-J. Sheng, Abnormal wicking dynamics of total wetting ethanol in graphene nanochannels, Phys. Fluids 35 (2023) 052017.
[35] Q. Xie, M. A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel, J. Kong, H. G. Park, C. Duan, Fast water transport in graphene nanofluidic channels, Nat. Nanotechnol. 13 (2018) 238.
[36] X. Hu, Z. Zeng, J. Zhang, D. Wu, H. Li, F. Geng, Molecular dynamics simulation of the interaction of food proteins with small molecules, Food Chem. 405 (2023) 134824.
[37] J. C. Phillips, D. J. Hardy, J. D. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, Scalable molecular dynamics on CPU and GPU architectures with NAMD, J. Chem. Phys. 153 (2020) 044130.
[38] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26 (2005) 1781.
[39] A. K. Wong, A. M. Goscinski, A VMD plugin for NAMD simulations on Amazon EC2, Procedia Comput. Sci. 9 (2012) 136.
[40] E. Lilkova, G. Nacheva, P. Petkov, P. Petkov, S. Markov, N. Ilieva, L. Litov, Metadynamics study of mutant human interferon-gamma forms, Comput. Math. Appl. 64 (2012) 272.
[41] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph. 14 (1996) 33.
[42] D. Mohammad-Aghaie, M. M. Papari, J. Moghadasi, B. Haghighi, Assessment of the effect of mixing rules on transport properties of gas mixtures, Bull. Chem. Soc. Jpn. 81 (2008) 1219.
[43] Q. Guan, B. Shan, R. Wang, G. Feng, Z. Guo, Evaluation of different particle-actuation modes in molecular dynamics and their impact on nanoscale flow behaviors, Phys. Fluids 34 (2022) 072006.
[44] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995) 8577.
[45] S. A. Deshmukh, G. Kamath, S. K. Sankaranarayanan, Comparison of the interfacial dynamics of water sandwiched between static and free-standing fully flexible graphene sheets, Soft Matter 10 (2014) 4067.
[46] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields, J. Comput. Chem. 31 (2010) 671.
[47] J. Irving, J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950) 817.
[48] J. G. Kirkwood, F. P. Buff, The statistical mechanical theory of surface tension, J. Chem. Phys. 17 (1949) 338.
[49] M. T. Hossain, I. D. Gates, G. Natale, Dynamics of Brownian Janus rods at a liquid-liquid interface, Phys. Fluids 34 (2022) 012117.
[50] Y.-T. Cheng, K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Size-dependent behavior and failure of young’s equation for wetting of two-component nanodroplets, J. Colloid Interface Sci. 578 (2020) 69.
[51] M. K. Gilson, J. A. Given, B. L. Bush, J. A. McCammon, The statistical-thermodynamic basis for computation of binding affinities: a critical review, Biophys. J. 72 (1997) 1047.
[52] J. Hénin, J. Gumbart, C. Chipot, In silico alchemy: A tutorial for alchemical free-energy perturbation calculations with NAMD, Centre National de la Recherche Scientifique, University of Illinois, Urbana-Champaign (2017).
[53] F. Gonçalves, A. Trindade, C. Costa, J. Bernardo, I. Johnson, I. Fonseca, A. Ferreira, PVT, viscosity, and surface tension of ethanol: New measurements and literature data evaluation, J. Chem. Thermodyn. 42 (2010) 1039.
[54] S. Zhang, L. Zhao, X. Yue, B. Li, J. Zhang, Density, viscosity, surface tension and spectroscopic studies for the liquid mixture of tetraethylene glycol+ N, N-dimethylformamide at six temperatures, J. Mol. Liq. 264 (2018) 451.
[55] M. Bala, V. Singh, Surface tension gradient driven autonomous fatty acid-tetrahydrofuran liquid moving drops: Spreading to pinning, J. Mol. Liq. 375 (2023) 121361.
[56] G. Vazquez, E. Alvarez, J. M. Navaza, Surface tension of alcohol water+ water from 20 to 50. degree. C, J. Chem. Eng. Data 40 (1995) 611.
[57] L. Chen, E. Bonaccurso, Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops, Phys. Rev. E 90 (2014) 022401.
[58] P. G. Bange, G. Upadhyay, N. D. Patil, R. Bhardwaj, Isothermal and non-isothermal spreading of a viscous droplet on a solid surface in total wetting condition, Phys. Fluids 34 (2022) 112115.
[59] L. Tanner, “The spreading of silicone oil drops on horizontal surfaces,” J. Phys. D: Appl. Phys. 12 (1979) 1473.
[60] S.-W. Hu, C.-Y. Wang, Y.-J. Sheng, H.-K. Tsao, Peculiar wetting of N, N-dimethylformamide: Expansion, contraction, and self-running, J. Phys. Chem. C 123 (2019) 24477.
[61] Y.-H. Weng, C.-J. Wu, H.-K. Tsao, Y.-J. Sheng, Spreading dynamics of a precursor film of nanodrops on total wetting surfaces, Phys. Chem. Chem. Phys. 19 (2017) 27786.
[62] G.-Y. He, H.-K. Tsao, Y.-J. Sheng, Wicking dynamics into two-rail open channel with periodical branches, Phys. Fluids 34 (2022) 102004.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96276-
dc.description.abstract本論文分為四個部分。第一部分探討了液滴大小如何影響壓縮乳液的填充微結構和熱性質。在準備熱力學亞穩乳液時,液滴聚合是一個常見現象,使得研究單分散壓縮乳液在實驗或模擬中變得困難。在固定體積分數下,乳液的性質隨著液滴大小而變化,但相關研究有限。本研究使用耗散粒子動力學在無需事先了解微結構或液滴間的相互作用下,探索高濃度單分散液滴乳液的特性。研究結果顯示,形成堵塞結構的臨界體積分率約為0.65。隨著體積分率的增加,平均配位數也增加,可以用一個簡單的尺度關係式描述。另外,我們亦系統性地研究體積分率、液滴直徑和界面張力對內能和熱容的影響。發現隨著體積分率和界面張力的增加,以及液滴直徑的減小,內能和熱容都會增長。尺度分析表明,模擬結果十分符合我們推導的尺度關係式的預測。
第二部分研究了含有奈米尺寸液滴的濃縮乳液之固態彈性行為,包括楊氏模數和體積模數。由於其固態般的行為,高體積分率的濃縮乳液在食品、化妝品、塗料和製藥等各個行業中有著廣泛的應用。然而,由於液滴的聚合和熱力學不穩定性,研究單分散濃縮乳液的機械性質是具有挑戰性的。我們採用一種介觀模擬方法來探索這些性質,並且無需事先得知乳液的微結構。我們研究了體積分率(𝜙)、液滴直徑(D)和界面張力(𝜎)對楊氏模數(E)和體積模數(K)的影響。當𝜙 < 𝜙c,楊氏模數不存在,而體積模數隨著𝜙的增加而增加。當𝜙 > 𝜙c,隨著𝜙和𝜎的增加,兩者都會增加,特別是當液滴直徑減小時會更為明顯。我們的模擬結果顯示楊氏模數(E)和體積模數(K)能以兩式E~𝜙0.13(𝜙-𝜙c)1.55(𝜎/D) 和 K~𝜙1.06(𝜙-𝜙c)0.15(𝜎/D)表示。此外,對於軟材料,彈性模數和體積模數的關係滿足E=3K(1-2𝜈),其中泊松比(𝜈)非常接近0.5,但隨著𝜙的增加仍然略有下降。
第三部分探討了在石墨烯奈米通道中全潤濕的乙醇之異常滲吸動力學。研究利用分子動力學探索了乙醇(全潤濕)在石墨烯片上的散擴行為,以及在石墨烯奈米通道中的滲吸過程。在散擴動力學中,存在兩個區段:初始由慣性主導的散擴和之後的黏性散擴,其指數高於坦納定律。全潤濕液體在滲吸動力學中表現出與部分潤濕液體不同的行為。前驅膜和主流隨著它們的長度與時間的平方根成比例地前進,前驅膜的比例常數與通道寬度無關,但主流的比例常數隨著通道變寬而減小。另外,前者的比例常數值較主流的值大。前驅膜的厚度和小於通道寬度的弧面曲率直徑都隨著通道變寬而增加。在非常狹窄的奈米通道中,前驅膜會融入主流,呈現出異常快速的滲吸行為。
第四部分研究了石墨烯奈米通道中通過前驅膜增厚來增強毛細流。由於前驅膜的存在,全潤濕液體在奈米毛細管中表現出與部分潤濕液體不同的滲吸動力學。我們使用分子動力學研究了在石墨烯片上全潤濕液體(異丙醇和二甲基甲酰胺)的潤濕行為以及在石墨烯的奈米通道中的滲吸動力學。自發散擴動力學遵循兩個幂律,其長期行為符合坦納定律。奈米通道中的滲吸偏離了沃什伯恩方程式,呈現出一個獨特的雙階段模式,其轉折點與液體類型相關但與通道寬度無關。在第一階段時,前驅膜的前進速率不隨通道寬度改變而變化。在前驅膜達到通道末端後,第二階段即開始,前驅膜重新變厚。此增厚程序,減少了膜的弧面曲率,因此增加毛細驅動力,加速了第二階段的毛細流,所以第二階段的滲吸速率明顯超過第一階段。
zh_TW
dc.description.abstractThis thesis comprises four parts. The first part explores the effect of droplet size on the packing microstructures and thermal properties of compressed emulsions. In preparing thermodynamically metastable emulsions, droplet coalescence is a common issue, making it challenging to study monodisperse compressed emulsions either experimentally or through simulations. Properties of emulsions vary with droplet size at a specified volume fraction, but relevant studies are limited. Here, dissipative particle dynamics simulations are used to explore highly concentrated emulsions of monodisperse droplets without prior knowledge of microstructure or inter-droplet interactions. The critical packing leading to the onset of the jammed structure is identified at a volume fraction around 0.65. The mean coordination number rises with increasing volume fraction and can be described by a scaling relation. The effects of volume fraction, droplet diameter, and interfacial tension on internal energy and heat capacity are systematically studied, showing growth with in-creased volume fraction and interfacial tension, and decreased droplet diameter. Dimen-sional analysis shows that all data points can be well represented by the scaling relations derived in this study.
The second part studies the solid-like elastic behavior, including Young's and bulk moduli, of nanosized concentrated emulsions. Concentrated emulsions with high volume fractions find applications in various industries like food, cosmetics, coatings, and phar-maceuticals due to their solid-like behavior. However, studying the mechanical properties of monodisperse concentrated emulsions is challenging due to droplet coalescence and thermodynamic instability. A mesoscopic simulation method is used to explore these properties without prior microstructure knowledge. The effects of volume fraction (𝜙), droplet diameter (D), and interfacial tension (𝜎) on Young’s modulus (E) and bulk modulus (K) are investigated. Young’s modulus is absent for 𝜙 < 𝜙c, while the bulk modulus increases with 𝜙. For 𝜙 > 𝜙c, both moduli grow with 𝜙 and 𝜎, especially as D decreases. Our simulation results are represented by E~𝜙0.13(𝜙-𝜙c)1.55(𝜎/D) and K~𝜙1.06(𝜙-𝜙c)0.15(𝜎/D). Furthermore, the relationship for soft materials E=3K(1-2𝜈) is satisfied. The Poisson’s ratio (𝜈) is very close to 0.5 but still decreases slightly with increasing 𝜙.
The third part investigates the abnormal wicking dynamics of total wetting ethanol in graphene nanochannels. The study explores ethanol's (total wetting) spreading behavior on graphene sheets and the imbibition process in graphene nanochannels using Molecular Dynamics. In spreading dynamics, two regimes are identified: initial spreading dominated by inertia and viscous spreading with an exponent higher than Tanner’s law. Total wetting liquid exhibits distinct behavior from partial wetting liquid in imbibition dynamics. The precursor film and main flow advance with their lengths proportional to the square root of time, but the constant for the precursor film, independent of channel widths, is greater than that of the main flow, which decreases with wider channels. Both the precursor film thickness and meniscus curvature diameter, smaller than the channel width, increase with wider channels. Very narrow nanoslits show surprisingly rapid imbibition behavior, with the precursor film blending into the main flow.
The fourth part examines the enhancement of capillary flow via precursor film thickening in graphene nanochannels. Total wetting liquids exhibit different wicking dy-namics in nanocapillaries compared to partial wetting liquids due to the precursor film. We investigate total wetting liquids (isopropyl alcohol and dimethylformamide) on graphene sheets and imbibition dynamics in graphene-based nanoslits using molecular dynamics. Spontaneous spreading dynamics follow two power laws, with long-term behavior con-forming to Tanner’s law. Imbibition in nanoslits deviates from Washburn’s equation, showing a unique two-stage pattern with a turning point related to the liquid type, inde-pendent of channel width. The imbibition rate in the second stage exceeds the first. The precursor film's advancing rate remains constant irrespective of the channel width in the first stage. After the precursor film reaches the channel's end, the second stage begins, and the film re-thickens, reducing meniscus curvature and enhancing capillary flow.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:31:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:31:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝……………….…….…...……………............................................... i
中文摘要…...…………………...…………………...……………….…. ii
Abstract…...……………………...……………………………………. iv
Content ……...……...……………………………………………...... vii
Figure captions………………..…………………...………………….... x
Table captions ....……………………...………….………………….. xvi
Chapter 1 Packing microstructures and thermal properties of com-pressed emulsions: effect of droplet size…………………………. 1
1-1 Introduction…………………………………………………….. 2
1-2 Method………………………...……………………………….. 4
1-3 Results and discussion…...…………………………………….. 7
1-3-1 Structure of compressed emulsions …………………….... 8
1-3-2 Internal energy and heat capacity……….……...……….. 14
1-4 Conclusion………………….....……………..……………….. 24
1-5 Reference...………………………………………………….. 26
Chapter 2 Solid-like elastic behavior of nanosized concentrated emulsions: size-dependent Young’s and bulk moduli………….……. 31
2-1 Introduction………………………………………………….. 32
2-2 Simulation method…..………...…………………………….. 34
2-3 Results and discussion…...………………………………….. 36
2-3-1 Young’s modulus of concentrated emulsions …….…... 37
2-3-2 Bulk modulus of concentrated emulsions…..…..……….. 45
2-4 Conclusion………………….....…………………………….. 51
2-5 Reference...………………………………………………….. 52
2-6 Supporting information….........…………………………….. 60
Chapter 3 Abnormal wicking dynamics of total wetting ethanol in graphene nanochannel………………………………….……………. 61
3-1 Introduction………………………………………………….. 62
3-2 Method………………………...…………………………….. 64
3-3 Results and discussion…...………………………………….. 67
3-3-1 The total wetting behavior of ethanol on graphene …... 67
3-3-2 Meniscus and precursor film………..…………...…….. 70
3-3-3 Imbibition dynamics………………………..………….. 75
3-4 Conclusion………………….....…………………………….. 80
3-5 Reference...………………………………………………….. 81
3-6 Supporting information….........…………………………….. 88
Chapter 4 Enhancement of capillary flow via precursor film thick-ening in graphene nanochan-nels…………………………..………………. 89
4-1 Introduction………………………………………………….. 90
4-2 Method………………………...…………………………….. 92
4-3 Results and discussion…...………………………………….. 95
4-3-1 Spreading of total wetting liquids on graphene ……...... 95
4-3-2 Two characteristic regimes in capillary flow………….. 100
4-3-3 Advancing precursor film and the change of its thick-ness..103
4-3-4 Precursor film-assisted capillary flow……………….... 108
4-4 Conclusion………………….....…………………………….. 113
4-5 Reference...………………………………………………….. 114
4-6 Supporting information…...………...………………………. 121
Chapter 5 Conclusion…………………………..………………. 123
-
dc.language.isoen-
dc.subject尺寸依賴性zh_TW
dc.subject熱性能和機械性能zh_TW
dc.subject奈米毛細管流zh_TW
dc.subject石墨烯奈米通道zh_TW
dc.subject完全潤濕zh_TW
dc.subject前驅薄膜zh_TW
dc.subject單分散濃縮乳液zh_TW
dc.subjectprecursor filmen
dc.subjectmonodisperse concentrated emulsionen
dc.subjectsize-dependenceen
dc.subjectthermal and mechanical propertiesen
dc.subjectnanocapillary flowen
dc.subjectgraphene nanochannelsen
dc.subjecttotal wettingen
dc.title濃乳液的機械特性及基於石墨烯的奈米通道中的異常滲吸動力學zh_TW
dc.titleMechanical Characteristics of Concentrated Emulsions and Abnormal Wicking Dynamics in Graphene-based Nanochannelsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee曹恆光;郭修伯;崔宏瑋;孫幸宜zh_TW
dc.contributor.oralexamcommitteeHeng-Kwong Tsao;Hsiu-Po Kuo;Hung-Wei Tsui;Shing-Yi Suenen
dc.subject.keyword單分散濃縮乳液,尺寸依賴性,熱性能和機械性能,奈米毛細管流,石墨烯奈米通道,完全潤濕,前驅薄膜,zh_TW
dc.subject.keywordmonodisperse concentrated emulsion,size-dependence,thermal and mechanical properties,nanocapillary flow,graphene nanochannels,total wetting,precursor film,en
dc.relation.page126-
dc.identifier.doi10.6342/NTU202404382-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-09-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf5.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved